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Abstract. Magnetohydrodynamic (MHD) Casson fluid flow past a non-isothermal porous 
linearly stretching sheet is investigated. At first the system of governing equations are 
transformed into similarity ordinary differential equations. These equations are solved 
numerically using the Nactsheim-Swigert Shooting iteration technique together with 
Runge-Kutta six order iteration. Numerical results are obtained for the velocity in x and 
y directions and temperature at the linear stretching sheet. Self-similar solutions are 

obtained and related results are presented graphically and discussed quantitatively with 
respect to variation in Casson flow parameter as well as other fluid flow parameters. 
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1. Introduction 
The study of non-Newtonian fluids has attracted much attention because of their 
extensive variety of applications in engineering and industry especially in extraction of 
crude oil from petroleum products. In the category of non-Newtonian fluids, Casson fluid 
has distinct features. This model was presented by Casson for the flow of viscoelastic 
fluids in 1995. This model is cast off by fuel engineers in the description of adhesive 
slurry and is improved for forecasting high shear-rate viscosities when only low and 
transitional shear-rate data are accessible. The fluid flow over a stretching surface is 
significant in solicitations such as extrusion, cord depiction, copper spiraling, warm 
progressing, and melts of high molecular weight polymers. Initial work for the boundary 
layer flow on continuous surfaces was discussed by Sakiadis [1] and Tsou et al. [2]. 
Magnetohydrodynamic three-dimensional flow and heat transfer over a stretching surface 
in a viscoelastic fluid are discussed by Ahmad and Nazar [3]. Saidul Islam et. al.[4] 
investigate the MHD Free Convection and Mass Transfer Flow with Heat Generation 
through an Inclined Plate. Abdur Rahman et. al. [5]  studied the thermophoresis Effect on 
MHD Forced Convection on a Fluid over a Continuous Linear Stretching Sheet in 
Presence of Heat Generation and Power-Law Wall Temperature. Hasanuzzaman et al.[6] 
studied the of similarity solution of unsteady combined free and force convective laminar 
boundary layer flow about a vertical porous surface with suction and blowing.  Very 
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freshly in another article, Nadeem et al. [7] examined the magnetohydrodynamic (MHD) 
boundary layer flow of a Casson fluid over an exponentially penetrable shrinking sheet. 
Nadeem et.al. examine the MHD three- dimensional Casson fluid flow past a porous 
linearly stretching sheet[8].  

Focal impartial of the current study is to deliberate the three-dimensional 
examination for the Casson fluid model arrogant the exponential stretching sheet. 
Through smearing the resemblance alteration, we diminish the system of nonlinear partial 
differential equations into the system of nonlinear ordinary differential equations. Non-
dimensionalized corporeal constraints namely Casson fluid parameter  , Hartmann 

number M , and porosity parameter  seem after applying the similarity transformations. 
Nonlinear coupled equations are then attempted numerically to get the solutions, and 
then, fleshly behaviors of each of the parameter are exposed graphically.  
 
2. Mathematical model 
Consider three-dimensional 
(3D) incompressible flow past 
non isothermal a stretching 
sheet. It is consider that sheet 
is stretched along the xy -
plane, while fluid is placed 
along the z -axis. Moreover, it 
is consider that constant 
magnetic field is applying 
normal to the fluid flow, and 
the induced magnetic field 
assumed to be negligible. Here, we assumed that sheet has stretched with the linear 
velocities u ax  and v by  along the xy -plane, respectively.  
The rheological equation of state for an isotropic flow of a Casson fluid can be expressed 
as  
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rate,   be the product of the component of deformation rate itself, c be a critical value 

of this product based on the non-Newtonian model, B  be the plastic dynamic viscosity 

of the non-Newtonian fluid and zp  be the yield stress of the fluid. 
From the equation (1) we obtained, 
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The boundary layer equations of three-dimensional incompressible Casson fluid are 
stated as follows: 
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where u , v , and w  denote the respective velocities in the x , y and z -directions, 

respectively,   is the Casson fluid parameter, v  is kinematic viscosity, 0B  is the 

magnetic induction, and k  is the porous medium permeability. The associated boundary 
conditions of equations (3) and (4) are as follows: 

   ,    ,     at  0w w wu u x ax v v x by T T z       

0,     0,    as  u v T T z                                                 (6) 

In the above expressions, a  and b  are positive constant, and wu  and wv  are stretching 

velocities in x  and y directions, respectively. Introducing the following similarity 
transformations; 
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where, b
c

a
  is the ratio of the velocities in y  and x -directions, and prime denote 

differentiation with respect to  . Making use of equation (7) equation of continuity is 
identically satisfied, and equations (3) and (4) along with (6) take the following 
derivation. 
From equation (3), (4) and (5) we get, 
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Expression for skin friction coefficient fC  on the surface along the x -and y -directions, 

which are denoted by fxC and fyC  respectively, are defined as follows: 
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where,  Re x x
xu x v is the local Reynolds number for the stretching velocity  xuw . 
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3. Numerical solution 
The system of coupled nonlinear coupled differential equations (8) and (9) along with the 
boundary conditions (11) and (12) is solved numerically using shooting method. The step 
size 0.001  is used to obtain the numerical solution with max , and accuracy to the fifth 
decimal place is chosen as the criterion of convergence. 
 
4. Result and discussions 
In this section, we have discussed the velocity profiles  f  ,  g   and temperature 

profiles     for various physical parameters such as Casson fluid parameter  , 

Hartmann number M , porosity parameter  , and stretching parameter ,c  Grashof 

number rG , Eckert number cE  and Prandtl number rP . In Fig. 2-4, magnitude of velocity 

profiles  f  ,  g  , temperature profiles     and boundary layer thickness decreases 

with the increase of  non-Newtonian parameter  , present phenomena obviously reduced 
to Newtonian fluid. 
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From Fig. 5-7 it is observed that for higher values of M , both boundary layer thickness 

and the magnitude of the velocity profiles  f  and  g   decreases and temperature 

profile     increases. Physically present phenomena occur when magnetic field can 

induce current in the conductive fluid, and then it creates a resistive-type force on the 
fluid. So finally, it is conclude that magnetic field is used to control boundary layer 
separation. From Fig. 4-10 it is observed that for increasing values of porosity parameter
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 , with in the boundary layer, it decreases the velocity profiles  f  ,  g   and 

increases temperature profile    . Moreover, these graphs show that boundary layer 

thickness also decreases for higher values of . From Fig. 11-13 it is observed that for 
increasing values of stretching ratio c , it decreases the velocity  f  , while  g   

increases and the temperature profile     decreases. It notice that for 0c  , present 

phenomena reduce the case of two dimensional linear stretching, while for 1c  , sheet 
will stretched along the both directions with  same ratio, and  third and last case relate to 
stretching ratio parameter c  other than 0 and  1; then the flow behavior along both the 
direction will be different. From Fig. 14-16 it is observed that for increasing values of 
Grashof number rG , with in the boundary layer, the velocity profile  f   increase, 

velocity profile  g   decreases and temperature profile     decreases. Moreover, these 

graphs show that boundary layer thickness also decreases for higher values of rG . From 

Fig. 17-19 a minor change is observed of the velocity profiles  f  ,  g   and 

temperature profile     for increasing values of Eckert number ,cE with in the boundary 

layer. From Fig. 20-22 it is observed that for increasing values of Prandtl number rP , 

with in the boundary layer, it decreases the velocities profiles  f  ,  g   and 

temperature profile    . Moreover, these graphs show that boundary layer thickness 

also decreases for higher values of rP . 
 
5. Conclusions 

The main results of present analysis can be listed below: 

 Casson fluid parameter   reduces the velocity profiles in both x  and y  direction 

and the temperature profiles. 

 Hartmann number M  decreases the velocity profiles in both x  and y  direction 

and increases the temperature profiles. 

 Porosity parameter  decreases the velocity profiles in both x  and y  directions 

and increases temperature profile. 

 Stretching parameter c decreases the velocity in x  direction, while increases the 

velocity in y  directions and decreases the temperature profile. 

 Grashof number rG  increases the velocity profile in x  direction, decreases 

velocity profile in y  directions and decreases temperature profile. 

 Eckert number cE  gives a minor change of the velocity profiles in both x  and y  

directions and temperature profile. 

 Prandtl number rP  decreases the velocities profiles in both x  and y  directions 

and temperature profile. 
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