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Abstract. Some new oscillation criteria are obtained for the fourth-order nonlinear 
neutral delay difference equation of the form ( )( ) 011

3 =++∆∆ −− nnnnnn yryqyp . 
Examples are inserted to illustrate the result. 
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1. Introduction 
The notion of nonlinear difference equation was studied intensively by R.P.Agarwal[1]. 
Recently there has been a lot of interest in the study of oscillatory behavior of solutions 
of nonlinear neutral delay difference equations. B.Selvaraj and I. Mohammed Ali 
Jaffer[14] considered the fourth order nonlinear neutral delay difference equation of the 
form ( )( )( ) ( ) 02 =++∆∆∆ −− στ nnnnnnn yfqybyac . Motivated by the references cited in 
[1 - 19], in this paper, we discussed some new oscillation criteria for the forth-order 
nonlinear neutral delay difference equation of the form 
 

             ( )( ) 011
3 ,0 nnyryqyp nnnnnn ≥=++∆∆ −− ,                                               (1.1) 

where { },...2,1,)( 00000 ++=∈ nnnnNn  and ∆ is the forward difference operator 
defined by ∆yn= yn+1 – yn , and 
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By a solution of equation (1.1) we mean a real sequence {yn} which satisfies the 
equation (1.1) for all n≥n0, where n0≥0. We recall that a nontrivial solution of equation 
(1.1) is said to be oscillatory if for every M>0, there exists an integer n≥M such that 
ynyn+1≤0; otherwise it is said to be nonoscillatory. Thus a nonoscillatory solution is either 
eventually positive or eventually negative. 
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2. Main Results 
In this section, we concern some sufficient condition for oscillatory behavior of solutions 
of equation (1.1) and also we deduce some results from the main results. 
 
Lemma 1.  If yn is an eventually positive solution of equation (1.1) and zn = yn + qnyn−1, 
then for all n>n0, there are only two possible cases. 

Case (i): zn > 0; ∆zn>0; ∆(pn∆zn)>0; ∆2(pn∆zn)>0 . 

Case (ii): zn < 0; ∆zn< 0; ∆(pn∆zn)>0; ∆2(pn∆zn)>0. 

Proof: Let yn be an eventually positive solution of equation (1.1), then there exists n1≥n0 
such that yn−1>0 for n≥n0. Then in view of the assumption and definition of zn, we have 
zn>0 for all n≥n1. Thus ∆zn>0 and zn are eventually of one sign. 

We claim that ∆2(pn∆zn)>0 for all large n.                             (2.1) 

We prove the result by contradiction. Suppose that ∆2(pn∆zn)≤0 for all large n. 

It is clear that there is an integer n2≥n1 such that ( ) ( ) 0
22

22 <∆∆≤∆∆ nnnn zpzp .      (2.2) 

Summing the inequality (2.2) from n2 to n−1, we obtain 

( ) .allforintegeranis0where, 2311 nnnkkzp nn ≥≥>−≤∆∆                               (2.3) 

Summing the inequality (2.3) from n3 to n−1, we obtain 

.allforintegeranis0where, 3422 nnnkkzp nn ≥≥>−≤∆                                   (2.4) 

Summing the inequality (2.4) from n 4 to n−1, we have 
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Hence, zn→−∞ as n→∞. Thus there exists an integer n5>0 such that zn<−k3  for 
n≥n4, where k3>0 is a real number. This is a contradiction to the fact that zn>0 for all 
large n≥n0. This completes the proof.  

Lemma 2. If yn is an eventually positive solution of equation (1.1), and if case(i) of 
Lemma1 holds. Then there exists sufficiently large n1≥n0 such that

( )nnnn zpzp ∆∆≥∆ −−
2

11 , for sufficiently large n. 

Proof:  From Case(i) of Lemma1 and equation (1.1), we have, for n≥n1, zn > 0; ∆zn>0; 
∆(pn∆zn)>0; ∆2(pn∆zn)>0 and ∆3(pn∆zn)<0. 
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( ) ( )nnnn zpzp ∆∆≥∆∆ 2 .  

Summing the above inequality from n2 to n−1, for n2≥n1, we have

( )∑
−

=

≥∆∆+∆≥∆
1

2
2

2

22
for,

n

ns
nnnnnn nnzpzpzp .  

This implies that ( ) 2
2 , nnforzpzp nnnn ≥∆∆≥∆  .  

Since ∆3(pn∆zn)<0, we have ( ) ( ) 2
2

11
2 for, nnzpzp nnnn ≥∆∆≥∆∆ −− . It follows that for 

n≥n2=n1+1 sufficiently large,
 

( )nnnn zpzp ∆∆≥∆ −−
2

11  .  This completes the proof of the 
Lemma. 
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 hold. Then every solution of 

equation (1.1) is oscillatory.  

Proof: Let yn be a non-oscillatory solution of equation (1.1). Without loss of generality 
we may assume that yn>0, yn-1>0 for n≥n1, where n1≥n0 is chosen so large that Lemma 1 
and Lemma 2 holds. From Lemma1, there are two possible cases. 

Case (i): ∆zn>0 for n≥n1≥n0. 

In this case, we define the function wn by 
( )

1
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for nn
z
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nn
n zz
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z

zp
w . From equation (1.1) and Lemma 2, we 

find that 
n

nn
n z

yrw 1−−≤∆ . Now we can find a real number K such that ,Kwn −<∆  

12allfor nnn ≥≥ .  Summing the above inequality from n2 to n−1, we obtain 

wn→−∞ as n→∞. This is a contradiction to the fact that yn is a positive solution of 
equation (1.1). 

Case (ii): ∆zn<0 for n≥n1≥n0. 

Since ∆zn<0, by the definition of zn, yn >0 and decreasing for all n≥n1. Summing the 
equation (1.1) from n1 to n−1, we obtain 

( ) 1

1

1
2 allfor0

1

nnyrzp
n

ns
ssnn ≥≤+∆∆ ∑

−

=
− .           (2.5) 
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Summing the inequality (2.5) from n2 to n−1, we obtain 

                                 ( ) 12
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Summing the inequality (2.6) from n3 to n−1, we obtain 
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Summing the inequality (2.7) from n4 to n−1, we obtain 
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From the inequality (2.8), we obtain 45
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The proof is similar to the case, when yn<0. Thus theorem is completely proved. 

Remark 1. The following Example illustrates the result of Theorem1. 

Example 1. Consider the difference equation    

              ( )( )( ) ( ) 1,071 11
3 ≥=−+++∆∆ −− nynnynyn nnn .                                 (E1) 

Here pn = n, qn = n+1, rn = n(7−n) and all the conditions of the Theorem1 are satisfied. 

Hence all solutions of equation (E1) are oscillatory. In fact, {yn}= {(−1)n}is one such a 
solution of equation (E1). 

Corollary 1. Every solution of equation (1.1) is oscillatory if the condition either 
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Remark  2.   In the given assumptions, if the condition either  
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holds. Hence every solution of equation (1.1) is 

oscillatory. The following example illustrates the result of the Corollary 1. 

Example 2. Consider the difference equation  
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Hence all solutions of equation (E2) are oscillatory. In fact, {yn}= {n(−1)n}is one such a 
solution of equation (E2) . 

Corollary 2. Every solution of equation (1.1) is oscillatory if both the conditions 
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Remark 3.  In the given assumptions, if both the conditions  
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holds. Hence every solution of equation (1.1) is 

oscillatory. The following Example illustrates the result of the Corollary 2. 
 
Example 3. Consider the difference equation  
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Hence all solutions of equation (E3) are oscillatory. In fact, { } ( )
⎭
⎬
⎫

⎩
⎨
⎧ −
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y
n

n
1

is one such a 

solution of equation (E3). 

Proposition 1. Every oscillation solution of equation (1.1) is bounded if the sufficient 

condition 0for,1

0

nn
rnn n
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Proposition 2. Every oscillation solution of equation (1.1) is unbounded if the condition 
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Proposition 3. Every oscillation solution of equation (1.1) is asymptotic if both the 
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