
Progress in Nonlinear Dynamics and Chaos 
Vol. 1, 2013, 47-53 
ISSN:  2321 – 9238 (online) 
Published on 3 June 2013 
www.researchmathsci.org 
 

47 
 

 
Progress in 

Role of Iterated Prisoner’s Dilemma in Genetic 
Based Machine Learning 

 
1M.Thiyagarajan and 2J.Rajkumar 

 
1Dean Research, NGI 

Nehru Institute of Engineering and Technology 
Coimbatore – 641 105, Tamilnadu 

m_thiyagarajan@yahoo.com 
 

2Department of Master of Computer Applications 
Nehru Institute of Engineering and Technology  

Coimbatore – 641 105, Tamilnadu 
rajkumar.kj@gmail.com 

 
Received 25 May 2013; accepted 2 June 2013 

Abstract. Several strategies have been followed by most of earlier researchers in the field 
of machine learning. Agarwal has connected Machine Learning with Iterated Prisoner’s 
Dilemma Problem [IPD]. Holland has proposed basic directions to explore goal of 
genetic operators in the study of machine learning. Axelrod connected Genetic Algorithm 
with IPD. We integrate these basic approaches to give a novel setup for Genetic based 
Machine Learning the particular decision analysis on game theory. 
 
Keywords: Genetic Based Machine Learning, Genetic Algorithms, Iterated Prisoner’s 
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1. Introduction 
The interaction of learning and evolution is a topic of great interest in evolutionary 
computation. It plays an important role in application areas such as multi-agent systems, 
economics, politics, and biological modeling. When learning and evolution interact in an 
evolutionary game scenario. The simulation environment is similar to Axelrod’s [1] well-
known IPD simulation study environment.  
 
1.1. Basic Concepts and Results [4] 
Definition 1. GA and Optimizations Genetic Algorithms are search algorithms based on 
the mechanics of natural selection and natural genetics. 
 They combine survival of the fittest among string structures with a structured yet 
randomized information exchange to form a search algorithm with some of the innovative 
flair of human search. Random search algorithms have achieved increasing popularity as 
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researchers have recognized the short comings of calculus-based and enumerative 
schemes. 

Four differences separate genetic algorithms from more conventional 
optimization techniques: Direct manipulation of a coding, search from a population, not a 
single point, search via sampling, a blind search using stochastic operators, not 
deterministic rules. Although there is still much to learn about the theory and application 
of genetic algorithms, the diversity and effectiveness of genetic algorithms in many 
problem areas is cause for optimism. 

 
Definition 2. (Classifier Systems) Classifier systems are a form of Genetic – Based 
Machine Learning (GBML) system, combining a simple, parallel production system 
based on string rules, an appointment of credit algorithm modeled after an information – 
based service economy, and genetic algorithms. Classifier systems and their derivatives 
are finding increasing application in science, engineering, and business circles. 

In the most general classifier systems, classifiers send messages that are placed 
on a message list, thereby activating other classifiers or action triggers called effectors. 
The presence of a central message list provides a centralized communication channel. 
Since space is limited on the message list, some method must exist for choosing among 
competing messages. 
 
ML (Machine Learning) and IPD (Iterated Prisoner’s Dilemma) [1] 
In the iterated game, player strategies are rules that determine a player’s next move in any 
given game situation (which can include the history of the game to that point). Each 
player’s aim is to maximize his total payoff over the series. If you know how many times 
you are to play, then one can argue that the game can be reduced to a one-shot Prisoner’s 
Dilemma [8]. The argument is based on the observation that you, as a rational player will 
defect on the last iteration – that is the sensible thing to do because you are in effect 
playing a single iteration. The same logic applies to your opponent. Knowing that your 
opponent will therefore defect on the last iteration, it is sensible for you to defect on the 
second to last one, as your action will not affect his next play. Your opponent will make 
the same deduction. This logic can be applied all the way back to the first iteration. Thus, 
both players inevitably lock into a sequence of mutual defections. One way to avoid this 
situation is to use a regime in which the players do not know when the game will end. 
Nature could toss a (possibly biased) coin to decide. Different Nash equilibria are 
possible, where both players play the same strategy. Some well-known examples are:  
 
(1) Tit-for-tat: cooperate on the first move, and play the opponents previous move after 
that; 
 
(2) Grim: cooperate on the first move, and keep cooperating unless the opponent defects, 
in which case, defect forever;  
 
(3) Pavlov: cooperate on the first move, and on subsequent moves, switch strategies if 
you were punished on the previous move. 
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In our version of the problem we assume that K is large, so that the opponents have 
enough opportunities to learn from each other. Also, the payoff matrix is given by table-
1: 

(C,C) ! (3; 3) (C,D) ! (0; 5)     and    (D,C) ! (5; 0) (D,D) ! (1; 1), 
where (C;C) ! (3; 3) means that if both cooperate, both get a payoff of 3, and so on. In 
1980, Robert Axelrod staged two round-robin ’tournaments’ between computer programs 
designed by participants to play IPD. Many sophisticated programs were submitted. In 
each case, the winner was Anil Rapaports submission, a program that simply played Tit-
for-Tat. In 1987, Axelrod carried out computer simulations using a genetic algorithm 
(nowadays it would be called a co-evolutionary simulation) to evolve populations of 
strategies playing the IPD against each other. In these simulations, tit-for-tat-like 
strategies often arose as the best but it was proved that they were not optimal. In fact, 
Axelrod used this to illustrate that there is no ’best’ strategy for playing the IPD in such 
an evolving population, because success depends on the mix of other strategies present in 
the population. Axelrod’s simulations illustrate a different approach to studying the IPD 
one in which the players are not perfectly rational, and solutions evolve rather than being 
deduced. 
 
GA (Genetic Algorithm) and IPD (Iterated Prisoner’s Dilemma) [6] 
 In its simplest form, each of two players has a choice of cooperating with the 
other [or] defeating. Depending on the two players’ decisions, each receives payoff 
according to a payoff matrix similar to the one shown in this figure. A typical payoff 
matrix in the Prisoner’s dilemma problem 
 

  Player 2 

 Decision Cooperate Defect  

Player1 
Cooperate (R=6,R = 

6) 
(S=0,T=10)

Defect (T=10,S=0) (P=2, P=2) 
Table 1. R: REWARD, S: SUCKER, T: TEMPTATION, P: PENALTY 

 
When both players cooperate they are both rewarded at an equal intermediate 

level (The returned, R). When only one player defects, he receives the highest level 
payoff (the temptation, T) while the other player gets the sucker’s just deserts (the sucker, 
S), when both players defect they each receive an intermediate penalty (the penalty, P). 

Axelrod allowed decision rules to depend upon the behavior of both parties 
during the previous three moves. On each of those moves there are, of course, four 
possibilities. Players can cooperate (CC [or] R for reward), the other player can defect 
(CD [or] S for sucker), the first player can defect (DC or T for temptation), or both player 
can defect (DD [or] P for penalty). To code a particular strategy, Axelrod first coded the 
particular behavioral sequence as a three – letter string. For example RRR would 
represent the sequence where the first player was played for a sucker twice and finally 
defected. The three – letter sequence was then used to generate a number between 0 and 
63 by treating the code as an integer base 4 where the behavioral alphabet is decoded in 
the following way: 

CC= R = 0;  DC = T = 1;  CD =S =2;  DD =P=3 
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Illustration 1. Three mutual defections (PPP) would decode to a 63 using this coding, 
Axelrod then defined a particular strategy (over the past three moves) as a 64-bit binary 
string of C’s (Co operate) and D’s (defect) where the ith C or D corresponds to the ith 
behavioral sequence. Using this scheme, for example, a Din position 0 would be decoded 
as a rule of the form RRR -> D and a rule of the form RRP -> C.   In an earlier version 
Axelrod assumed initial mutual cooperation, but he found that early game behavior was 
very important to developing strategies that could beat tit –for- tat. Together each of the 
70-bit strings thus represented a particular strategy with 64- bits for the rules and six bits 
for the premises. Each of the string strategies in a population of size 20 played each of the 
eight opponents in a game of 151 moves. A fitness measure was calculated by taking a 
weighted average of the point scores against each of the eight opponents where the 
weights were chosen to closely match tournament conditions. From a random start, the 
genetic algorithms discovered strategies that beat the overall performance of tit- for- tat. 

Classifier systems are a form of genetics- based machine learning (GBML) 
system, combining a simple, parallel production system based on string rules, an 
apportionment of credit algorithm modeled after an information – based service 
economy, and genetic algorithms.  
Classifier systems and their derivatives are finding increasing application in science, 
engineering and business circles. In the most general classifier systems, classifier send 
messages that are placed on a message list, thereby activating other classifiers or action 
triggers called effectors. The presence of a central message list provides a centralized 
communication channel. Since space is limited on the message list, some method must 
exist for choosing among competing messages. 
 
2. Model of Genetic based Machine Learning of Holland [5] 
The mathematical framework proposed here holds many elements in common with the 
mathematics used to study other adaptive systems such as economies, ecologies, physical 
systems far from equilibrium, immune systems, etc.  In each fields, there are familiar 
topics, with mathematical treatments, that have counterparts in each of the other fields. 
Even an abbreviated list of such topics… is impressive: Niche exploitation, functional 
convergence and enforced diversity [ecology]. Competitive exclusion [ecology]. 
Symbiosis, parasitism, mimicry [ecology] Epistasis, linkage and revision and redefinition 
of “building blocks” [genetics]. Linkage and “hitchhiking” [genetics]. Multifunctionality 
of “building blocks” [genetics and comparative biology]. Polymorphism [genetics]. 
Assorative recombination (“triggering of operators) {genetics and immunology]. 
Hierarchical organization [phylogenetics, development biology, economics and AI]. 
Tagged clusters [biochemical genetics, immunogenesis and adaptive systems theory]. 
Adaptive radiation and the “founder” effect of generalists [ecology and phylogenetics]. 
Feedback from coupled procedures [biochemistry and biochemical genetics]. “Retained 
earnings” as a function of past success and current purchases [economics]. “taxation” as a 
control on efficiency [economics]. “exploitation” (production) vs “exploration” 
(research) [economics and adaptive systems theory]. “tracking” vs “averaging” 
[economics and adaptive systems theory]. Implicit evaluation of “building blocks” 
[adaptive systems theory]. “basins of attraction” and behavior far from equilibrium 
[physics]. Amplification of small biases submerged in noise on “slow” passage through a 
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critical point [physics]. Any complex system constructed from components interacting in 
a nonlinear fashion will, in one regime or another, exhibit all of these features. A general 
mathematical theory of such systems would explain both the pervasiveness of these 
features and the relations between them. 
 
Decision under uncertainty [3] 
Decision under uncertainty, as under risk, involves alternative actions whose payoffs 
depend on the (random) states of nature. Specifically, the payoff matrix of a decision 
problem with m alternative actions and n states of nature can be represented as [v(ai, sj)]                
         The element ai represents action i and the element sj represents state of nature j. the 
payoff or outcome associated with action ai and state sj is v(ai, sj). The difference between 
making a decision under risk and under uncertainty is that in the case of uncertainty, the 
probability distribution associated with the sales Sj, j= 1,2,….n, either unknown or cannot 
be determined. This lack of information has led to the development of the following 
criteria for analyzing the decision problem: 
1. Laplace, 2. Minimax, 3. Savage, 4. Hurwicz 

 
The Laplace criterion is based on the principle of insufficient reason. Because the 

probability distributions are not known, there is no reason to believe that the probabilities 
associated with the states of nature are different. The alternatives are thus evaluated using 
the optimistic assumption that all states are equally likely to occur – that is, P{S1} = p1 
{S2} = … = p{Sn}= 1/n, given that payoff v(ai, sj) represents gain, the best alternative is 
the one that yields 
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If v(ai, sj) represents loss, then minimization replaces maximization 
The maximin (minimax) criterion is based on the conservative attitude of making the 
best of the worst possible conditions. If v(ai, sj) is loss, then we select the action that 
corresponds to the minimax criterion  
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If v(ai, sj) is gain we use the maximin criterion given by          

  { }m a x m i n ( , )
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The Savage regret criterion aims at moderating conservatism in the minimax (maximin) 
criterion by replacing the (gain or loss) payoff matrix v(ai, sj) with a loss (or regret) r(ai, 
sj) matrix, using the following transformation: 
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The last test to be considered is HurwicZ criterion, which is designed to reflect 

decision-making attitudes, ranging from the most optimistic to the most pessimistic (or 
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conservatitive). Define 0 ≤ α ≤ 1, and assume that v(ai, sj) represents gain. Then the 
selected action must be associated with  

( ){ }max max , (1 ) min ( , )
jj

i j i jss
v a s v a sα α+ −  

The parameter α is called the index of optimism. If α = 0, the criterion is conservative 
because it applies the regular minimax criterion. If α = 1, the criterion produces 
optimistic results because it seeks the best of the best conditions. We can adjust the 
degree of optimism (or Pessimism) through tegarding optimism and pessimism, α in the 
specified (0,1) range. In the absence of strong feeling regarding optimism and pessimism, 
α=5 may be an appropriate choice. If v(ai, sj)  represents loss, then the criterion is 
changed to  
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3. Our Proposed Model 
Based on the observation of Holland GBML components there is a need in revising the 
code for individuals in the population of search algorithm GA. This will be done using 
bucket brigade problem and other types of machine learning rules. Besides doing this 
change are to made on the other operated of GA with this modification Axelrod’s 
approach to IPD may be used build strategies for GBML taking extra game theory 
strategies IPD.  
 
Data analysis and Algorithms (Discussion): 
Step 1: Creation for new induvals for selection operators [2]. 
Classifier systems are as the crow flies promote. So we set various tissues on the 
classifier system skeleton as we enlarge a Simple Classifier System (SCS) in the Pascal 
or Java Programming Language. The data declarations required to implement a 
population of classifiers and its environmental message in the SCS. The classifier type 
classtype is defined as a record containing a condition c, an action a and a number of 
scalar variables. The classifier type contains a number of variables of type real: strength 
and bid is self explanatory and ebid is classifier’s effective bid (EB earlier) and also one 
additional variable is the Boolean variable matchflag. Matchflag is equal to true, when 
the classifier’s condition is matched by the current environmental message. The condition 
type is defind as an array of type trit – a ternary digit, an integer between -1 and 1, where 
a – 1 is interpreted as the wildcard character and both o and 1 are interpreted as is. In the 
SCS the action type is taken as type bit. In the multiplexer problem, the classifier system 
is learning a Boolean function and must output a 1 or a 0. The datatype classarray as 
array of classifiers (an array of classtype) and this array of classifiers in population are 
recordtype, poptype (population of classifiers). We can create an array of classifiers (type 
classarray) called classifier and include integer variable are n classifier, n position, the 
number of positions in the condition respectively. And then include a number of real type 
population parameters in the population type poptype. Population type creates a single 
instance called population. Envmessage creates a single environmental message called 
envmessage. This envmessage to represent our environmental message. We also create an 
auxiliary data structure to record which classifiers are currently matched by the 
environmental message. This structure is of type class list and is called the matchlist.  



Role of Iterated Prisoner’s Dilemma in Genetic Based Machine Learning 

53 
 

With these we can finalize a module for the first step of the model.       
 
Step 2: Modification cross over mutation operator of GA 
 After creating the induvals of the population a selection procedure is designed 
using probability rules. The second operator of GA namely the crossover will contain two 
or more bit positions of the member will be selected. After this the mutation operator is 
designed a need of machine learning (ML) process.    
 
Step 3: Specific rules of GBML and relevance to IPD strategies 
 The common strategies adapted in machine learning (ML) are taken care of in 
Holland machine learning rules. We take the Tit-for-tat, Grim & Pavlov and connect with 
IPD strategies. 
 
Step 4: Creation of GBML rules composed of revised operators and IPD.  
 Repeating steps 1, 2 and 3 above us can complete our model. 
 
4. Conclusion and Future Enhancements 
Machine Learning field has different facets suitable to select process in question. Our 
model has developed to include uncertainty in the decision of selection and collection of 
data sets to form a definite course. Exploring the foundation from operational research in 
the decision rules and uncertainty suggested by the four components like 1. Laplace, 2. 
Minimax, 3. Savage, 4. Hurwicz. We can modify the above approach to give a better 
machine learning process which will be of used the broader area of E-Learning.  
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