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Abstract. A graphG=(V,E) with vertex set oN, the set of natural numbers is called a
permutation graph if there exists a permutation {m(1),7(2),...,m(n)} on N such that
for i,j € N, such that either i<j anar “(i)> 7 ™(j) or i >j andm (i)< m "(j) wherer (i) is
the element oN whichm maps inta.

Adjacent vertex distinguishing edgadodng (avd edge colouring in short)
applied on different type of permutation graphan8dheorems of avd edge colouring on
permutation graphs and their proofs are established

Keywords: Permutation graphs, graph colouring, Adjacent \feBéstinguishing (Avd)
Edge Colouring

1. Introduction
The intersection graphs [51] is a very imnportambctass of graphs due to its wide
applications. These graphs also include intervaplas [6,9,37,41-48,56,57,60-63,65],
permutation graphs [1,4,8,16,36,39,40,49,50,58,Gficular-arc graphs [31-34,64],
trapezoid graphs [2,3,5,10-12,17-25,38,59], etvefds problems are solved on these
graphs among them graph colouring is one of thet rimportant problem of graph
theory. Different kind of graph colouring/labellingroblems are also available in
literature [7,13,14,22,26-29,35,52-55] and thesebl@ms are solved for these graphs.
The concept of vertex distinguishing edge colounvas introduced independently by
Adjacent vertex distinguishing (avd) edge colouriofj graphs are investigated on
[30,67,68].

A proper edge colouring of a graph is asignment of colours to the edges of the
graph such that two adjacent edges do not useathe solour.

Adjacent vertex distinguishing (avd) edge colouring

An adjacent vertex distinguishing edge colouringd(adge colouring) of a graph G is a
proper edge colouring :E-{c; c,,...,G} of a graph G=(V,E) for every pair of adjacent
vertices u, v the set of the colours of the edgesléent to u differs from the set of colours
of the edges incident to v.
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Therefore,¢ is called adjacent vertex distinguishing edge wotg if ¢(u) £
o(v) for all (u, v)e E wherep(v) = { o(v, w)|(v, WEe E }.

Avd edge chromatic number

The avd edge chromatic number of G, denoteg(J§G) is the minimum number of
colours needed is an avd edge colouring of G.

Thereforey,'(G) = min{k| G is k avd edge colourable}.

Example 1. Let us consider the following graph;

Figure 1: The complete graphK

Herey,'(Ks) = 5.

Avd total colouring

A proper total colouring of a graph G is a mappifigm V(G)UE(G) to {1,2,...,k} such
that

a) For all u, ve V(G) if uv € E(G) then f(uf(v)

b) For all g,e,€ E(G), e# & ,if e, & have a common end vertex ,then)fe f(e)

c) ForallueV(G), ee E(G) if uis the end vertex of e, then ffje)

d) It is called a avd total colouring i[u]#p[v] where ¢[u]={f(e)| e is incident to v

JU{f(v)}.

Avd total chromatic number
The avd total chromatic number of G denotedl{z), is the minimum no. of colours
needed is an avd total colouring of G. TherefoegG)= min{k |G is avd total k-
colourable}.

A cut vertex is a vertex the removal of which wodidconnect the remaining graph.

1.1. Permutation graph
An undirected graph G=(V,E) with vertices V={1,2,n}.is called a permutation graph if
there exists a permutatianon N={1,2,3,....} such for all i, ¢ N

(i) (@=(i)-77(j))<0

if and only if i and j are joined by an edge in G.
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Geometrically, the integers 1,2,3n.are drawn in order on a real line called an
upper line andr(1), (2),..., m(n) on a line parallel to this upper line called@ser line

such that for eacke N, i is directly belowmn(i).

Let us consider the permutation:@ i 2 ;L i)

The permutation representationcois

1 2 3 4 5
Upper line

Lower line

3 4 5 2

Figure 2: The permutation representationcof
The corresponding permutation graph is
1 3

2 5

Figure 3: Permutation graph af

Complete permutation graph
A permutation graph is called complete permutagjaph if it is complete

For an example, let us consider a permutatigr(}} g ; 41})

The permutation representationcodnd the corresponding permutation graph is
1
1 2 3 4 I
X 2 3
4 3 2 1

Figure 4. The permutation representation and the completaytation graph

A permutation graph is calletipartite permutation graph if it is bipartite.
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Complete bipartite permutation graph
A permutation graph is called a complete bipag#enmutation graph if it is complete
and bipartite.

One cycle permutation graph (means a permutation graph looking just like a cycle)
Example 2.

Leto = (é 3 ?) The permutation representationcaf
1
] 2 3
3
3 2 ] 2

Figure5: Permutation representation@find one cycle permutation graph of length 3

Some important properties of permutation graphs

a) The complement of a permutation graph is also mp&tion graph.

b) Permutation graph is transitively orientable.

c) The permutation graph and its complement are cceiyddy graph.

d) Any graph containing k-cycle is not a permutatioap for k>5.

e) Permutation graph are perfect.

f) A graph is permutation graph if the graph has apéation representation.

g) There exist at most four permutation representatifun any connected bipartite
permutation graph.

h) A permutation graph is an intersection graph ofrsmgts between two parallel lines.

i) A bipartite graph is a bipartite permutation graprand only if it has a strong
ordering

i) A permutation graph is the complement of a compétyagraph.

k) Every bipartite permutation graph having 2-chromatimber.

[) Complement of a complement permutation graph istlggnal permutation graph.

2. Avd edge colouring on other graphs

2.1. Avd colouring on cactus graph

Khan et al. [30] have worked on Avd colouring orctaa graphs. The following results
are preented from [30].

Definition 2.1. (Cactus graph) A cactus graph is a connected graph in which amy t
simple cycles have at most one vertex in common.

Conjecture 2.1. If G be a simple connected graph with at leastetiwertices and @ Cs
thenA < x,'(G) <A+2.
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Lemma 2.1. For any star graph K, ¥4 (K14) = A, whereA is the degree of the star
graph.
Lemma2.2. For any cycle ¢of length n,
3, ifn=0 (mod 3);
)(a’(C,,)={ 4, ifn=1,2 (mod3)andn # 5;
5 ifn=5

Lemma 2.3. If a graph G contains two cycles of finite lengtrl they are joined with a
common cut vertex, then

x'16)

Lemma 2.4. Let a graph G contains three cycles of finite lasgind they are joined with
a common cut vertexyvif A(=6) be the degree oftheny, (G) = A.

5, when two cycles are of length 5;
4, otherwise.

Lemma 2.5. If the graph G contains finite cycles of finiteghs, joined with a common
cut vertex with degrea, then y,'(G) = A.

Lemma 2.6. Let G be a graph contains finite no. of cycledimife lengths and finite no.
of edges, joined with a common cut vertexAlbe the degree of the cut vertex, then

1 (G) =A.
Lemma 2.7. For any sun &,

' _(A+2, ifn=5; _
Xa (S20)= {A + 1, otherwise. wheres= 3.
Lemma 2.8. Let G be a graph obtained from,Sby adding an edge to each of the

5, ifn = 5;

pendent vertex, then y,'(G)= {4 otherwise

Lemma 2.9. Let G be a graph contains a cycle of any lengthfan no. of edges. If
they are joined by a common cut vertgxwith degree\, theny, (G)= A.

2.2. Avd colouring on Halin graph

Definition 2.2. (Halin graph) A Halin graph is a type of planer graph. It is soocted
from a tree that has at least four vertices, ndivehich have exactly two neighbours (the
term neighbour is a node that is attatched to arathde by an edge/path).

Conjecture 2.2. For every connected graph G with order at least€ havey,(G) <
A(G)+3.

Definition 2.3. (Generalized Halin graph) Suppose G=(V,E) is a plane graph. If after
removing all edges of the boundary of a facéte degree of the vertices gfdre all 3),
G(V,E) becomes a tree, then G(V,E) is called a ge#ized Halin graph withfbeing
called the exterior face (others the interior fagesd vertices in v{f being called the
exterior vertices (others the interior vertices).

Lemma 2.10. If no two vertices of degrea(G) are adjacent thep(G) > A(G)+1.
Further, if G has two distinct vertices of maximdegree which are adjacent, thegG)
> A(G)+2.
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Theorem 2.1. Let G be a generalized Halin graphAlG) > 6 and any two vertices of
degreeA(G) are not adjacent, they(G) = A(G)+1. Further, iA(G) > 5 and there are two
vertices of degrea(G) which are adjacent, thgg(G) =A(G)+2.

Conjecture 2.3. If G is a generalized Halin graph witiG) = 3, theny.(G) =5.

Conjecture 2.4. Let G be a generalized Halin graph wi{G) = 4. If no two vertices of
degree 4 are adjacent, thgf(G) = 5; If there are two vertices of degree 4 \hare
adjacent theg,(G)=6.

Conjecture 25. Let G be a generalized Halin graph wit{G) = 5. If no two vertices of
degree 5 are adjacent, thgtiG)= 6.

2. Mainresults
Avd labelling of permutation graphs is discussethia section.
Theorem 3.1. For complete bipartite permutation graph G=(U,V,E)
,_(AG) + 2, if|U]l =|V[;
' ={a, it jule i
whereA(G) is the maximum degree of the graph and |U|s#ndinality of the T subset
of the vertex set and |V| = the cardinality of #fesubset of the vertices.
Proof: Let G=(U,V,E) be a complete bipartite permutatioapd.
Casel: Let|U]=|V|=n(>2) [nisany positive integer].
Let U={uy,Up,Us,...,U}, V={V 1,V5,V3,...,V}.
Let, o(u)={d(€11),9(€12) , d(E13),-.., d(E1n)}
:{¢ (elj)l j:1,2,..,n}
o(W)={ d(e2), d(€22), d(E23),.--, d(E3n)}
={¢o(ez)| j=1.2,...n}

P(U)={ d(end), d(€n2), {(&n3),--- d(Enn)}
={¢(en)| j=1,2,..,n}

And o(v1)={ ¢(911), d(e21), d(€31),..., d(€n1)}
:{q)(al)l |:1!21"'!n}

0(v2)={ ¢(€12), d(€22), ¢(€32),..., d(€n2)}
:{q)(aZ)l |:1!21"1n}

)= 9(x), (Exn), D(Es), ..., D(Em}
={¢(en)] i=1,2,..,n}
EZ{ €11,€12,..., €, &1, &2,..., ©ny...y G1, G2y e"ll’l}

€1 €1y Blg rerrerrenrenieens £
_| &1 €2 B i £
€1 €12 B cereererrennn. £

where ¢=(u, vj) i,j=1,2,...,n.

Case 1.1: When nisodd
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For avd edge colouring we construct a table shahith row and j th column of that
table must be unequal for i ,j=1,2,n. but any two of rows or any two of columns may
be equal.

The ith row of the table gives(u) for i=1,2,...,n and the j th column of the table
gives ¢(vj) for j=1,2,...n ande(u;, V) represent the colour of the edge @ i.e §.
This is shown in Table 1.

0] V1 Vo V3 Vh-2 Vn-1 \

Uy 1 2 3 n-2 n-1 n o(uy)

Uy 3 4 5 n n+1 n+2 | o(uy)

Us 5 6 7 n+2 1 2 ([)(U3)

Un+1)/z N n+1 n+2 ... | n-b n-4 n-3 ([)(U(n+1)/2)

Un+3)/z 2 3 4 ... | N1 n n+1 ([)(U(n+3)/2)

Uin+5)/ 4 5 6 ... | N+l n+z 1 (p(LI(n+5)/z)

Un-1 n-3 n-2 n-1 ... | n-8 n-7 n-6 ¢(Up1)

Un n+2 |1 2 ... | n-3 n-2 n-1 o(up)
o(v1) | o(v2) | ¢(va) 0(Vn2) | @(Vn1) | @(Vn)

Table 1: Avd edges colouring of complete bipartite permotagraphs, when is odd

Hered(u;) ande(v)) are different for i, j=1,2,...,n

Hence the required minimum color is n+2 for avdesdgloring.

Case 1.2 When niseven

We construct the table as per the rule of casewhith is given below :

0] V1 Vs, V3 v | Vna Vi Vi

u; 1 2 3 n-2 n-1 n d(uy)

u, 3 4 5 n n+1 n+2 d(u,)

us 5 6 7 n+2 1 2 d(us)

U(n+2)/2 n+1 n+2 1 n-4 n-3 n-2 ¢(U(n+2)/2)

U(n+4)/2 2 3 4 n-1 n n+1 ¢(U(n+4)/2)

U(n+6)/2 4 5 6 n+1 n+2 1 ¢(u(n+6)/2)

Un-1 n-4 n-3 n-2 .. | N9 n-8 n-7 P(unq)

U n+2 |1 2 .. | n-3 n-2 n-1 d(un)
d(va) | d(va) | d(vs) S(Vaa) | d(vna) | d(va)

Table 2: Avd edges colouring of complete bipartite permatagraphs, whenis even

Here alsap(u )# o(v;) for i, j=1,2,...,n

Hence the required minimum colour for avd edge wahg is n+2.
Therefore when |U|=|V|= n thep'(G) = A(G)+2.

Case2: When |UJ#V|
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Let |U|=m and |V|=n where #m and m and n are positive integer.

Case2.1l: Letm<n.

Let u's and y's are the elements of the vertex subset U anesgactively.

The edges arej & (u, v) fori=1,2,...,m and j=1,2,..n.

The total no. of the edges is mn.

Now we colour the edges ag(e;;) = j (mod n);p(ey) = j+1 (mod n);p(ey) = j+2 (mod
n); ... ; ®(&m)=j+(m-1) (mod n) for j=1,2,.,n; and therefore(gj)= {¢(&;1);)+1} (mod
n) or ¢(&j)={ @(ey)+(i-1)} (mod n) fori=1,2,...,m and j=1,2,,n.

It can be represent in tabulated form given bywelo

D Vi V2 V3 V-2 Vi1 Vh

Uy 1 2 3 n-2 n-1 0 ([)(Ul)

Uo 2 3 4 n-1 0 1 ([)(Ug)

u; |3 4 5 0 1 2 o(Us)

Upa | M1 | M m+l | ... | m4 m-3 m-2 | ¢(Un1)

Uy | M m+1 | m+2 | ... | m-3 m-2 m-1 | o(Uy)
(V) | @(V2) | o(vs) ©(Vn2) | @(Vn1) | (Vn)

Table 3: Avd edges colouring of complete bipartite permotagraphs, wherJ||<|V|

Here ith row represeni(u;) for i=1,2,..,m and j th column represeqi(v;) for
j=1,2,...,n. So,$(u) # d(v;) and eachp(u) contains n colours and eadiv;) contains
{(j+m-1)-j+1} = m colours for i=1,2,...,m and j=1,2,n. To fill up the table n minimum
colours are required.

Thereforey, (G) = n (as n>m).

Case 2.2 Let m>n.

In that case we colour the edges as per the ridededge colouring given in case 2.1.
Then,x,'(G) = m(as m>n).

Hence from above cases,
_(A(G) + 2, if|U] = |V];
Xa (G)_{A(G), if[U] # |V];

Theorem 3.2. For complete permutation graph
’(G)={ n, ifnisodd;

Xa n+ 1, ifniseven.
Proof: Let G=(V,E) be a complete permutation graph .Le{w | i=1,2,..,n } is the
vertex set, where n is any positive integer an@nlLet g; be the edges incident tefor
j=2,3,...,n; & be the edges incident tefor j=1,3,...,n; ...; g be the edges incident tq v
for j=1,2,..,n. Or g be the edges incident tofor j=1,2,...,i-1,i+1,..,n; where g=(u,v;)
fori# and i,j=1,2,..,n.

Case 1. Let |V|=nisodd

For avd edge colouring we construct a table shahany two rows of that table must
be unequal and the ith row repres$ft) i.e the non-vacuous elements of ith row are
the elements af(v;). This is shown in Table 4.
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@ vy vy Vi | Va | oo | Via | Vi

Vi - 1 2 |3 n-2 | n-1 | ¢p(vy)
vy 1 - 3 |4 n-1 | n d(vy)
V3 2 3 - |5 |..|n 1 d(vs)
Vs 3 4 5 1- .01 2 d(va)
Voa | D2 |nl |n |1 |..]|- n-3 | &(vaa)
Vi, n-1 | n 1 (2 |..|n3 |- d(vn)

Table4: Avd edges colouring of complete permutation grapleen|V| is odd

Since there is no edge between the verticasd yfor i = j and i,j=1,2,...,n; sap(v,v;)
is empty and in the table it is denoted by dash(-).

Hered(vi)# ¢(v;) for i# &i,j=1,2,...,n.

So to fill up the table n minimum colours are reqdi

Case2: Let|V|=niseven

For avd edge colouring we construct the table ashgerule of avd edge colouring of
case 1 and itis given below :

[0} Vi vy Vi | Vg vo | Vna A

A - 1 2 3 n-2 n-1 | ¢(vy)
Vs, 1 - 3 4 n-1 n d(vy)
V3 2 3 - 5 n n+l | Pp(vs)
Vg 3 4 5 - n+1 1 d(va)
Voa | D-2 | n-1 | n n+l | .. |- n-4 | $(vni)
Vi n-l1 |n n+l |1 n-4 - d(vy)

Table 5: Avd edges colouring of complete permutation graphen|V] is even

Here, alsap(vi)# o(v;) for i and i,j=1,2,..,n.
So, to fill up the table n+1 minimum colours arquiged.

o ( n, ifnisodd;
Hence,y,'(G)= {n + 1, if nis even;

Theorem 3.3. For avd edge colouring of one cycle permutati@apbfmeans a
permutation graph looking just a cycle):

X4 (C.)=n , n=3,4 where n is the cycle length.
Proof:
Case1: whenn=3.
Let &=(vo,v1), @=(V1,V2),65=(V2,Vp) be the edges wherg,w, v, are the vertices.
Now we colour the edges a$e))=0, @(e)=1, p(e,)=2 .

{0,2}, fori= 0;
Soo(vi))=<{0,1}, fori=1;
{1,2}, fori=2;

Hencey,'(C5)=3 = n.
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Case2: whenn=4.

Let the edges are€(Vo,v1), &=(V1,V2), &=(V2,V3),&s=(V3,Vo) Where {\p,v1,V,,V3} are the
vertices of G.

Now we colour the edges such tigdg) = j for j=0,1,2,3.

{0,3}, fori=0;

\){0,1}, fori=1;
S0.6M)3) (12}, fori = 2;
{2,3}, fori=3;

Hencey,'(C)=4=n
Therefore from the above cases(C,) = n for n=3,4.

Theorem 3.4. For permutation graph containing two cycles of tbri§) 4 and they are
joined with a common cut vertex then,'(G) = 4 (degree of the common cut vertex)
Proof:
Case 1: Containing two cycles each of length 3
Then the vertex set is V={W1,V,,V3,V4}.
Let v is the cut vertex at which two cycles of vertifegvi,vo} & {V o,Va,Va}
respectively are joined.

Denote, &(Vo, V1), €=(V1,V2), &=(V2,Vo) & €3=(Vo,V3), &=(V3,Va), &=(Va,Vo) .
Set the colours of the edges @&) =i (mod 4) for i=0,1,2,3,4,5.

(10,1,2,3}, ifi = 0;

[ {0,13, ifi=1;
Sod(v)={ {1,2}, ifi=2;
(3,0}, ifi=3;

0,1}, ifi=4

Hencey,'(G)=4.
Case 2: contains two cycles each of length 4
Let v is the cut vertex.
The vertex set of two cycles are,fw;,v,,va} & {v o,vi',V2',V3'}.
Let &=(Vo,V3), €=(Vj-1,V;) for j=1,2,3 & ¢'=(v.1",vy") for j=2,3 & ey’=(Vo,V3), €'=(Vo, V7).
We colour the edges as
¢(g)=j for j=0,1,2,3 &¢(g")=3-j for j=0,1,2,3.
{1,2}, ifj=1;
d)(vj): {2;3}; lf] =2;
{3,0}, ifj = 3;

{2,1}, ifj=1;
d)(vj’): {110}1 lf] =2;

{0,3}, ifj=3;
$(v0)={0,1,2,3}.
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S0,%(G) = 4.
Case 3: Containing two cycles one of whose of length 4 atir is of length 3:
Let v is the cut vertex. The vertex set is Vg;{,V2,V3,V4,Vs}.
The vertex yjoined one cycle of length 4 having vertex sef\¥Vv,,vs} and one cycle of
length 3 having vertex set {W,Vs}.
Denote, (Wvir1)=€.; for i=1,2 and (y,vo)=&; and (\,Vvi)=6s.Also denote (yv;)=¢ for
i=4,5 and (\,Vs)=6s.
Now we colour the edges aée) =i (mod 4) i=0,1,2,3,4,5,6.
{0,1,2,3}, fori=0;

{0,3}, fori=1;

_) 01 fori=2;
Hence,d(vi)= { {1,2}, fori=3;
l {0,2}, fori=4;

{12}, fori=S5;

So,x,'(G)= 4.
Therefore, from the above casgs,’(G)= 4 (the degree of the common cut vertex).

Conjecture 3.1. For bipartite permutation graph G=(U,V,B)(G)< x,'(G)<A(G)+2.

4. Conclusion

The tables which are constructed in the theorendltla@orem?2 are not unique. There are
many ways to construct the tables but in every thayrequired minimum no. of colours

for avd edge colouring in the table is same as tlierems. Also the tables are

constructed in the theorem 2 are symmetric. Anyaarework on algorithm of avd edge

colouring of any arbitrary permutation graphs.

Question number 1. For any permutation graph G=(V,BEMG) < x, (G A(G)+2 ?
Question number 2. If G=(V,E) be a permutation graph containing ethrcycles of
lengths 3 and 4 and they are joined with a comout vertex y If such graph exist and
A (=6) be the degree of theny,'(G)=A ?

Question number 3. If the permutation graph G=(V,E) containing fanitycle of lengths
3 and 4, joined with a common cut vertex with @éegr exist, theny,'(G)=A ?
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