
Progress in Nonlinear Dynamics and Chaos
Vol. 2, No. 1, 2014, 10-17
ISSN: 2321 – 9238 (online)
Published on 27 July 2014
www.researchmathsci.org

10

Progress in

Software Reliability Modeling in Fuzzy Environment
M. Kiruthiga1 and C. Loganathan2

Department of Mathematics, Maharaja Arts and Science College
Coimbatore, Tamilnadu

1
Email: Kiruthi.neha@gmail.com; 2Email: clogu@rediffmail.com

Received 13 July 2014; accepted 26 July 2014

Abstract. The idea of software reliabilities can be represented by the quantity of defects
in the unit time. The association between the intensity of the defects and reliability
depends upon the model that is used in the evaluation. Many models try to assess whether
a software testing objective has been met to determine when to stop testing. We present a
case study for evaluating software reliability on the OFBiz project software package used
on business routines. We also explain a new model that can have more accurate analysis
and forecast to software assumptions. Fuzzy theory is introduced to evaluate software
reliability.

Keywords: Software Reliability, Nonlinear Models, Fuzzy Logic, Business Routines.

1. Introduction
Due to the complexity of computer software systems and the increasing of development
cost, it is of utmost importance to develop high quality software systems. The quality of
the software system is described by many metrics such as: complexity, maintainability,
availability, reliability, etc. As tragedies of unreliable software often take place, people
recognize the importance of developing reliable software. Now, the reliability problem in
software systems is a well-known research field. Therefore, designing reliable software
and evaluation software reliability accurately are the most important issues [1].
 The standard definition of reliability for software (Musa, Iannino, and Okomoto,
1987) is the probability of execution without failure for some specified interval of natural
units or time [2]. Software failures are the manifestation of software errors which are
introduced in to the software by software engineers during the phases of software
development cycle. In the literatures, researchers establish software reliability growth
model (SRGM) to measure software reliability. To apply these models, it is necessary to
know how well the models suit an actual observation failure data set. In order to obtain
accurate software reliability estimation, it requires a large number of failure data which
are not usually available until the system has been tested for a long relative period. Many
software reliability engineers are more interested in estimating the software reliability as
early as possible [3].

2. Growth models
Software reliability is the probability that software will not cause the failure of a product
for specified time under specified conditions, this probability is a function of the inputs to

Software Reliability Modeling in Fuzzy Environment

11

and use of the product, as well as a function of the existence of faults in the software, the
inputs to the product will determine whether an existing of faults in the software, the
inputs to the product will determine whether an existing fault is encountered or not. Many
software reliability growth models have been developed over the years. For a detailed
description of most models consider Musa, Iannino, and Okumoto. Within these models
one can distinguish two main categories: Predictive models, assessment models.
Predictive models typically address the reliability of the software early in the life cycle at
the requirements or at the preliminary design level or even at the detailed design level in
a waterfall life cycle process or in the first spiral of a spiral software development
process. Predictive models could be used to assess the risk of developing software under
a given set of requirements and for specified personnel before the project truly starts.

• Assessment models - evaluate present and project future software reliability
from failure data gathered when the integration of the software starts. Predictive
software reliability models are few in number, most models can be categorized in
the assessment category.

• Analytical models – analytical modeling of software reliability involves four
steps. The first step is to define the assumptions associated with a software test
procedure, and the second step is to develop an analytical model based on the
assumptions and the test procedure. The third step is to obtain parameters for the
model using the data the final step is to use the model for performance
predictions. Two major types of analytical models can be identified. They are
dynamic and statistic models. In a dynamics software reliability model, the time
dependent behaviors of the software failures are captured in the analytic model.
However, in a statistic model, no reference is made to the time dependent
behavior of software failures.

• Empirical models – in an empirical software reliability model, a relationship or
a set of relationships between software reliability measures and appropriately
define software metrics are developed using empirical results available from past
data. This model can then be applied to measure software reliability for which we
have the required software metrics. This, in a way is similar to the econometric
models in forecasting theory. The major issues in this modeling technique are the
identification of the appropriate software metrics and the reliability measures.
The latter issue of developing the functional relationship is referred to as
specification. The accurate and most appropriate specification of an empirical
model is a key step in the use of this technique for software reliability estimation.

• Multi- Stage Models - One of the assumptions made by all the models is that the
set of code being testing is unchanged throughout the test period. Clearly, defect
repair invalidates that assumption, but it is assumed that the effects of defect
repair are minimal so that the model is still a good approximation. If a significant
amount of new code is added during the test period, there is a technique that
allows us to translate the data to account for the increased code change.
Theoretically, the problem is that adding a significant amount of changed code
should increase the defect detection rate. Therefore, the overall curve will look
something like Figure 3.5, where D1 defects are T1 time prior to the addition of
the new code and an additional D2 – D1 defects are found in T2 – T1 time after
that code addition. The problem is to translate the data to a model ()tµ that

M. Kiruthiga and C. Loganathan

12

would have been obtained if the new code had been part of the software at the
beginning of the test. Let ()t1µ model the defect data prior to the addition of the

new code, and let ()t2µ model the defect data after that code addition. The model

()tµ is created by appropriately modifying the failure times from ()t1µ and

. This section describes how to perform the translation assuming (),tµ
()t1µ and ()t2µ are all G- O models. In theory, this technique could be applied

to any of the models in Table 2-1, including the S- shaped models.
• Software Growth Models:

SRGM is defined as the mathematical relationship between the number of
software errors removed and testing time. Classical SRGMs have great influence
on software reliability modeling research. In spite of the fact that many software
reliability growth models have been proposed in the software reliability literature
since the first one appeared in 1972 [4], no one of them can deal properly with all
possible situations.

 According to the software error removal process, Jelinski and Moranda
proposed the first model. The model has a simple structure and assumptions.
Then Musa proposed the basic Execution Time Model which has similar
assumptions to those of Jelinski and Moranda(J-M) model [5]. J-M Model made
a major contribution to the understanding the relation of error removal and
software execution time. Goel-Okumoto model is the first nonhomgeneous
Poisson process (NHPP) SGRM. Goel-Okumoto model assumed that the error
removal process follows NHPP. The assumption of this model is similar to the
Basic Execution Time model of Musa [6].

 Those models are mainly based on some assumption conditions and
believe that SGRM has been established according to a certain probability
process. The assumptions are the key factors of establishing SGRM. There is a
relation between assumption chosen and modeling success. But in partial
application, quite a few assumptions are unfit to software developing process,
which cannot be accepted by most people, thus limiting the application of the
models. Using this kind of model can even get the unimaginable parameter under
some conditions. Furthermore, a software failure data set being evaluated can get
different results by using different models. So it has reached a common
viewpoint in software reliability evaluation field, in that there isn’t a “good
model” that can fit all failures data very well [7].

 J-M model assumes that all errors have been checked in the test can be
eliminated and removes one error each time. Removing one error does not affect
the remaining errors. But in fact, software development and error removal are all
human behaviors, which are unpredictable, so it cannot avoid of introducing new
errors during the process of error removal. Goel-Okumoto model suppose that
each error is independent, each error has the same probability of leading system
failure and each failure interval time is independent. Sometimes, modules in
software program have some relations, so it is impossible to have complete
independence, and the probability of each failure that causes system failure is not
the same [8].

Software Reliability Modeling in Fuzzy Environment

13

 In these three models, the cumulative numbers of errors removal grow
exponentially with the testing time. The exponential growth curve is due to the
assumption that the error removal intensity is linearly related to the remaining
number of software errors [9]. In many software development projects it was
observed that the relation between the cumulative numbers of errors removed and the
testing time is not linear. So we should establish nonlinear model to evaluate the
software reliability.

3. The feasibility of software reliability nonlinear modeling based on time series
Time series analysis theory is a method of describing statistics character of dynamics
data, which can set up time series model from limited sample data, its advantage is
convenience and practicality. There are many literature on the development of estimation
and prediction in auto regression time series models. Time series analysis method is well
studied in some statistical literatures. However, its use in software reliability engineering
is rather limited [10].
 Time series prediction can be stated as follows: given a finite sequence X1, X2,
X3,…,Xi, predicting the continued sequence Xi+1, Xi+1, …. For example, {Xi} can be
viewed as the stochastic failure intervals or the number of failures per time intervals
mainly. That is to say, software reliability failure data are discrete data sequence, whether
it is steady or not, we can use the data to modeling and evaluate software reliability by
applying proper time series method [11].
 During the process of software reliability evaluation, it can be seen that the
nonlinear phenomena exist very commonly and we cannot deal these data with linear
model. The relevant software reliability time series nonlinear models are deuced in the
following section. This modeling method proves that software reliability evaluation also
can be presented in the way of time series nonlinear model.

4. The implemented algorithms
The cumulative number of failures M(k) is increasing and trend to a fixed value which is
defined as the desired cumulative number of failures [12].
 Assume cumulative failures of software are stochastic variable. We can find that
all total failures in one time interval are exponential decreasing according to experience.
Then we have software reliability nonlinear model

() () ()11 −+−= kMkMbkM k . (1)

Let kbk =)(θ , then the software reliability nonlinear model can be transformed to time
series model as follow:

() ()() () ()kkMkkM εθ +−+= 11 , (2)

where)(kε is zero-average white noise. Obviously, we can get

() ()1−= kbk θθ . (3)

That’s to say, parameter)(kθ can be described by the following AR time series model

() () ()kkbk ξθθ +−= 1 (4)
where ���� is zero-average white noise.

M. Kiruthiga and C. Loganathan

14

 As testing time is based on the unit of day, the cumulative numbers of
software failures fluctuate greatly. Considering the series {����� got from observed
testing data exist must disturbance noise, we apply a smoothing filter to testing data as
following steps: first, we get series {����� simply as following equation

 ���� 	

���

���
�
� 1, � 	 2, … , � (5)

and let ��1� 	 ��2� ; then we can get time series {����� from { ����� by applying
smoothing filter:
 () () () ()kkk ηλλθθ −+−= 11 , (6)
where the initial is ��1� 	 ��1� and � 	 0.7 in the simulation.
 Now we can use exponential weighted Least Squares method [13] to estimate the
parameter b from equation (4). Formulas can be shown as the following equations:

)]()(ˆ)1()[1()(ˆ)1(ˆ kkbkkkbkb θθ −+++=+ (7)

)()(

)()(
)1(

2 kPk

kkP
kK

θω
θ

+
=+ (8)

[])()()1(1

1
)1(kPkkKkP θ

ω
+−=+

 (9)
where � is forgetting factor, 0 � � � 1, commonly is about 0.9~0.99. The initial values
are given by:

 .10)0(,1)0(ˆ 4== Pb .

Then we can calculate the estimation as follows:

)1()1(ˆ)(ˆ −−= kkbk θθ . (10)

 ()() ()11ˆ)1|(ˆ −+=− kMkkkM θ (11)

Based on these results, we can get the prediction from the following function:

() () () ,...,2,1,|1ˆ|ˆ =−+=+ pNpNNbNpN θθ (12)

()() ()NpNMNpNNpNM |1ˆ1|ˆ)|(ˆ −+++=+ θ , (13)

() ()NMNNMNNNwhere ==)|(ˆ,ˆ)|(ˆ θθ .

5. Autoregressive models

Stationary process and time series
The series of observations x(t), tT made sequentially in time t constitutes a time series.
Examples of data taken over a period of time are found in abundance in diverse fields
such as meteorology, geophysics, biophysics, economics, commerce, communication
engineering systems analysis, etc. Daily records of rainfall data, prices of a commodity
etc. constitute time series. The variate t denotes time, i.e., changes occur in time, but this
need not always be so [14].

Software Reliability Modeling in Fuzzy Environment

15

 For example, the records of measurements of the diameter of a nylon fiber along
its length (distance) t also give a time series. Here t denotes length.

Autoregressive process (AR process)
 The process {Xt} given by

 Xt + b1 X t-1 + b2Xt-2+-------+b hXt-h = et , bh ≠ 0,
where {et} is a purely random process, with mean 0, is called an autoregressive process
of order h.

Autoregressive process of order two (yule process)
 This is given by

 X t + b 1X t-1 + b2 Xt-2 = et ,
where {et} is a purely random process, with mean 0.

Day Cf
0 7
3 12
5 15
13 26
29 38
32 50
40 90
46 175
50 200
55 240
60 250
65 275
70 325
75 390
80 450
85 470
90 500

y5+ b 1 y4 + b 2y3 + b3 y2 + b4 y 1 = 0 (14)
y6 + b1 y5 + b2 y4 + b3 y3 + b4 y2 = 0 (15)
y7 + b1 y6 + b2 y5 + b3 y4 + b4 y3 = 0 (16)
y8 + b1 y7 + b2 y6 + b3 y5 + b4 y4 = 0 (17)
y9 + b1 y8 + b2 y7 + b3 y6 + b4 y5 = 0 (18)

By solving the above equations,
b1 = -0.5749
b2 = 1.0021609
b3 = -0.000352
b4 = -504402

M. Kiruthiga and C. Loganathan

16

6. Software reliability and its fuzzy evaluations
When)(kθ is closer to zero, the number of remaining errors is less and software
reliability is higher. So the objective of software reliability can be designed as ���� 	

� log� � ����.

Strictly speaking R(k) is a fuzzy variable we can compartmentalize some grades
to R(k) and use fuzzy variable and fuzzy rule to estimate software reliability.

7. Conclusion and future enhancement
We have fitted a fuzzy model and regressive model. Second model is found to be better
than fuzzy model.

REFERENCES

1. Nunes Rodrigues, Genaina, A Model Driven Approach for Software Reliability

Prediction, University of London, doctorial Thesis, 2008.
2. Vittorio Gianni Fougastsaro, A Study of Open Source ERP System, Thesis for

Masters Degree in Business Administration, 2009.
3. Michael R. Lyu, Software Reliability Engineering: A Roadmap, Future of Software

Engineering (FOSE’07), Washington, DC, USA, IEEE, Computer Society, pp. 153 –
170, 2007.

4. A.Avizienis, J C Laprie and B. Randell, Fundamental Concepts of Dependability”, in
IARP/IEEE-RAS Workshop on Robot Depedability, 2001.

5. J.D.Musa and K.Okumoto, A Logarithmic Poisson Execution Time Model for
Software Reliability Measurement, ICSE 84 Proceedings of the 7th International
Conference on Software Engineering, pp. 230-238, 1984.

6. H.Pham, System Software Reliability, Spriger Series in Reliability Engineering, 1st
Edition, 2007.

7. Z.Jelinski and P.B.Moranda, Software Reliability Research, in Statistical Computer
Performance Evaluation, W. Freiberger, Ed., New York: Academic Press, pp. 465 –
484, 1972.

8. Martin L Shooman, Probabilistic Models for Software Reliability Prediction, in
Statistical Computer Performance Evaluation, W. Freiberger, Ed., New York:
Academic Press, pp. 485 – 502, 1972.

9. Michael R.Lyu, Allen P.Nikora, William H. Harr, A Systematic and Comprehensive
Tool for Software Reliability Modeling and Measurement, Fault-Tolerant
Computing. FtCS-23. Digest of Papers, The Twenty-Third International Symposium,
pp. 648 – 653. 1993.

10. John D.Musa, Software Reliability – Engineered Testing, Journa Computer archive,
29 (11) (1996) 61 – 68.

11. Z.Krajcuskova, Software Reliability Models, 17th International Conference
radioelektronika, pp. 1 – 4, 2007.

12. S.Parthasarathy, N.Anbazhagan, Significance of Software Metrices in ERP Projects,
India Conference Annual IEEE, pp. 1 – 4, 2006.

Software Reliability Modeling in Fuzzy Environment

17

13. C.Freericks, Open Source Standards on Software Process: A Practical Approach,
IEEE Communications Magazine, 39(4) (2001) 116 – 123.

14. J.Medhi, Stochastic Processes, New Age International Publishers, New Delhi, second
edition, pp. 340 – 346, 2006.

