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Abstract. A graph G=(V,E) with vertex set on N, the set of natural numbers is called a 
permutation graph if there exists a permutation � = {�(1),�(2),…,�(n)} on N such that  
for i,j ϵ N, such that either i<j and  � -1(i)>	� -1(j) or i >j and � -1(i)<	� -1(j) where � -1(i) is 
the element of N which � maps into i. 
              Adjacent vertex distinguishing edge coloring (avd edge colouring in short) 
applied on different type of permutation graphs. Some theorems of avd edge colouring on 
permutation graphs and their proofs are established.  

Keywords: Permutation graphs, graph colouring, Adjacent Vertex Distinguishing (Avd) 
Edge Colouring 

1. Introduction  
The intersection graphs [51] is a very imnportant subclass of graphs due to its wide 
applications. These  graphs also include interval graphs [6,9,37,41-48,56,57,60-63,65], 
permutation graphs [1,4,8,16,36,39,40,49,50,58,66], circular-arc graphs [31-34,64], 
trapezoid graphs [2,3,5,10-12,17-25,38,59], etc. Severals problems are solved on these 
graphs among them graph colouring is one of the most important problem of graph 
theory. Different kind of graph colouring/labelling problems are also available in 
literature [7,13,14,22,26-29,35,52-55] and these problems are solved for these graphs. 
The concept of vertex distinguishing edge colouring was introduced independently by 
Adjacent vertex distinguishing (avd) edge colouring of graphs are investigated on 
[30,67,68]. 
         A proper edge colouring of a graph is an assignment of colours to the edges of the 
graph such that two adjacent edges do not use the same colour. 
 
Adjacent vertex distinguishing (avd) edge colouring  
An adjacent vertex distinguishing edge colouring (avd edge colouring) of a graph G is a 
proper edge colouring φ :E→{c1, c2,…,ck}  of a graph G=(V,E) for every pair of adjacent 
vertices u, v the set of the colours of the edges incident to u differs from the set of colours 
of the edges incident to v. 



Suparna Jana 

10 

 

Therefore, φ is called adjacent vertex distinguishing edge colouring if φ(u) ≠ 
φ(v) for all (u, v) ∈ E where φ(v) = { φ(v, w)|(v, w)∈ E }.  
 
Avd  edge chromatic number  
The avd  edge chromatic number of G, denoted by ��′(G) is the minimum number of 
colours needed is an avd edge colouring of G. 
Therefore, ��′(G) = min{k| G is k avd edge colourable}. 
 
Example 1. Let us consider the following graph; 

 
Figure 1: The complete graph K5 

Here ��′(K5) = 5. 

Avd total colouring  
A proper total colouring of a graph G is a mapping f from V(G)UE(G) to {1,2,...,k} such 
that  
a) For all u, v ∈ V(G) if uv ∈ E(G) then f(u)≠f(v)  
b) For all e1,e2 ∈ E(G), e1≠  e2 ,if e1, e2 have a common end vertex ,then f(e1) ≠  f(e2) 
c) For all u  ∈ V(G), e ∈ E(G) if u is the end vertex of e, then f(u) ≠f(e) 
d) It is called a avd total colouring if φ[u]≠φ[v] where φ[u]={f(e)| e is incident to v 

}U{f(v)}. 

Avd total chromatic number  
The avd total chromatic number of G denoted by χat(G), is the minimum no. of colours 
needed is an avd total colouring of G. Therefore, χat(G)= min{k |G is avd total k-
colourable}.  

A cut vertex is a vertex the removal of which would disconnect the remaining graph. 
 
1.1. Permutation graph         
An undirected graph G=(V,E) with vertices V={1,2,…,n} is called a permutation graph if 
there exists a permutation � on N={1,2,3,....} such for all i, j ϵ N 

 ( i -j ) (�⁻¹( i ) - �⁻¹( j ))<0 
if and only if i and j are joined by an edge in G. 
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           Geometrically, the integers 1,2,3,…,n are drawn in order on a real line called an 
upper line and �(1), �(2),…, �(n) on a line parallel to this upper line called as lower line 
such that for each iϵ N, i is directly below  �(�).  
Let us consider the permutation σ =
1				2				3				4				5		3				4				5				2				1		�. 

The permutation representation of σ is 
 

 
                                 Figure 2: The permutation representation of σ 
The corresponding permutation graph is  

 
                                                Figure 3: Permutation graph of σ 
 
Complete permutation graph  
A permutation graph is called complete permutation graph if it is complete. 

For an example, let us consider a permutation σ = 
1				2				3				44				3				2				1�. 

The permutation representation of σ and the corresponding permutation graph is 
 

 
                  Figure 4: The permutation representation and the complete permutation graph 
 
A permutation graph is called  bipartite permutation graph if it is bipartite. 
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Complete bipartite permutation graph  
A permutation graph is called a complete bipartite permutation graph  if it is complete 
and bipartite. 
 
One cycle permutation graph (means a permutation graph looking just like a cycle) 
Example 2. 

Let σ = 
1						2						33						2						1�. The permutation representation of σ is  

 
Figure 5: Permutation representation of σ and  one cycle permutation graph of length 3 

 
Some important properties of permutation graphs 

a) The complement of a permutation graph is also a permutation graph. 
b) Permutation graph is transitively orientable. 
c) The permutation graph and its complement are comparability graph. 
d) Any graph containing k-cycle is not a permutation graph for k ≥5. 
e) Permutation graph are perfect. 
f) A graph is permutation graph if the graph has a permutation representation. 
g) There exist at most four permutation representations for any connected bipartite 

permutation graph. 
h) A permutation graph is an intersection graph of segments between two parallel lines. 
i) A bipartite graph is a bipartite permutation graph if and only if it has a strong 

ordering 
j) A permutation graph is the complement of a comparability graph. 
k) Every bipartite permutation graph having 2-chromatic number. 
l) Complement of a complement permutation graph is the original permutation graph. 
 
2. Avd edge colouring on other graphs  
2.1. Avd  colouring on cactus graph  
Khan et al. [30] have worked on Avd colouring on cactus graphs. The following results 
are preented from [30]. 

Definition 2.1. (Cactus graph) A cactus graph is a connected graph in which any two 
simple cycles have at most one vertex in common. 

Conjecture 2.1. If G be a simple connected graph with at least three vertices and G ≠ C5 
then ∆ ≤ ��′(G) ≤∆+2. 
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Lemma 2.1.  For any star graph K1,∆, χa‘(K 1,∆) = ∆, where ∆ is the degree of the star 
graph. 

Lemma 2.2.   For any cycle Cn of length n,  

                        ��′(Cn)=�3,					if	n ≡ 0	(mod	3);																						4,				if	n ≡ 1,2	(mod	3)and	n ≠ 5;5, if	n = 5																																												� 
Lemma 2.3. If a graph G contains two cycles of finite lengths and they are joined with a 
common cut vertex, then  

                       ��′(G) = 5, when	two	cycles	are	of	length	5;4, otherwise.																																												� 
Lemma 2.4. Let a graph G contains three cycles of finite lengths and they are joined with 
a common cut vertex v0. If ∆(=6) be the degree of v0, then χa‘(G) = ∆. 

Lemma 2.5.  If the graph G contains finite cycles of finite lengths, joined with a common 
cut vertex with degree ∆, then  χa‘(G) = ∆. 

Lemma 2.6.  Let G be a graph contains finite no. of cycles of finite lengths and finite no. 
of edges, joined with a common cut vertex. If ∆ be the degree of the cut vertex, then  
χa‘(G)  = ∆. 

Lemma 2.7. For any sun S2n,                                

                           ��′(S2n)=  ∆ + 2, if	n = 5	;				∆ + 1,			otherwise.�           where ∆= 3. 

Lemma 2.8. Let G be a graph obtained from S2n, by adding an edge to each of the 

pendent vertex, then      ��′(G)=  5, �./ = 5;				4,			01ℎ345�63.� 
Lemma 2.9. Let G be a graph contains a cycle of any length and finite no. of edges. If 
they are joined by a common cut vertex v0 with degree ∆, then χa’(G)= ∆. 

2.2. Avd colouring on Halin graph 

Definition 2.2. (Halin graph) A Halin graph is a type of planer graph. It is constructed 
from a tree that has at least four vertices, none of which have exactly two neighbours (the 
term neighbour is a node that is attatched to a other node by an edge/path). 

Conjecture 2.2. For every connected graph G with order at least 2, we have χat(G) ≤ 
∆(G)+3. 

Definition 2.3. (Generalized Halin graph) Suppose G=(V,E) is a plane graph. If after 
removing all edges of the boundary of a face f0 (the degree of the vertices of f0 are all 3), 
G(V,E) becomes a tree, then G(V,E) is called a generalized Halin graph with f0 being 
called the exterior face (others the interior faces ) and vertices in v(f0) being called the 
exterior vertices (others the interior vertices). 

Lemma 2.10. If no two vertices of degree ∆(G) are adjacent then χat(G) ≥ ∆(G)+1. 
Further, if G has two distinct vertices of maximum degree which are adjacent, then χat(G) 
≥ ∆(G)+2. 
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Theorem 2.1. Let G be a generalized Halin graph. If ∆G) ≥ 6 and any two vertices of 
degree ∆(G) are not adjacent, then χat(G) = ∆(G)+1. Further, if ∆(G) ≥ 5 and there are two 
vertices of degree ∆(G) which are adjacent, then χat(G) = ∆(G)+2. 

Conjecture 2.3.  If G is a generalized Halin graph with ∆(G) = 3, then χat(G) =5. 

Conjecture 2.4.  Let G be a generalized Halin graph with ∆(G) = 4. If no two vertices of 
degree 4 are adjacent, then χat(G) = 5; If there are two vertices of degree 4 which are 
adjacent then χat(G)=6. 

Conjecture 2.5.   Let G be a generalized Halin graph with ∆(G) = 5. If no two vertices of 
degree 5 are adjacent, then χat(G)= 6. 

 
2. Main results 
Avd labelling of permutation graphs is discussed in this section. 
Theorem 3.1. For complete bipartite permutation graph G=(U,V,E)   

                                                                   ��′(G) =  ∆(G) + 2,				if	|U| = |V|;∆(G),									if		|U| ≠ |V|; � 
where ∆(G) is the maximum degree of  the graph and |U|=the cardinality of the 1st subset 
of the vertex set and |V| = the cardinality of the 2nd subset of the vertices.   
Proof: Let G=(U,V,E) be a complete bipartite permutation graph. 
Case 1:    Let |U| =|V|=n (≥2) [n is any positive integer]. 
Let U={u1,u2,u3,…,un}, V={v 1,v2,v3,...,vn}.  
Let, φ(u1)={ϕ(e11),ϕ(e12) , ϕ(e13),…, ϕ(e1n)} 
        ={ ϕ (e1j)| j=1,2,…,n}  
φ(u2)={ ϕ(e21), ϕ(e22), ϕ(e23),…, ϕ(e3n)} 
        ={ ϕ(e2j)| j=1,2,…,n} 
     …       …      …    
φ(un)={  ϕ(en1), ϕ(en2), ϕ(en3),…, ϕ(enn)} 
        ={ ϕ(enj)| j=1,2,…,n} 
And φ(v1)={ ϕ(e11), ϕ(e21), ϕ(e31),..., ϕ(en1)} 
        ={ ϕ(ei1)| i=1,2,...,n} 
φ(v2)={ ϕ(e12), ϕ(e22), ϕ(e32),…, ϕ(en2)} 
        ={ ϕ(ei2)| i=1,2,…,n} 
     …       …          … 
φ(vn)={ ϕ(e1n), ϕ(e2n), ϕ(e3n),…, ϕ(enn)} 
        ={ ϕ(ein)| i=1,2,…,n} 
E={ e11,e12,…, e1n, e21, e22,…, e2n,..., en1, en2,…, enn}    

=

11 12 13 1

21 22 23 2

1 2 3

 e  e  .................. e

 e  e  .................. e

........................................

 e  e  ................. e

n

n

n n n nn

e

e

e

 
 
 
 
  
 

 

 

 where eij=(ui, vj)  i ,j=1,2,…,n. 
 
Case 1.1: When n is odd   
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For avd edge colouring  we construct a table such that ith row and j th column  of  that 
table must be unequal for i ,j=1,2,…,n  but  any two of rows or any two of columns  may 
be equal. 

The ith row of the table gives  φ(ui) for i=1,2,...,n and the j th column of the table 
gives  φ(vi) for  j=1,2,…,n and ϕ(ui, vj) represent the colour of  the edge (ui, vj) i.e eij. 
This is shown in Table 1. 
 

ϕ v1 v2 v3 ... vn-2 vn-1 vn  
u1 1 2 3 … n-2 n-1 n φ(u1) 
u2 3 4 5 … n n+1 n+2 φ(u2) 
u3 5 6 7 … n+2 1 2 φ(u3) 
… … … … … … … … … 
u(n+1)/2 N n+1 n+2 … n-5 n-4 n-3 φ(u(n+1)/2) 
u(n+3)/2 2 3 4 … n-1 n n+1 φ(u(n+3)/2) 
u(n+5)/2 4 5 6 … n+1 n+2 1 φ(u(n+5)/2) 
… … … … … … … … … 
un-1 n-3 n-2 n-1 … n-8 n-7 n-6 φ(un-1) 
un n+2 1 2 … n-3 n-2 n-1 φ(un) 
 φ(v1) φ(v2) φ(v3) … φ(vn-2) φ(vn-1) φ(vn)  

Table 1: Avd edges colouring of complete bipartite permutation graphs, when n is odd 
 
Here φ(ui) and φ(vj) are different for i, j=1,2,...,n.  
Hence the required minimum color is n+2 for avd edge coloring. 
Case 1.2: When n is even  
We construct the table as per the rule of  case 1.1, which is given below : 
 

Φ v1 v2 v3 … vn-2 vn-1 vn  

u1 1 2 3 … n-2 n-1 n φ(u1) 

u2 3 4 5 … n n+1 n+2 φ(u2) 

u3 5 6 7 … n+2 1 2 φ(u3) 

… … … … … … … … … 

u(n+2)/2 n+1 n+2 1 … n-4 n-3 n-2 φ(u(n+2)/2) 

u(n+4)/2 2 3 4 … n-1 n n+1 φ(u(n+4)/2) 

u(n+6)/2 4 5 6 … n+1 n+2 1 φ(u(n+6)/2) 

… … … … … … … … … 

un-1 n-4 n-3 n-2 … n-9 n-8 n-7 φ(un-1) 

un n+2 1 2 … n-3 n-2 n-1 φ(un) 

 φ(v1) φ(v2) φ(v3) … φ(vn-2) φ(vn-1) φ(vn)  

Table 2: Avd edges colouring of complete bipartite permutation graphs, when n is even 
 

Here also φ(u i)≠ φ(v j) for  i, j=1,2,...,n. 
Hence the required minimum colour for avd edge colouring  is n+2. 
Therefore when |U|=|V|= n then ��′(G) = ∆(G)+2. 
Case 2: When  |U|≠|V|  
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Let |U|=m and  |V|=n  where  m≠ n and m and n are positive integer. 
Case 2.1: Let m< n . 
Let ui‘s  and vj ‘s are the elements of the vertex subset U and V respectively. 
The edges are  eij = (ui, vj) for i =1,2,…,m  and j=1,2,…,n. 
The total no. of the edges is mn. 
Now we colour the edges as  ϕ(e1j ) = j (mod n); ϕ(e2j) = j+1 (mod n); ϕ(e3j) = j+2 (mod 
n); … ; ϕ(emj)=j+(m-1) (mod n) for j=1,2,…,n;  and therefore ϕ(eij)= {ϕ(e(i-1)j)+1} (mod 
n) or  ϕ(eij)= { ϕ(e1j)+(i-1)} (mod n)  for i=1,2,…,m and j=1,2,…,n.  
It can be represent in tabulated form given by below 
 

Φ v1 v2 v3 … vn-2 vn-1 vn  
u1 1 2 3 … n-2 n-1 0 φ(u1) 
u2 2 3 4 … n-1 0 1 φ(u2) 
u3 3 4 5 … 0 1 2 φ(u3) 
… … … … … … … … … 
um-1 m-1 m m+1 … m-4 m-3 m-2 φ(um-1) 
um m m+1 m+2 … m-3 m-2 m-1 φ(um) 
 φ(v1) φ(v2) φ(v3) … φ(vn-2) φ(vn-1) φ(vn)  

Table 3: Avd edges colouring of complete bipartite permutation graphs, when |U|<|V| 
 
       Here ith row represent φ(ui) for i=1,2,…,m and j th column represent φ(vj) for 
j=1,2,…,n. So, φ(ui) ≠ φ(vj)  and each φ(ui) contains n colours and each φ(vj) contains 
{(j+m-1)-j+1} = m colours  for i=1,2,…,m and j=1,2,...,n. To fill up the table n minimum 
colours are required. 
Therefore, χa’(G) = n (as n>m). 
Case 2.2 : Let m>n. 
In that case we colour the edges as per the rule of avd edge colouring given in case 2.1. 
Then, ��′(G) = m(as m>n). 
 
Hence from above cases,  ��′(G)=  ∆(G) + 2, if|U| = |V|;∆(G),						if|U| ≠ |V|;		 � 
 
Theorem 3.2.  For complete permutation graph 

                                                         ��′(G)= n,			if	n	is	odd;n + 1, if	n	is	even.� 
Proof: Let G=(V,E) be a complete permutation graph .Let V={v i | i=1,2,…,n } is the 
vertex set, where n is any positive integer and n ≥3 .Let e1j  be the edges incident to v1 for 
j=2,3,…,n;  e2j be the edges incident to v2 for j=1,3,…,n; ...; enj be the edges incident to vn 

for j=1,2,…,n. Or  eij be the edges incident to vi for j=1,2,…,i-1,i+1,…,n; where eij=(ui,vj) 
for i≠j and i,j=1,2,…,n. 
 
Case 1: Let |V|=n is odd 
For avd edge colouring  we construct a table such that any two  rows  of  that table must 
be unequal and the ith row represent φ(vi) i.e the non-vacuous elements of  ith row are 
the elements of φ(vi). This is shown in Table 4. 
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ϕ v1 v2 v3 v4 … vn-1 vn  

v1 - 1 2 3 … n-2 n-1 φ(v1) 

v2 1 - 3 4 … n-1 n φ(v2) 

v3 2 3 - 5 … n 1 φ(v3) 

v4 3 4 5 - … 1 2 φ(v4) 

… … … … … … … … … 

vn-1 n-2 n-1 n 1 … - n-3 φ(vn-1) 

vn n-1 n 1 2 … n-3 - φ(vn) 

Table 4: Avd edges colouring of complete permutation graphs, when |V| is odd 
 
Since there is no edge between the vertices vi and vj for i = j and  i,j=1,2,…,n; so  ϕ(vi,vi) 

is empty and in the table it is denoted by dash(-). 
Here φ(vi)≠ φ(vj) for i≠j & i,j=1,2,…,n. 
So to fill up the table n minimum colours are required. 
Case 2:  Let |V|=n is even 
For avd edge colouring we construct the table as per the rule of avd edge colouring of 
case 1 and it is given below : 
 

ϕ v1 v2 v3 v4 … vn-1 vn  

v1 - 1 2 3 … n-2 n-1 φ(v1) 

v2 1 - 3 4 … n-1 n φ(v2) 

v3 2 3 - 5 … n n+1 φ(v3) 

v4 3 4 5 - … n+1 1 φ(v4) 

… … … … … … … … … 

vn-1 n-2 n-1 n n+1 … - n-4 φ(vn-1) 

vn n-1 n n+1 1 … n-4 - φ(vn) 

Table 5: Avd edges colouring of complete permutation graphs, when |V| is even 
 
Here, also φ(vi)≠ φ(vj) for i≠j and i,j=1,2,…,n. 
So, to fill up the table n+1 minimum colours are required. 

Hence, ��′(G)=  n,							if	n	is	odd;n + 1, if	n	is	even;� 
 
Theorem 3.3. For avd edge colouring of one cycle permutation graph(means a 
permutation graph looking just a cycle): 
                                                    ��′(Cn)= n  , n=3,4 where n is the cycle length. 
Proof: 
Case 1: when n=3. 
Let e0 =(v0,v1), e1=(v1,v2),e3=(v2,v0) be the edges where v0,v1,v2 are the vertices. 
Now we colour the edges as ϕ(e0)=0,  ϕ(e1)=1, ϕ(e2)=2 . 

So φ(vi)=<=0,2>, for	i = 0;=0,1>, for	i = 1;=1,2>, for	i = 2;� 
Hence ��′(C3)=3 = n. 
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Case 2: when n=4 . 
Let the edges are e0=(v0,v1), e1=(v1,v2), e3=(v2,v3),e4=(v3,v0) where {v0,v1,v2,v3} are the 
vertices of C4. 
Now we colour the edges such that ϕ(ej) = j for j=0,1,2,3.  
 

So, φ(vi)=?=0,3>, for	i = 0;=0,1>, for	i = 1;=1,2>, for	i = 2;=2,3>, for	i = 3;
� 

 
Hence ��′(C4)= 4 = n  
Therefore from the above cases ��′(Cn) = n for n=3,4. 
 
Theorem 3.4. For permutation graph containing two cycles of length 3, 4 and they are 
joined with a common cut vertex then  ��′(G) = 4  (degree of the common cut vertex) 
Proof: 
Case 1: Containing two cycles each of length 3  
Then the vertex set is V={v0,v1,v2,v3,v4}. 
Let v0 is the cut vertex at which  two cycles of vertices {v 0,v1,v2} & {v 0,v3,v4} 
respectively are joined. 
       Denote, e0=(v0,v1), e1=(v1,v2), e2=(v2,v0) & e3=(v0,v3), e4=(v3,v4), e5=(v4,v0) . 
Set the colours of the edges as  ϕ(ei) = i (mod 4) for i=0,1,2,3,4,5. 

So φ(vi)=

@AB
AC=0,1,2,3>, �.� = 0;=0,1>,							�.� = 1;=1,2>,					�.� = 2;=3,0>,					�.� = 3;=0,1>,				�.� = 4;

� 
 
Hence ��′(G)=4. 
Case 2: contains two cycles each of length 4 
Let v0 is the cut vertex. 
The vertex set of two cycles are {v0,v1,v2,v3} & {v 0,v1’,v2’,v3’}. 
Let e0=(v0,v3), ej=(vj-1,vj) for j=1,2,3 & ej’=(v j-1’,v j’) for j=2,3 & e0’=(v0,v3’), e1’=(v0,v1’). 
We colour the edges as  
ϕ(ej)=j for j=0,1,2,3 & ϕ(ej’)=3-j for j=0,1,2,3. 

φ(vj)=<=1,2>, if	j = 1;=2,3>, if	j = 2;=3,0>, if	j = 3;� 
 

φ(vj’)=<=2,1>, if	j = 1;=1,0>, if	j = 2;=0,3>, if	j = 3;� 
φ(v0)={0,1,2,3}. 
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So, χa’(G) = 4.  
Case 3: Containing two cycles one of whose of length 4 and other is of length 3: 
Let v0  is the cut vertex. The vertex set is V={v0,v1,v2,v3,v4,v5}. 
The vertex v0 joined one cycle of length 4 having vertex set {v0,v1,v2,v3} and one cycle of 
length 3 having vertex set {v0,v4,v5}. 
Denote, (vi,vi+1)=ei-1 for i=1,2 and (v3,v0)=e2 and (v0,v1)=e3.Also denote (v0,vi)=ei for 
i=4,5 and (v4,v5)=e6. 
Now we colour the edges as φ(ei) = i (mod 4) i=0,1,2,3,4,5,6. 

Hence, φ(vi)= 

@AA
BA
AC=0,1,2,3>,			.04	� = 0;=0,3>,			.04	� = 1;=0,1>, .04	� = 2;=1,2>,			.04	� = 3;=0,2>,			.04	� = 4;=1,2>,			.04	� = 5;

� 
So, ��′(G)= 4. 
Therefore, from the above cases,  ��′(G)= 4 (the degree of the common cut vertex). 
 
Conjecture 3.1.  For bipartite permutation graph  G=(U,V,E),  ∆(G)≤	��′(G)≤∆(G)+2.  
 
4. Conclusion 
The tables which are constructed in the theorem1 and theorem2 are not unique. There are 
many ways to construct the tables but in every way the required minimum no. of colours 
for avd edge colouring in the table is same as the theorems. Also the tables are 
constructed in the theorem 2 are symmetric. Any one can work on algorithm of avd edge 
colouring of any arbitrary permutation graphs.  
 
Question number 1.  For any permutation graph G=(V,E),  ∆(G) ≤ ��′(G)≤ ∆(G)+2   ? 
Question number 2.  If G=(V,E) be a permutation graph containing  three cycles of  
lengths 3 and 4  and they are   joined with a common cut vertex v0. If such graph exist and 
∆ (=6) be the degree of v0, then ��′(G)=∆ ? 
Question number 3.  If the permutation graph G=(V,E) containing finite cycle of lengths 
3 and 4,  joined with a common cut vertex with degree ∆ exist, then ��′(G)= ∆ ? 
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