Progressin Nonlinear Dynamics and Chaos Prosress in
Vol. 2, No. 1, 2014, 10-17 2

ISSN: 2321 — 9238online) Nonlinear
Published on 27 July 2014 Dynamics and Chaos

www.researchmathsci.org

Software Reliability Modeling in Fuzzy Environment

M. Kiruthiga® and C. Loganathan?

Department of Mathematics, Maharaja Arts and Seiéballege
Coimbatore, Tamilnadu
YEmail: Kiruthi.neha@gmail.corfEmail: clogu@rediffmail.com

Received 13 July 2014; accepted 26 July 2014

Abstract. The idea of software reliabilities can be represeérty the quantity of defects
in the unit time. The association between the witgnof the defects and reliability
depends upon the model that is used in the evatudlany models try to assess whether
a software testing objective has been met to déermhen to stop testing. We present a
case study for evaluating software reliability be OFBiz project software package used
on business routines. We also explain a new mbd¢ldan have more accurate analysis
and forecast to software assumptions. Fuzzy theoigtroduced to evaluate software
reliability.

Keywords: Software Reliability, Nonlinear Models, Fuzzydio, Business Routines.

1. Introduction
Due to the complexity of computer software systemd the increasing of development
cost, it is of utmost importance to develop higlalgy software systems. The quality of
the software system is described by many metrich si3: complexity, maintainability,
availability, reliability, etc. As tragedies of wiiable software often take place, people
recognize the importance of developing reliableveaife. Now, the reliability problem in
software systems is a well-known research fielcer&fore, designing reliable software
and evaluation software reliability accurately #re most important issues [1].

The standard definition of reliatyilfor software (Musa, lannino, and Okomoto,
1987) is the probability of execution without fa#ufor some specified interval of natural
units or time [2]. Software failures are the masiif¢ion of software errors which are
introduced in to the software by software enginedusing the phases of software
development cycle. In the literatures, researclestablish software reliability growth
model (SRGM) to measure software reliability. T@lgthese models, it is necessary to
know how well the models suit an actual observaf@lure data set. In order to obtain
accurate software reliability estimation, it re@sira large number of failure data which
are not usually available until the system has liested for a long relative period. Many
software reliability engineers are more interestedstimating the software reliability as
early as possible [3]

2. Growth models

Software reliability is the probability that softweawill not cause the failure of a product
for specified time under specified conditions, thisbability is a function of the inputs to

10

Software Reliability Modeling in Fuzzy Environment

and use of the product, as well as a function efetkistence of faults in the software, the
inputs to the product will determine whether ansg®g of faults in the software, the

inputs to the product will determine whether arsrg fault is encountered or not. Many
software reliability growth models have been depetb over the years. For a detailed
description of most models consider Musa, lannamml Okumoto. Within these models
one can distinguish two main categories: Predictivedels, assessment models.
Predictive models typically address the reliabitifythe software early in the life cycle at

the requirements or at the preliminary design levedven at the detailed design level in
a waterfall life cycle process or in the first spiof a spiral software development
process. Predictive models could be used to atisestsk of developing software under
a given set of requirements and for specified persbbefore the project truly starts.

» Assessment models evaluate present and project future softwaralyiity
from failure data gathered when the integratiohef software starts. Predictive
software reliability models are few in number, mastdels can be categorized in
the assessment category.

* Analytical models —analytical modeling of software reliability involsefour
steps. The first step is to define the assumptémseciated with a software test
procedure, and the second step is to develop dgtiaahmodel based on the
assumptions and the test procedure. The thirdistepobtain parameters for the
model using the data the final step is to use thadah for performance
predictions. Two major types of analytical modeds doe identified. They are
dynamic and statistic models. In a dynamics softwatiability model, the time
dependent behaviors of the software failures aptucad in the analytic model.
However, in a statistic model, no reference is mawdhe time dependent
behavior of software failures.

« Empirical models —in anempirical software reliability model, a relationship or
a set of relationships between software reliabifitgasures and appropriately
define software metrics are developed using engirisults available from past
data. This model can then be applied to measutea reliability for which we
have the required software metrics. This, in a vgagimilar to the econometric
models in forecasting theory. The major issuesimmodeling technique are the
identification of the appropriate software metransd the reliability measures.
The latter issue of developing the functional ietehip is referred to as
specification. The accurate and most appropriageiipation of an empirical
model is a key step in the use of this techniqueddtware reliability estimation.

e Multi- Stage Models -One of the assumptions made by all the modelsistiie
set of code being testing is unchanged throughmutest period. Clearly, defect
repair invalidates that assumption, but it is asslithat the effects of defect
repair are minimal so that the model is still adj@approximation. If a significant
amount of new code is added during the test petloste is a technique that
allows us to translate the data to account for ithe¥eased code change.
Theoretically, the problem is that adding a sigmifit amount of changed code
should increase the defect detection rate. Thexetbe overall curve will look
something like Figure 3.5, where, Befects are Ttime prior to the addition of
the new code and an additional B D, defects are found in,T—- T; time after

that code addition. The problem is to translate data to a mode,u(t) that

11

M. Kiruthiga and C. Loganathan

would have been obtained if the new code had baengb the software at the
beginning of the test. L<,ul(t)model the defect data prior to the addition of the

new code, and le/, (t)model the defect data after that code addition. Mbdel
,u(t) is created by appropriately modifying the failuiméas from ,ul(t) and

Hy (t) This section describes how to perform the traislaassumin ,u(t),

,ul(t) and ,uz(t) are all G- O models. In theory, this techniquelddie applied
to any of the models in Table 2-1, including theslgaped models.

Software Growth Models:

SRGM is defined as the mathematical relationshipvéen the number of
software errors removed and testing time. ClasS884EMs have great influence
on software reliability modeling research. In spifehe fact that many software
reliability growth models have been proposed indbftware reliability literature
since the first one appeared in 1972 [4], no onthedn can deal properly with all
possible situations.

According to the software emmemoval process, Jelinski and Moranda
proposed the first model. The model has a simpilectstre and assumptions.
Then Musa proposed the basic Execution Time Modehich has similar
assumptions to those of Jelinski and Moranda(J-Mileh[5]. J-M Model made
a major contribution to the understanding the matof error removal and
software execution time. Goel-Okumoto model is first nonhomgeneous
Poisson process (NHPP) SGRM. Goel-Okumoto modrimaed that the error
removal process follows NHPP. The assumption & thodel is similar to the
Basic Execution Time model of Musa [6].

Those models are mainly basedsome assumption conditions and
believe that SGRM has been established according tertain probability
process. The assumptions are the key factors abledting SGRM. There is a
relation between assumption chosen and modelingesac But in partial
application, quite a few assumptions are unfit aftveare developing process,
which cannot be accepted by most people, thusifighithe application of the
models. Using this kind of model can even get thienaginable parameter under
some conditions. Furthermore, a software failuta dat being evaluated can get
different results by using different models. Sohi#s reached a common
viewpoint in software reliability evaluation fieldn that there isn’'t a “good
model” that can fit all failures data very well [7]

J-M model assumes that all errorgehbeen checked in the test can be
eliminated and removes one error each time. Rergasire error does not affect
the remaining errors. But in fact, software develept and error removal are all
human behaviors, which are unpredictable, so ihabavoid of introducing new
errors during the process of error removal. Goalh®éto model suppose that
each error is independent, each error has the pasbability of leading system
failure and each failure interval time is indepamdeSometimes, modules in
software program have some relations, so it is Bmjite to have complete
independence, and the probability of each failbet tauses system failure is not
the same [8].

12

Software Reliability Modeling in Fuzzy Environment

In these three models, the cumulativenimers of errors removal grow
exponentially with the testing time. The expondngeowth curve is due to the
assumption that the error removal intensity is dihe related to the remaining
number of software errors [9]. In many software elegment projects it was
observed that the relation between the cumulativebers of errors removed and the
testing time is not linear. So we should establishlinear model to evaluate the
software reliability.

3. The feasibility of software reliability nonlinear modeling based on time series
Time series analysis theory is a method of deswilstatistics character of dynamics
data, which can set up time series model from dichisample data, its advantage is
convenience and practicality. There are many liteeaon the development of estimation
and prediction in auto regression time series nsdeme series analysis method is well
studied in some statistical literatures. Howeusruse in software reliability engineering
is rather limited [10].

Time series prediction can be statedollows: given a finite sequeng X,
Xs,...,%, predicting the continued sequen¥g;, X.1, ... For example, X} can be
viewed as the stochastic failure intervals or tlhienber of failures per time intervals
mainly. That is to say, software reliability faibudata are discrete data sequence, whether
it is steady or not, we can use the data to moglelimd evaluate software reliability by
applying proper time series method [11].

During the process of softwarkahdlity evaluation, it can be seen that the
nonlinear phenomena exist very commonly and we atadeal these data with linear
model. The relevant software reliability time seri@nlinear models are deuced in the
following section. This modeling method proves tbaftware reliability evaluation also
can be presented in the way of time series nonlimealel.

4. The implemented algorithms
The cumulative number of failurdd(k) is increasing and trend to a fixed value which is
defined as the desired cumulative number of fasl(it2].

Assume cumulative failures of software are stetibasariable. We can find that
all total failures in one time interval are expoti@ndecreasing according to experience.
Then we have software reliability nonlinear model

M (k)=b*M (k -1)+ M (k -1). 1) (

Let (k) =b*, then the software reliability nonlinear model dantransformed to time
series model as follow:

M (k) = (6(k) +2)M (k -1) + (k) |)
where £(k) is zero-average white noise. Obviously, we cédn ge
6(k) =bo(k-1). (3)

That's to say, parameté(k) can be described by the following AR time seriesiet
o(k) =bo(k -1)+ £(k) (4)

whereé (k) is zero-average white noise.

13

M. Kiruthiga and C. Loganathan

As testing time is basedthe unit of day, the cumulative numbers of
software failures fluctuate greatly. Considering tberies §(k)} got from observed
testing data exist must disturbance noise, we ap@oothing filter to testing data as
following steps: first, we get serieg @)} simply as following equation

M(k)
(k) = e =1k =2,.,N (5)

and letn(1) =n(2); then we can get time serie¥)} from {n(k)} by applying
smoothing filter:

6(k) = A6(k -1)+ (1~ A)p(k), 6)
where the initial i99(1) = n(1) andA = 0.7 in the simulation.

Now we can use exponential weighted Least Squmetisod [13] to estimate the
parameterb from equation (4). Formulas can be shown as theviolg equations:

bk +1) = b(k) + (k +)[(k +1) - b(K)(K)] @)
K(k+1)=— ot ®)
w+6%(K)P(k)

P(k+1) = 1[1— K (k +1)8(K)|P(k)

w 9)
wherew is forgetting factor) < w < 1, commonly is aboud.9~0.99. The initial values
are given hy:

b(0) =1 P(0) =10".

Then we can calculate the estimation as follows:

6(k) =b(k -18(k-1) (10)

M (k [k ~1) = (6(k) + 1M (k 1) 1)
BAased on thesAe results, we can get the predictiom fthe following function:
N+ p|N)=b(N)J(N +p-1|N), p=12..., (12)
M (N +p|N) = (BN + p|N)+IV (N + p-1|N), (13)

where (N |N)=6(N), M(N|N)=M(N).
5. Autoregressive models

Stationary process and time series

The series of observations x(I€ T made sequentially in time t constitutes a tintéese
Examples of data taken over a period of time atmdoin abundance in diverse fields
such as meteorology, geophysics, biophysics, ecmsponsommerce, communication
engineering systems analysis, etc. Daily recofdsiofall data, prices of a commodity
etc. constitute time series. The variate t deniies, i.e., changes occur in time, but this
need not always be so [14].

14

Software Reliability Modeling in Fuzzy Environment

For example, the records of measuresnehthe diameter of a nylon fiber along
its length (distance) t also give a time seriegre denotes length.

Autoregressive process (AR process)
The process {pgiven by

X+ by Xy + DX pt------- +bXen = &,0, #0,
where {g} is a purely random process, with mean 0, is dale autoregressive process
of order h.

Autoregressive process of order two (yule process)
This is given by

Xi+bXu+bhX,=8,
where {g} is a purely random process, with mean 0.

Day Cf

0 7

3 12

5 15

13 26

2¢ 38

32 50

40 a0

46 17¢

50 20C

55 24(C

60 25C

65 27¢

70 32t

75 39C

80 45(

85 47C

9 50C
Yst Diya+ boys+ by +hyy, =0 (14)
Vet biys+ b ys+byys+byy, =0 (15)
Yyt b ye+t b ys+bsya+hyys =0 (16)
Vst by + bys+tbyys+byys =0 (17)
Yot biys+t by +bsys+huys =0 (18)

By solving the above equations,

bl =-0.5749
b2 =1.0021609
b3 =-0.000352
b4 = -504402

15

M. Kiruthiga and C. Loganathan

6. Software reliability and its fuzzy evaluations
When 6(k) is closer to zero, the number of remaining erigrdess and software

reliability is higher. So the objective of softwardiability can be designed &gk) =
—log(8(k)).

Strictly speakingR(k) is a fuzzy variable we can compartmentalize soradas

to R(k) and use fuzzy variable and fuzzy rule to estirsafeware reliability.

7. Conclusion and future enhancement
We have fitted a fuzzy model and regressive mdgetond model is found to be better
than fuzzy model.

10.

11.

12.

REFERENCES

Nunes Rodrigues, Genaina, A Model Driven Approach $oftware Reliability
Prediction, University of London, doctorial Thes2608.

Vittorio Gianni Fougastsaro, A Study of Open SoufleP System, Thesis for
Masters Degree in Business Administration, 2009.

Michael R. Lyu, Software Reliability Engineering: Roadmap, Future of Software
Engineering (FOSE’'07), Washington, DC, USA, IEEBntputer Society, pp. 153 —
170, 2007.

A.Avizienis, J C Laprie and B. Randell, Fundame@ahcepts of Dependability”, in
IARP/IEEE-RAS Workshop on Robot Depedability, 2001.

J.D.Musa and K.Okumoto, A Logarithmic Poisson Exietu Time Model for
Software Reliability Measurement, ICSE 84 Procegslinf the 7 International
Conference on Software Engineering, pp. 230-2384.19

H.Pham, System Software Reliability, Spriger SeieReliability Engineering, 1
Edition, 2007.

Z.Jelinski and P.B.Moranda, Software ReliabilitysBarch, in Statistical Computer
Performance Evaluation, W. Freiberger, Ed., NewkY@cademic Press, pp. 465 —
484, 1972.

Martin L Shooman, Probabilistic Models for SoftwaReliability Prediction, in
Statistical Computer Performance Evaluation, W.ildemger, Ed., New York:
Academic Press, pp. 485 — 502, 1972.

Michael R.Lyu, Allen P.Nikora, William H. Harr, AyStematic and Comprehensive
Tool for Software Reliability Modeling and Measuremt, Fault-Tolerant
Computing. FtCS-23. Digest of Papers, The Twentydl mternational Symposium,
pp. 648 — 653. 1993.

John D.Musa, Software Reliability — Engineered ihbgstlourna Computer archive,
29 (11) (1996) 61 — 68.

Z.Krajcuskova, Software Reliability Models, "7 International Conference
radioelektronika, pp. 1 — 4, 2007.

S.Parthasarathy, N.Anbazhagan, Significance ofwao#t Metrices in ERP Projects,
India Conference Annual IEEE, pp. 1 — 4, 2006.

16

Software Reliability Modeling in Fuzzy Environment

13. C.Freericks, Open Source Standards on SoftwareeBso@ Practical Approach,
IEEE Communications Magazine, 39(4) (2001) 11@3-1

14. J.Medhi, Stochastic Processes, New Age Interndtublishers, New Delhi, second
edition, pp. 340 — 346, 2006.

17

