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Abstract. The idea of software reliabilities can be represented by the quantity of defects 
in the unit time. The association between the intensity of the defects and reliability 
depends upon the model that is used in the evaluation. Many models try to assess whether 
a software testing objective has been met to determine when to stop testing. We present a 
case study for evaluating software reliability on the OFBiz project software package used 
on business routines. We also explain a new model that can have more accurate analysis 
and forecast to software assumptions. Fuzzy theory is introduced to evaluate software 
reliability. 
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1. Introduction 
Due to the complexity of computer software systems and the increasing of development 
cost, it is of utmost importance to develop high quality software systems. The quality of 
the software system is described by many metrics such as: complexity, maintainability, 
availability, reliability, etc. As tragedies of unreliable software often take place, people 
recognize the importance of developing reliable software. Now, the reliability problem in 
software systems is a well-known research field. Therefore, designing reliable software 
and evaluation software reliability accurately are the most important issues [1]. 
               The standard definition of reliability for software (Musa, Iannino, and Okomoto, 
1987) is the probability of execution without failure for some specified interval of natural 
units or time [2]. Software failures are the manifestation of software errors which are 
introduced in to the software by software engineers during the phases of software 
development cycle. In the literatures, researchers establish software reliability growth 
model (SRGM) to measure software reliability. To apply these models, it is necessary to 
know how well the models suit an actual observation failure data set. In order to obtain 
accurate software reliability estimation, it requires a large number of failure data which 
are not usually available until the system has been tested for a long relative period. Many 
software reliability engineers are more interested in estimating the software reliability as 
early as possible [3]. 
 
2. Growth models 
Software reliability is the probability that software will not cause the failure of a product 
for specified time under specified conditions, this probability is a function of the inputs to 
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and use of the product, as well as a function of the existence of faults in the software, the 
inputs to the product will determine whether an existing of faults in the software, the 
inputs to the product will determine whether an existing fault is encountered or not. Many 
software reliability growth models have been developed over the years. For a detailed 
description of most models consider Musa, Iannino, and Okumoto. Within these models 
one can distinguish two main categories: Predictive models, assessment models. 
Predictive models typically address the reliability of the software early in the life cycle at 
the requirements or at the preliminary design level or even at the detailed design level in 
a waterfall life cycle process or in the first spiral of a spiral software development 
process. Predictive models could be used to assess the risk of developing software under 
a given set of requirements and for specified personnel before the project truly starts. 

• Assessment models - evaluate present and project future software reliability 
from failure data gathered when the integration of the software starts. Predictive 
software reliability models are few in number, most models can be categorized in 
the assessment category. 

• Analytical models – analytical modeling of software reliability involves four 
steps. The first step is to define the assumptions associated with a software test 
procedure, and the second step is to develop an analytical model based on the 
assumptions and the test procedure. The third step is to obtain parameters for the 
model using the data the final step is to use the model for performance 
predictions. Two major types of analytical models can be identified. They are 
dynamic and statistic models. In a dynamics software reliability model, the time 
dependent behaviors of the software failures are captured in the analytic model. 
However, in a statistic model, no reference is made to the time dependent 
behavior of software failures. 

• Empirical models – in an empirical software reliability model, a relationship or 
a set of relationships between software reliability measures and appropriately 
define software metrics are developed using empirical results available from past 
data. This model can then be applied to measure software reliability for which we 
have the required software metrics. This, in a way is similar to the econometric 
models in forecasting theory. The major issues in this modeling technique are the 
identification of the appropriate software metrics and the reliability measures. 
The latter issue of developing the functional relationship is referred to as 
specification. The accurate and most appropriate specification of an empirical 
model is a key step in the use of this technique for software reliability estimation.  

• Multi- Stage Models - One of the assumptions made by all the models is that the 
set of code being testing is unchanged throughout the test period. Clearly, defect 
repair invalidates that assumption, but it is assumed that the effects of defect 
repair are minimal so that the model is still a good approximation. If a significant 
amount of new code is added during the test period, there is a technique that 
allows us to translate the data to account for the increased code change. 
Theoretically, the problem is that adding a significant amount of changed code 
should increase the defect detection rate. Therefore, the overall curve will look 
something like Figure 3.5, where D1 defects are T1 time prior to the addition of 
the new code and an additional D2 – D1 defects are found in T2 – T1  time after 
that code addition. The problem is to translate the data to a model ( )tµ  that 
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would have been obtained if the new code had been part of the software at the 
beginning of the test. Let ( )t1µ model the defect data prior to the addition of the 

new code, and let ( )t2µ model the defect data after that code addition. The model 

( )tµ is created by appropriately modifying the failure times from ( )t1µ  and 

. This section describes how to perform the translation assuming ( ),tµ
( )t1µ  and ( )t2µ  are all G- O models. In theory, this technique could be applied 

to any of the models in Table 2-1, including the S- shaped models. 
• Software Growth Models: 

SRGM is defined as the mathematical relationship between the number of 
software errors removed and testing time. Classical SRGMs have great influence 
on software reliability modeling research. In spite of the fact that many software 
reliability growth models have been proposed in the software reliability literature 
since the first one appeared in 1972 [4], no one of them can deal properly with all 
possible situations. 

                     According to the software error removal process, Jelinski and Moranda 
proposed the first model. The model has a simple structure and assumptions. 
Then Musa proposed the basic Execution Time Model  which has similar 
assumptions to those of Jelinski and Moranda(J-M) model [5]. J-M Model made 
a major contribution to the understanding the relation of error removal and 
software execution time. Goel-Okumoto model is the first nonhomgeneous 
Poisson process (NHPP) SGRM.  Goel-Okumoto model assumed that the error 
removal process follows NHPP. The assumption of this model is similar to the 
Basic Execution Time model of Musa [6]. 

                   Those models are mainly based on some assumption conditions and 
believe that SGRM has been established according to a certain probability 
process. The assumptions are the key factors of establishing SGRM. There is a 
relation between assumption chosen and modeling success. But in partial 
application, quite a few assumptions are unfit to software developing process, 
which cannot be accepted by most people, thus limiting the application of the 
models. Using this kind of model can even get the unimaginable parameter under 
some conditions. Furthermore, a software failure data set being evaluated can get 
different results by using different models. So it has reached a common 
viewpoint in software reliability evaluation field, in that there isn’t a “good 
model” that can fit all failures data very well [7]. 

               J-M model assumes that all errors have been checked in the test can be 
eliminated and removes one error each time. Removing one error does not affect 
the remaining errors. But in fact, software development and error removal are all 
human behaviors, which are unpredictable, so it cannot avoid of introducing new 
errors during the process of error removal. Goel-Okumoto model suppose that 
each error is independent, each error has the same probability of leading system 
failure and each failure interval time is independent. Sometimes, modules in 
software program have some relations, so it is impossible to have complete 
independence, and the probability of each failure that causes system failure is not 
the same [8]. 
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            In these three models, the cumulative numbers of errors removal grow 
exponentially with the testing time. The exponential growth curve is due to the 
assumption that the error removal intensity is linearly related to the remaining 
number of software errors [9]. In many software development projects it was 
observed that the relation between the cumulative numbers of errors removed and the 
testing time is not linear. So we should establish nonlinear model to evaluate the 
software reliability. 
 

3. The feasibility of software reliability nonlinear modeling based on time series 
Time series analysis theory is a method of describing statistics character of dynamics 
data, which can set up time series model from limited sample data, its advantage is 
convenience and practicality. There are many literature on the development of estimation 
and prediction in auto regression time series models. Time series analysis method is well 
studied in some statistical literatures. However, its use in software reliability engineering 
is rather limited [10]. 
               Time series prediction can be stated as follows: given a finite sequence X1, X2, 
X3,…,Xi, predicting the continued sequence Xi+1, Xi+1, …. For example, {Xi} can be 
viewed as the stochastic failure intervals or the number of failures per time intervals 
mainly. That is to say, software reliability failure data are discrete data sequence, whether 
it is steady or not, we can use the data to modeling and evaluate software reliability by 
applying proper time series method [11]. 
                  During the process of software reliability evaluation, it can be seen that the 
nonlinear phenomena exist very commonly and we cannot deal these data with linear 
model. The relevant software reliability time series nonlinear models are deuced in the 
following section. This modeling method proves that software reliability evaluation also 
can be presented in the way of time series nonlinear model. 
 
4. The implemented algorithms 
The cumulative number of failures M(k) is increasing and trend to a fixed value which is 
defined as the desired cumulative number of failures [12]. 
  Assume cumulative failures of software are stochastic variable. We can find that 
all total failures in one time interval are exponential decreasing according to experience. 
Then we have software reliability nonlinear model  

( ) ( ) ( )11 −+−= kMkMbkM k .                                                 (1) 
 

Let kbk =)(θ , then the software reliability nonlinear model can be transformed to time 
series model as follow: 

( ) ( )( ) ( ) ( )kkMkkM εθ +−+= 11  ,                                                                                (2) 

where )(kε  is zero-average white noise.  Obviously, we can get 

( ) ( )1−= kbk θθ .                                                    (3) 
 
That’s to say, parameter )(kθ  can be described by the following AR time series model 

( ) ( ) ( )kkbk ξθθ +−= 1                                                    (4) 
where ���� is zero-average white noise. 
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                          As testing time is based on the unit of day, the cumulative numbers of 
software failures fluctuate greatly. Considering the series {�����  got from observed 
testing data exist must disturbance noise, we apply a smoothing filter to testing data as 
following steps: first, we get series {����� simply as following equation 

                      ���� 	

���


���
�
� 1, � 	 2, … , �                                                                (5) 

and let ��1� 	 ��2� ; then we can get time series {�����  from { �����  by applying 
smoothing filter: 
             ( ) ( ) ( ) ( )kkk ηλλθθ −+−= 11 ,                                                  (6) 
where the initial is ��1� 	 ��1� and � 	 0.7 in the simulation. 
 Now we can use exponential weighted Least Squares method [13] to estimate the 
parameter  b from equation (4). Formulas can be shown as the following equations: 
 

 )]()(ˆ)1()[1()(ˆ)1(ˆ kkbkkkbkb θθ −+++=+                                                              (7) 

)()(

)()(
)1(

2 kPk

kkP
kK

θω
θ

+
=+                                                    (8) 

 
[ ] )()()1(1

1
)1( kPkkKkP θ

ω
+−=+

                                                              (9) 
where � is forgetting factor, 0 � � � 1, commonly is about 0.9~0.99. The initial values 
are given by: 

 .10)0(,1)0(ˆ 4== Pb . 
 
Then we can calculate the estimation as follows: 

 )1()1(ˆ)(ˆ −−= kkbk θθ .                                                  (10) 

 ( )( ) ( )11ˆ)1|(ˆ −+=− kMkkkM θ                                                (11) 
 
Based on these results, we can get the prediction from the following function: 

( ) ( ) ( ) ,...,2,1,|1ˆ|ˆ =−+=+ pNpNNbNpN θθ                                               (12) 

( )( ) ( )NpNMNpNNpNM |1ˆ1|ˆ)|(ˆ −+++=+ θ ,                                              (13) 

( ) ( )NMNNMNNNwhere == )|(ˆ,ˆ)|(ˆ θθ . 
 
5. Autoregressive models 
 
Stationary process and time series 
The series of observations x(t), tT made sequentially in time t constitutes a time series.  
Examples of data taken over a period of time are found in abundance in diverse fields 
such as meteorology, geophysics, biophysics, economics, commerce, communication 
engineering systems analysis, etc.  Daily records of rainfall data, prices of a commodity 
etc. constitute time series.  The variate t denotes time, i.e., changes occur in time, but this 
need not always be so [14]. 
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            For example, the records of measurements of the diameter of a nylon fiber along 
its length (distance) t also give a time series.  Here t denotes length. 
 
Autoregressive process (AR process) 
                  The process {Xt} given by  

 Xt + b1 X t-1 + b2Xt-2+-------+b hXt-h   =  et  , bh  ≠ 0, 
where {et} is a purely random process, with mean 0, is called an autoregressive process 
of order h. 
 
Autoregressive process of order two (yule process) 
                  This is given by 

 X t  + b 1X t-1 + b2 Xt-2  = et  , 
where {et} is a purely random process, with mean 0. 
 

Day Cf 
0 7 
3 12 
5 15 
13 26 
29 38 
32 50 
40 90 
46 175 
50 200 
55 240 
60 250 
65 275 
70 325 
75 390 
80 450 
85 470 
90 500 

 
y5+ b 1 y4 + b 2y3 + b3 y2 + b4 y 1     =  0                                                                           (14) 
y6 + b1 y5 + b2 y4 + b3 y3 + b4 y2      =  0                                                                           (15) 
y7 + b1 y6 + b2 y5 + b3 y4 + b4 y3       =  0                                                                           (16) 
y8 + b1 y7 +  b2 y6 + b3 y5 + b4 y4     = 0                                                                           (17) 
y9 + b1 y8 + b2 y7 + b3 y6 + b4 y5        = 0                                                                           (18)   
 
By solving the above equations, 
b1 = -0.5749 
b2 = 1.0021609 
b3 = -0.000352 
b4 = -504402 
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6. Software reliability and its fuzzy evaluations 
When )(kθ  is closer to zero, the number of remaining errors is less and software 
reliability is higher. So the objective of software reliability can be designed as ���� 	

� log� � ����. 
 

Strictly speaking R(k) is a fuzzy variable we can compartmentalize some grades 
to R(k) and use fuzzy variable and fuzzy rule to estimate software reliability. 
 
7. Conclusion and future enhancement 
We have fitted a fuzzy model and regressive model. Second model is found to be better 
than fuzzy model. 
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