Progress in Nonlinear Dynamics and Chaos Vol. 1, 2013, 27-33 ISSN: 2321 – 9238 (online) Published on 31May 2013 www.researchmathsci.org

Oscillatory Behavior of Solutions of Certain Fourth-Order Nonlinear Neutral Delay Difference Equations

B. Selvaraj and M. Raju

Department of Science and Humanities, Nehru Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India – 641 105 email: professorselvaraj@gmail.com; rajumurugasamy@gmail.com

Received 15 May 2013; accepted 25 May 2013

Abstract. Some new oscillation criteria are obtained for the fourth-order nonlinear neutral delay difference equation of the form $\Delta^3(p_n\Delta(y_n + q_ny_{n-1})) + r_ny_{n-1} = 0$. Examples are inserted to illustrate the result.

Keywords: Nonlinear difference equations, oscillation, neutral delay.

1. Introduction

The notion of nonlinear difference equation was studied intensively by R.P.Agarwal[1]. Recently there has been a lot of interest in the study of oscillatory behavior of solutions of nonlinear neutral delay difference equations. B.Selvaraj and I. Mohammed Ali Jaffer[14] considered the fourth order nonlinear neutral delay difference equation of the form $\Delta(c_n\Delta^2(a_n\Delta(y_n + b_ny_{n-\tau}))) + q_nf(y_{n-\sigma}) = 0$. Motivated by the references cited in [1 - 19], in this paper, we discussed some new oscillation criteria for the forth-order nonlinear neutral delay difference equation of the form

$$\Delta^{3}(p_{n}\Delta(y_{n}+q_{n}y_{n-1}))+r_{n}y_{n-1}=0, n \ge n_{0}, \qquad (1.1)$$

where $n_0 \in N(n_0) = \{n_0, n_0 + 1, n_0 + 2, ...\}$ and Δ is the forward difference operator defined by $\Delta y_n = y_{n+1} - y_n$, and

$$p_n > 0, q_n > 0, r_n \neq 0$$
 and $\sum_{n=n_0}^{\infty} \frac{1}{p_n} = \sum_{n=n_0}^{\infty} \frac{1}{q_n} = \infty$ and $\sum_{n=n_0}^{\infty} \frac{1}{r_n} < \infty$, for $n \ge n_0$.

By a solution of equation (1.1) we mean a real sequence $\{y_n\}$ which satisfies the equation (1.1) for all $n \ge n_0$, where $n_0 \ge 0$. We recall that a nontrivial solution of equation (1.1) is said to be oscillatory if for every M>0, there exists an integer $n\ge M$ such that $y_ny_{n+1}\le 0$; otherwise it is said to be nonoscillatory. Thus a nonoscillatory solution is either eventually positive or eventually negative.

B.Selvaraj and M.Raju

2. Main Results

In this section, we concern some sufficient condition for oscillatory behavior of solutions of equation (1.1) and also we deduce some results from the main results.

Lemma 1. If y_n is an eventually positive solution of equation (1.1) and $z_n = y_n + q_n y_{n-1}$, then for all $n > n_0$, there are only two possible cases.

Case (i): $z_n > 0$; $\Delta z_n > 0$; $\Delta(p_n \Delta z_n) > 0$; $\Delta^2(p_n \Delta z_n) > 0$.

Case (ii): $z_n < 0$; $\Delta z_n < 0$; $\Delta (p_n \Delta z_n) > 0$; $\Delta^2 (p_n \Delta z_n) > 0$.

Proof: Let y_n be an eventually positive solution of equation (1.1), then there exists $n_1 \ge n_0$ such that $y_{n-1} \ge 0$ for $n \ge n_0$. Then in view of the assumption and definition of z_n , we have $z_n \ge 0$ for all $n \ge n_1$. Thus $\Delta z_n \ge 0$ and z_n are eventually of one sign.

We claim that
$$\Delta^2(p_n \Delta z_n) > 0$$
 for all large n. (2.1)

We prove the result by contradiction. Suppose that $\Delta^2(p_n\Delta z_n) \leq 0$ for all large n.

It is clear that there is an integer $n_2 \ge n_1$ such that $\Delta^2(p_n \Delta z_n) \le \Delta^2(p_{n_2} \Delta z_{n_2}) < 0$. (2.2)

Summing the inequality (2.2) from n_2 to n-1, we obtain

$$\Delta(p_n \Delta z_n) \le -k_1, \text{ where } k_1 > 0 \text{ is an integer for all } n \ge n_3 \ge n_2.$$
(2.3)

Summing the inequality (2.3) from n_3 to n-1, we obtain

$$p_n \Delta z_n \le -k_2$$
, where $k_2 > 0$ is an integer for all $n \ge n_4 \ge n_3$. (2.4)

Summing the inequality (2.4) from n_4 to n-1, we have

$$z_n \leq -k_2 z_{n_4} \sum_{s=n_4}^{\infty} \frac{1}{p_s}$$

Hence, $z_n \rightarrow -\infty$ as $n \rightarrow \infty$. Thus there exists an integer $n_5 > 0$ such that $z_n < -k_3$ for $n \ge n_4$, where $k_3 > 0$ is a real number. This is a contradiction to the fact that $z_n > 0$ for all large $n \ge n_0$. This completes the proof.

Lemma 2. If y_n is an eventually positive solution of equation (1.1), and if case(i) of Lemma1 holds. Then there exists sufficiently large $n_1 \ge n_0$ such that $p_{n-1}\Delta z_{n-1} \ge \Delta^2 (p_n \Delta z_n)$, for sufficiently large n.

Proof: From Case(i) of Lemma1 and equation (1.1), we have, for $n \ge n_1$, $z_n > 0$; $\Delta z_n > 0$; $\Delta(p_n \Delta z_n) > 0$; $\Delta^2(p_n \Delta z_n) > 0$ and $\Delta^3(p_n \Delta z_n) < 0$.

Oscillatory Behavior of Solutions of Certain Fourth-Order Nonlinear Neutral Delay Difference Equations

Since
$$\sum_{s=n_1}^{n-1} \Delta^2(p_n \Delta z_n) = \Delta(p_n \Delta z_n) - \Delta(p_{n_1} \Delta z_{n_1})$$
, for $n \ge n_1$, we obtain

 $\Delta(p_n \Delta z_n) \geq \Delta^2(p_n \Delta z_n) \ .$

Summing the above inequality from n_2 to n-1, for $n_2 \ge n_1$, we have $p_n \Delta z_n \ge p_{n_2} \Delta z_{n_2} + \sum_{s=n_2}^{n-1} \Delta^2 (p_n \Delta z_n)$, for $n \ge n_2$.

This implies that $p_n \Delta z_n \ge \Delta^2 (p_n \Delta z_n)$, for $n \ge n_2$.

Since $\Delta^3(p_n\Delta z_n) < 0$, we have $\Delta^2(p_{n-1}\Delta z_{n-1}) \ge \Delta^2(p_n\Delta z_n)$, for $n \ge n_2$. It follows that for $n \ge n_2 = n_1 + 1$ sufficiently large, $p_{n-1}\Delta z_{n-1} \ge \Delta^2(p_n\Delta z_n)$. This completes the proof of the Lemma.

Theorem 1. If the condition $\lim_{n \to \infty} \sup \sum_{s=n_1}^{n-1} \frac{1}{p_s} \sum_{t=s}^{n-1} \sum_{u=t}^{n-1} \sum_{i=u}^{n-1} r_i = \infty$ hold. Then every solution of

equation (1.1) is oscillatory.

Proof: Let y_n be a non-oscillatory solution of equation (1.1). Without loss of generality we may assume that $y_n > 0$, $y_{n-1} > 0$ for $n \ge n_1$, where $n_1 \ge n_0$ is chosen so large that Lemma 1 and Lemma 2 holds. From Lemma 1, there are two possible cases.

Case (i): $\Delta z_n > 0$ for $n \ge n_1 \ge n_0$.

In this case, we define the function w_n by $w_n = \frac{\Delta^2(p_n \Delta z_n)}{z_{n-1}}$ for $n \ge n_1$.

Then $\Delta w_n = \frac{\Delta^3(p_n \Delta z_n)}{z_n} - \frac{(\Delta z)^2 \Delta^2(p_n \Delta z_n)}{z_n z_{n-1}}$. From equation (1.1) and Lemma 2, we

find that $\Delta w_n \leq -\frac{r_n y_{n-1}}{z_n}$. Now we can find a real number K such that $\Delta w_n < -K$,

for all $n \ge n_2 \ge n_1$. Summing the above inequality from n_2 to n-1, we obtain

 $w_n \rightarrow -\infty$ as $n \rightarrow \infty$. This is a contradiction to the fact that y_n is a positive solution of equation (1.1).

Case (ii): $\Delta z_n \leq 0$ for $n \geq n_1 \geq n_0$.

Since $\Delta z_n < 0$, by the definition of z_n , $y_n > 0$ and decreasing for all $n \ge n_1$. Summing the equation (1.1) from n_1 to n-1, we obtain

$$\Delta^{2}(p_{n}\Delta z_{n}) + \sum_{s=n_{1}}^{n-1} r_{s} y_{s-1} \le 0 \text{ for all } n \ge n_{1}.$$
(2.5)

B.Selvaraj and M.Raju

Summing the inequality (2.5) from n_2 to n-1, we obtain

$$\Delta(p_n \Delta z_n) + \sum_{s=n_1}^{n-1} \sum_{t=s}^{n-1} r_t y_{t-1} \le 0 \text{ for all } n \ge n_2 \ge n_1.$$
(2.6)

Summing the inequality (2.6) from n_3 to n-1, we obtain

$$p_n \Delta z_n + \sum_{s=n_1}^{n-1} \sum_{t=s}^{n-1} \sum_{u=t}^{n-1} r_u y_{u-1} \le 0 \text{ for all } n \ge n_3 \ge n_2.$$
(2.7)

Summing the inequality (2.7) from n_4 to n-1, we obtain

$$z_n + \sum_{s=n_1}^{n-1} \frac{1}{p_s} \sum_{t=s}^{n-1} \sum_{u=t}^{n-1} \sum_{i=u}^{n-1} r_i y_{i-1} \le 0 \text{ for all } n \ge n_4 \ge n_3.$$
 (2.8)

From the inequality (2.8), we obtain $\sum_{s=n_1}^{n-1} \frac{1}{p_s} \sum_{t=s}^{n-1} \sum_{u=t}^{n-1} \sum_{i=u}^{n-1} r_i \le q_n$ for all $n \ge n_5 \ge n_4$. This is a contradiction to the assumption $\limsup_{n \to \infty} \sum_{s=n_1}^{n-1} \frac{1}{p_s} \sum_{t=s}^{n-1} \sum_{u=t}^{n-1} \sum_{i=u}^{n-1} r_i = \infty$.

The proof is similar to the case, when $y_n < 0$. Thus theorem is completely proved.

Remark 1. The following Example illustrates the result of Theorem 1.

Example 1. Consider the difference equation

$$\Delta^{3}(n\Delta(y_{n} + (n+1)y_{n-1})) + n(7-n)y_{n-1} = 0, \ n \ge 1.$$
(E1)

Here $p_n = n$, $q_n = n+1$, $r_n = n(7-n)$ and all the conditions of the Theorem 1 are satisfied.

Hence all solutions of equation (*E*1) are oscillatory. In fact, $\{y_n\} = \{(-1)^n\}$ is one such a solution of equation (*E*1).

Corollary 1. Every solution of equation (1.1) is oscillatory if the condition either $\sum_{n=n_0}^{\infty} p_n < \infty, \text{ or } \sum_{n=n_0}^{\infty} r_n = \infty \text{ holds, for } n \ge n_0,$ and $p_n > 0, q_n > 0, r_n \ne 0, \sum_{n=n_0}^{\infty} \frac{1}{q_n} = \infty$, for $n \ge n_0$.

Remark 2. In the given assumptions, if the condition either

Oscillatory Behavior of Solutions of Certain Fourth-Order Nonlinear Neutral Delay Difference Equations

$$\sum_{n=n_0}^{\infty} p_n < \infty, \text{ or } \sum_{n=n_0}^{\infty} r_n = \infty \text{ holds, for } n \ge n_0 \text{, then the sufficient condition}$$

 $\lim_{n \to \infty} \sup \sum_{s=n_1}^{n-1} \frac{1}{p_s} \sum_{t=s}^{n-1} \sum_{u=t}^{n-1} \sum_{i=u}^{n-1} r_i = \infty \text{ holds. Hence every solution of equation (1.1) is}$

oscillatory. The following example illustrates the result of the Corollary 1.

Example 2. Consider the difference equation

$$\Delta^{3} \left(\frac{1}{n^{2}} \Delta(y_{n} + ny_{n-1}) \right) + \left(\frac{-8n^{10} - 92n^{9} - 420n^{8} - 908n^{7} - 672n^{6} + 848n^{5} + 1892n^{4} + 1016n^{3} - 160n^{2} - 192n}{(n-1)n^{3}(n+1)^{3}(n+2)^{3}(n+3)} \right) y_{n-1} = 0,$$

$$n \ge 2.$$
(E2)

Here
$$p_n = \frac{1}{n^2}$$
; $q_n = n$;
 $r_n = \frac{-8n^{10} - 92n^9 - 420n^8 - 908n^7 - 672n^6 + 848n^5 + 1892n^4 + 1016n^3 - 160n^2 - 192n}{(n-1)n^3(n+1)^3(n+2)^3(n+3)}$

Hence all solutions of equation (*E*2) are oscillatory. In fact, $\{y_n\} = \{n(-1)^n\}$ is one such a solution of equation (*E*2).

Corollary 2. Every solution of equation (1.1) is oscillatory if both the conditions $\sum_{n=n_0}^{\infty} p_n = \infty, \text{ and } \sum_{n=n_0}^{\infty} r_n = \infty \text{ hold, for } n \ge n_0,$ and $p_n > 0, q_n > 0, r_n \ne 0, \sum_{n=n_0}^{\infty} \frac{1}{q_n} = \infty$, for $n \ge n_0$.

Remark 3. In the given assumptions, if both the conditions

 $\sum_{n=n_0}^{\infty} p_n = \infty, \text{ and } \sum_{n=n_0}^{\infty} r_n = \infty, \text{ for } n \ge n_0 \text{ hold, then the sufficient condition}$ $\lim_{n \to \infty} \sup \sum_{s=n_1}^{n-1} \frac{1}{p_s} \sum_{t=s}^{n-1} \sum_{u=t}^{n-1} \sum_{i=u}^{n-1} r_i = \infty \text{ holds. Hence every solution of equation (1.1) is}$ oscillatory. The following Example illustrates the result of the Corollary 2.

Example 3. Consider the difference equation

B.Selvaraj and M.Raju

$$\Delta^{4}(y_{n} + y_{n-1}) + \left(\frac{-n^{5} + 1103n^{4} - 1245n^{3} - 463n^{2} - 546n + 1152}{(n-1)n(n+1)(n+2)(n+3)(n+4)}\right)y_{n-1} = 0, n \ge 2.$$

Here $p_{n} = 1; q_{n} = 1; r_{n} = \frac{-n^{5} + 1103n^{4} - 1245n^{3} - 463n^{2} - 546n + 1152}{(n-1)n(n+1)(n+2)(n+3)(n+4)}$ (E3)

Hence all solutions of equation (E3) are oscillatory. In fact, $\{y_n\} = \left\{\frac{(-1)^n}{n}\right\}$ is one such a solution of equation (E3).

Proposition 1. Every oscillation solution of equation (1.1) is bounded if the sufficient condition $\sum_{n=n_0}^{\infty} \frac{1}{r_n} < \infty$, for $n \ge n_0$ trivially holds.

Proposition 2. Every oscillation solution of equation (1.1) is unbounded if the condition either $\sum_{n=n_0}^{\infty} p_n < \infty$, or $\sum_{n=n_0}^{\infty} r_n = \infty$ holds, for $n \ge n_0$.

Proposition 3. Every oscillation solution of equation (1.1) is asymptotic if both the conditions $\sum_{n=n_0}^{\infty} p_n = \infty$, and $\sum_{n=n_0}^{\infty} r_n = \infty$ hold, for $n \ge n_0$.

REFERENCES

- 1. R.P.Agarwal, Difference Equations and Inequalities: Theory, Methods and Applications, 2nd edition, Marcel Dekker, Inc., New York, 2000.
- 2. E.Thandapani and K.Ravi, Oscillation of second-order half-linear difference equations, *Applied Mathematics Letters*, 13 (2000), 43–49.
- E.Thandapani and B.Selvaraj, Existence and asymptotic behavior of non oscillatory solutions of certain nonlinear difference equations, *Far East Journal of Mathematical Sciences*, 14 (1) (2004), 9 – 25.
- 4. E.Thandapani and B.Selvaraj, Oscillatory behavior of solutions of three dimensional delay difference systems, *Radovi Mate Maticki*, 13 (2004), 39–52.
- E.Thandapani and B.Selvaraj, Oscillatory and non oscillatory behavior of fourth order quasilinear difference equations, *Fast East Journal of Mathematical Sciences*, 17 (3) (2004), 287–307.
- E.Thandapani and B.Selvaraj, Behavior of oscillatory and non oscillatory solutions of certain fourth order quasilinear difference equations, *The Mathematics Education*, XXXIX (4) (2005), 214–232.
- 7. E.Thandapani and B.Selvaraj, Oscillation of fourth order quasilinear difference equations, *Fasciculi Mathematici*, Nr. 37 (2007), 109–119.

Oscillatory Behavior of Solutions of Certain Fourth-Order Nonlinear Neutral Delay Difference Equations

- 8. B.Selvaraj and J.Daphy Louis Lovenia, Oscillation behavior of fourth order neutral difference equations with variable coefficients, *Far East Journal of Mathematical Sciences*, 35 (2) (2009), 225–231.
- 9. B.Selvaraj and G.Gomathi Jawahar, Oscillation of neutral delay difference equations with positive and negative coefficients, *Far East Journal of Mathematical Sciences*, 41(2) (2010), 217–223.
- 10. B.Selvaraj and J.Daphy Louis Lovenia, Oscillation behavior of certain fourth order neutral difference equations, *J. Comp. and Math. Sci.*, 1 (4) (2010), 443–447.
- 11. B.Selvaraj and G.Gomathi Jawahar, nonoscillation of second order neutral delay difference equations, J. Comp. and Math. Sci., 1(5) (2010), 566–571.
- B.Selvaraj and G.Gomathi Jawahar, Asymptotic behavior of fourth order nonlinear delay difference equations, *Far East Journal of Mathematical Science*, 1 (7) (2010), 877–886.
- 13. B.Selvaraj and I. Mohammed Ali Jaffer, Oscillatory properties of fourth order neutral delay difference equations, *J. Comp. and Math. Sci.*, 1 (3) (2010), 364–373.
- B.Selvaraj and G.Gomathi Jawahar, Certain oscillation criteria for second order delay difference equations, *Advances in Theoretical and Applied Mathematics*, 6 (2) (2011), 147–151.
- 15. B.Selvaraj and I. Mohammed Ali Jaffer, Oscillation behavior of certain fourth order linear and nonlinear difference equations, *Advances in Theoretical and Applied Mathematics*, 6(2) (2011), 191–201.
- 16. B.Selvaraj and G. Gomathi Jawahar, New oscillation criteria for first order neutral delay difference equations, *Bulletin of Pure and Applied Sciences*, 30E, (Math & Stat) (2011), 103–108.
- 17. B.Selvaraj and J. Daphy Louis Lovenia, Third-order neutral difference equations with positive and negative coefficients, *J. Comp. and Math. Sci.*, 2(3) (2011), 531–536.
- 18. B.Selvaraj and G. Gomathi Jawahar, Oscillation of neutral delay difference equations with positive and negative coefficients, *Far East Journal of Mathematical Sciences*, 41(2) (2010), 217–231.
- 19. B.Selvaraj, P.Mohankumar and V.Ananthan, Oscillatory and nonoscillatory behavior of neutral delay difference equations, *International Journal of Nonlinear Science*, 13(4) (2012), 472–474.