Progress in Nonlinear Dynamics and Chaos Vol. 3, No. 2, 2015, 65-70 ISSN: 2321 – 9238 (online) Published on 14 October 2015 www.researchmathsci.org

(2,0)-Ideals in Γ -Semirings

R.D.Jagatap

Department of Mathematics , Y.C. College of Science, Karad, Dist: Satara, Maharashtra-415124 e-mail: <u>ravindrajagatap@yahoo.co.in</u>,

Received 1 June 2015; accepted 2 September 2015

Abstract. In this paper the notions of a (2, 0)-ideal, 0-minimal (2, 0)-ideal, (2, 0)-bi-ideal, 0-minimal (2, 0)-bi-ideal and 0-(2, 0)-bi-simple Γ -semiring are introduced. Several characterizations of a 0-minimal (2, 0)-ideal, 0-minimal (2, 0)-bi-ideal and 0-(2, 0)-bi-simple Γ -semiring are furnished.

Keywords: (2, 0)-ideal, 0-minimal (2, 0)-bi-ideal, (2, 0)-bi-simple Γ -semiring, 0-minimal left ideal.

1. Introduction

The notion of a Γ -semiring was introduced by Rao [10] as a generalization of a ring, Γ -ring and a semiring. Characterizations of ideals in a semigroup were given by Lajos in [6]. The notion of a bi-ideal was first introduced for semigroups by Good and Hughes [2].The concept of a bi-ideal for a ring was given by Lajos and Szasz [7]. Also in [8, 9] Lajos and Szasz discussed some characterizations of bi-ideals in semigroups. Shabir, Ali and Batool in [11] gave some properties of bi-ideals in a semiring. Authors were defined bi-ideals in a Γ -semiring [4] and studied quasi-ideals and minimal quasiideals of a Γ -semiring in [3]. (m, n)-ideals in semigroups were introduced and studied by Lajos in [6] and 0-minimal bi-ideals of a semigroup was discussed by Krgovic in [5].

In this paper the concepts of a (2, 0)-ideal, 0-minimal (2, 0)-ideal, (2, 0)-bi-ideal, 0-minimal (2,0)-bi-ideal and 0-(2,0)-bi-simple Γ -semiring are introduced. Characterizations of a 0-minimal (2, 0)-ideal, 0-minimal (2, 0)-bi-ideal and a 0-(2, 0)-bi-simple Γ -semiring are studied.

2. Preliminaries

First we recall some definitions of the basic concepts of Γ -semirings that we need in sequel. For this we follow Dutta and Sardar [1].

Definition 2.1. Let S and Γ be two additive commutative semigroups. S is called a Γ semiring if there exists a mapping $S \times \Gamma \times S \longrightarrow S$ whose image is denoted by $a\alpha b$; for all $a, b \in S$ and for all $\alpha \in \Gamma$ satisfying the following conditions: (i) $a\alpha(b + c) = (a\alpha b) + (a\alpha c)$ (ii) $(b + c)\alpha a = (b\alpha a) + (c\alpha a)$ (iii) $a(\alpha + \beta)c = (a\alpha c) + (a\beta c)$ (iv) $a\alpha(b\beta c) = (a\alpha b)\beta c$; for all $a, b, c \in S$ and $\beta \in \Gamma$.

R.D.Jagatap

Obviously, every semiring is a Γ -semiring.

Definition 2.2. An element $0 \in S$ is said to be an absorbing zero if $0\alpha a = 0 = a\alpha 0, a + 0 = 0 + a = a$; for all $a \in S$ and for all $\alpha \in \Gamma$.

Definition 2.3. A non-empty subset T of a Γ -semiring S is said to be a sub- Γ -semiring of S if (T, +) is a subsemigroup of (S, +) and $a\alpha b \in T$; for all $a, b \in T$ and for all $\alpha \in \Gamma$. **Definition 2.4.** A non-empty subset T of a Γ -semiring S is called a left (respectively right) ideal of S if T is a subsemigroup of (S, +) and $x\alpha a \in T$ (respectively $a\alpha x \in T$) for all $a \in T, x \in S$ and for all $\alpha \in \Gamma$.

Definition 2.5. If a non-empty subset T is both left and right ideal of a Γ -semiring S, then T is known as an ideal of S.

Following results from [3] needed in sequel. **Result 2.6.** For each non-empty subset X of a Γ-semiring S the following statements hold.
(i) SΓX is a left ideal of S.
(ii) XΓS is a right ideal of S.
(iii) SΓXΓS is an ideal of S.

Result 2.7. For a Γ -semiring S and $a \in S$ the following statements hold. (i) $S\Gamma a$ is a left ideal of S. (ii) $a\Gamma S$ is a right ideal of S. (iii) $S\Gamma a\Gamma S$ is an ideal of S.

Definition 2.8 [4]. A non-empty subset B of a Γ -semiring S is a bi-ideal of S if B is a sub- Γ -semiring of S and $B\Gamma S\Gamma B \subseteq B$.

Example 1. Let *N* be the set of natural numbers and let $\Gamma = 2N$. Then *N* and Γ both are additive commutative semigroups. An image of a mapping $N \times \Gamma \times N \longrightarrow N$ is denoted by $a\alpha b$ and defined as $a\alpha b$ = product of a, α, b ; for all $a, b \in S$ and $\alpha \in \Gamma$. Then *N* forms a Γ -semiring. B = 3N is a bi-ideal of *N*.

Now onwards S denotes a Γ -semiring with absorbing zero and a Γ -semiring S means any Γ -semiring unless otherwise stated.

3. (2,0)-Ideals

Definition 3.1. A subsemigroup A of a Γ -semiring S is said to be a (2,0)-ideal of S if $A\Gamma A\Gamma S \subseteq A$.

Definition 3.2. A subsemigroup A of a Γ -semiring S is said to be a (2,1)-ideal of S if $A\Gamma A\Gamma S\Gamma A \subseteq A$.

Proofs of following theorems are straightforward.

(2,0)-Bi-ideals in Γ -Semirings

Theorem 3.3. Every right ideal of a Γ -semiring *S* is a (2, 0)-ideal of *S*.

Theorem 3.4. Every bi-ideal of a Γ -semiring *S* is a (1, 2)-ideal of *S*.

Theorem 3.5. Every bi-ideal of a Γ -semiring *S* is a (2, 1)-ideal of *S*.

Theorem 3.6. If A is a (2, 0)-ideal of a Γ -semiring S, then $A\Gamma A\Gamma S$ is a (2,0)-ideal of S.

Theorem 3.7. Arbitrary intersection of (2, 0)-ideals of a Γ -semiring *S* is either empty or a (2, 0)-ideal of a Γ -semiring *S*.

Theorem 3.8. If A is a (2, 0)-ideal of a Γ -semiring S and T is a sub- Γ -semiring of S, then $A \cap T$ is a (2, 0)-ideal of T.

Proof: Let *A* be a (2, 0)-ideal and *T* be a sub- Γ -semiring of *S*. Clearly $A \cap T$ is a subsemigroup of (S, +). Now $(A \cap T)\Gamma(A \cap T)\Gamma \subseteq A\Gamma A\Gamma T \subseteq A\Gamma A\Gamma S \subseteq A$. Also $(A \cap T)\Gamma(A \cap T)\Gamma T \subseteq T\Gamma T\Gamma T \subseteq T$. Therefore $(A \cap T)\Gamma(A \cap T)\Gamma T \subseteq A \cap T$. Hence $A \cap T$ is a (2,0)-ideal of *T*.

Theorem 3.9. If A is a non-empty subset of a Γ -semiring S, then A is a (2, 0)-ideal of S. If and only if A is a right ideal of some right ideal of S.

Proof: Assume that A is a (2, 0)-ideal of S. Therefore $A\Gamma A\Gamma S \subseteq A$. As $A\Gamma S$ is a right ideal of S, $A\Gamma A\Gamma S \subseteq A$ implies A is a right ideal of some right ideal $A\Gamma S$ of S.

Conversely, suppose that A is a right ideal of some right ideal R of S. Hence $A\Gamma R \subseteq A$. Therefore $A\Gamma A\Gamma S \subseteq A\Gamma R\Gamma S \subseteq A\Gamma R \subseteq A$. This shows that A is a (2, 0)-ideal of S.

Theorem 3.10. If A is a non-empty subset of a Γ -semiring S, then following statements are equivalent.

(1) *A* is a (2, 1)-ideal of *S*.

(2) *A* is a right ideal of some bi-ideal of *S*.

(3) *A* is a bi-ideal of some right ideal of *S*.

(4) A is a (2, 0)-ideal of some left ideal of S.

(5) A is a left ideal of some (2, 0)-ideal of S

Proof: (1) \Rightarrow (2) Let *A* be a (2, 1)-ideal of *S*. Therefore $A\Gamma A\Gamma S\Gamma A \subseteq A$. We have $A\Gamma S\Gamma A$ is a bi-ideal of *S*. Hence $A\Gamma (A\Gamma S\Gamma A) \subseteq A$ implies *A* is a right ideal of some bi-ideal $A\Gamma S\Gamma A$ of *S*.

(2) \Rightarrow (3) Suppose that *A* is a right ideal of some bi-ideal *B* of *S*. Hence $A\Gamma B \subseteq A$ and $B\Gamma S\Gamma B \subseteq B$. Therefore $A\Gamma(A\Gamma S)\Gamma A \subseteq A\Gamma(B\Gamma S\Gamma B) \subseteq A\Gamma B \subseteq A$. This shows that *A* is a bi-ideal of some right ideal $A\Gamma S$ of *S*.

(3) \Rightarrow (4) Assume that *A* is a bi-ideal of some right ideal *R* of *S*. Hence $A\Gamma R\Gamma A \subseteq A$ and $R\Gamma S \subseteq R$. Therefore $A\Gamma A\Gamma(S\Gamma A) \subseteq A\Gamma(R\Gamma S)\Gamma A \subseteq A\Gamma R\Gamma A \subseteq A$. By Result 2.6, $S\Gamma A$ is a left ideal of *S*. Hence $A\Gamma A\Gamma(S\Gamma A) \subseteq A$ shows that *A* is a (2, 0)-ideal of some left ideal $S\Gamma A$ of *S*.

(4) \Rightarrow (5) Suppose that *A* is a (2, 0)-ideal of some left ideal *L* of *S*. Hence $S\Gamma L \subseteq L$ and $A\Gamma A\Gamma L \subseteq A$. Therefore $A\Gamma A\Gamma S\Gamma A \subseteq A\Gamma A\Gamma (S\Gamma L) \subseteq A\Gamma A\Gamma L \subseteq A$. This shows that *A* is a left ideal of some (2, 0)-ideal $A\Gamma A\Gamma S$ of *S*.

R.D.Jagatap

(5) ⇒(1) Assume that *A* is a left ideal of some (2, 0)-ideal *K* of *S*. Hence $K\Gamma A \subseteq A$ and $K\Gamma K\Gamma S \subseteq K$. Therefore $A\Gamma A\Gamma S\Gamma A \subseteq K\Gamma K\Gamma S\Gamma A \subseteq K\Gamma A \subseteq A$. This shows that *A* is a (2, 1)-ideal of *S*.

Theorem 3.11. A subsemigroup *A* of a Γ -semiring *S* is a (2, 1)-ideal of *S* if and only if there exist a (2, 0)-ideal *I* and a left ideal *L* of *S* such that $I\Gamma I\Gamma L \subseteq A \subseteq L \cap I$. **Proof:** Let *A* be a (2, 1)-ideal of *S*. Hence $A\Gamma A\Gamma S\Gamma A \subseteq A$. Let $I = A\Gamma A\Gamma S$ be a (2, 0)ideal (see Theorem 3.6) and $L = S\Gamma A$ is a left ideal of *S* (see Result 2.6). Therefore $I\Gamma I\Gamma L = (A\Gamma A\Gamma S)\Gamma (A\Gamma A\Gamma S)\Gamma (S\Gamma A) \subseteq (A\Gamma A\Gamma S)\Gamma S\Gamma A \subseteq A\Gamma A\Gamma S\Gamma A \subseteq A$. Now $A\Gamma A\Gamma L =$ $A\Gamma A\Gamma S\Gamma A \subseteq A$. This shows that *A* is a (2, 0) ideal of *L*. Then $I\Gamma A = A\Gamma A\Gamma S\Gamma A \subseteq A$. Hence *A* is a left ideal of *I*. Thus we get $A \subseteq L \cap I$. Therefore we have $I\Gamma I\Gamma L \subseteq A \subseteq$ $L \cap I$. Conversely, $A\Gamma A\Gamma S\Gamma A \subseteq (L \cap I)\Gamma (L \cap I)\Gamma S\Gamma (L \cap I) \subseteq I\Gamma I\Gamma (S\Gamma L) \subseteq I\Gamma I\Gamma L \subseteq A$. Therefore *A* is a (2, 1)-ideal of *S*.

Theorem 3.12. Let *R* be a 0-minimal right ideal and *A* be a subsemigroup of *S*. Then *A* is a (2, 0)-ideal of *S* if and only if $A\Gamma A = \{0\}$ or A = R.

Proof: Let *A* be a (2, 0)-ideal of *S*. If $A\Gamma A = \{0\}$, then theorem holds. Suppose that $A\Gamma A \neq \{0\}$. Let $A \subseteq R$. We have $A\Gamma A\Gamma S$ is a right ideal of *S* (see Result 2.6). Hence $A\Gamma A\Gamma S \subseteq R\Gamma R\Gamma S \subseteq R$. As *R* is a 0-minimal right ideal of *S* and $A\Gamma A \neq \{0\}$, we have $A\Gamma A\Gamma S = R$. Therefore $R = A\Gamma A\Gamma S \subseteq A$. Thus we get A = R.

Theorem 3.13. If A is a 0-minimal (2, 0)-ideal of S, then $A\Gamma A = \{0\}$ or A is a 0-minimal right ideal S.

Proof: Let *A* be a 0-minimal (2, 0)-ideal of *S*. Hence $A\Gamma A\Gamma S \subseteq A$. If $A\Gamma A = \{0\}$, then theorem holds. Assume that $A\Gamma A \neq \{0\}$. By Theorem 3.6, $A\Gamma A\Gamma S$ is a (2, 0)-ideal of *S*. Therefore $A\Gamma A\Gamma S \subseteq A$ and *A* is a 0-minimal (2, 0)-ideal imply $A\Gamma A\Gamma S = A$. Let $R \neq \{0\}$ be a right ideal of *S* such that $R \subseteq A$. Hence *R* is a (2, 0)-ideal of *S* (see Theorem 3.3). But *A* is a 0-minimal (2, 0)-ideal implies A = R. Therefore *A* is a 0-minimal right ideal of *S*.

Theorem 3.14. Let *S* be a Γ -semiring without zero. Then *A* is a minimal (2, 0)-ideal of *S* if and only if *A* is a minimal right ideal of *S*.

Proof: Let *A* be a minimal (2, 0)-ideal of *S*. Hence $A\Gamma A\Gamma S \subseteq A$. Let *R* be a right ideal of *S* such that $R \subseteq A$. Therefore, by Theorem 3.3, *R* is a (2, 0)-ideal of *S*. As *A* is a minimal (2, 0)-ideal, we have A = R. Hence *A* is a minimal right ideal of *S*. Conversely, suppose that *A* is a minimal right ideal of *S*. Therefore *A* is a (2, 0)-ideal of *S* (see Theorem 3.3). Let *B* be a (2, 0)-ideal of *S* such that $B \subseteq A$. Then we have $B\Gamma B\Gamma S \subseteq B$. By Result 2.6, $B\Gamma B\Gamma S$ is a right ideal of *S*. Therefore $B\Gamma B\Gamma S \subseteq A$ and *A* is a minimal right ideal of *S* imply $B\Gamma B\Gamma S = A$. Hence $A \subseteq B$. Thus we get A = B. This shows that *A* is a minimal (2, 0)-ideal of *S*.

Theorem 3.15. Let *S* be a Γ -semiring without zero. Then *A* is a minimal (1, 2)-ideal of *S* if and only if *A* is a minimal bi-ideal of *S*.

Proof: Let A be a minimal (1, 2)-ideal of S. Therefore $A\Gamma S\Gamma A\Gamma A \subseteq A$. We know that $A\Gamma S\Gamma A\Gamma A$ is a (1, 2)-ideal of S. Hence $A\Gamma S\Gamma A\Gamma A \subseteq A$ and A is a minimal (1, 2)-ideal

(2,0)-Bi-ideals in Γ -Semirings

imply $A\Gamma S\Gamma A\Gamma A = A$. Therefore $A\Gamma S\Gamma A = A\Gamma S\Gamma (A\Gamma S\Gamma A\Gamma A) \subseteq A\Gamma S\Gamma A\Gamma A = A$. This shows that *A* is a bi-ideal of *S*. Let *B* be a bi-ideal of *S* such that $B \subseteq A$. Then $B\Gamma S\Gamma B\Gamma B$ is a (1, 2)-ideal of *S*. Now $B\Gamma S\Gamma B\Gamma B \subseteq A\Gamma S\Gamma A\Gamma A = A$. Thus we get $B\Gamma S\Gamma B\Gamma B = A$. Therefore $A = B\Gamma S\Gamma B\Gamma B \subseteq B\Gamma S\Gamma B \subseteq B$. Hence we get A = B. Thus *A* is a minimal bi-ideal of *S*. Conversely, suppose that *A* is a minimal bi-ideal of *S*. By Theorem 3.4, *A* is a (1, 2)-ideal of *S*. Let *B* be a (1, 2)-ideal of *S* such that $B \subseteq A$. Therefore $B\Gamma S\Gamma B\Gamma B \subseteq B$. Clearly $B\Gamma S\Gamma B\Gamma B$ is a bi-ideal of *S*. Hence $B\Gamma S\Gamma B\Gamma B \subseteq A$. Therefore $B\Gamma S\Gamma B\Gamma B \subseteq B$. Clearly $B\Gamma S\Gamma B\Gamma B$ is a bi-ideal of *S*. Hence $B\Gamma S\Gamma B\Gamma B \subseteq A$. Therefore $A \subseteq B$. Thus we get A = B. This shows that *A* is a minimal (1,2)-ideal of *S*.

4. (2, 0)-Bi-ideals

Definition 4.1. A subsemigroup A of a Γ -semiring S is said to be a (2, 0)-bi-ideal of S if A is a bi-ideal of S and also A is a (2, 0)-ideal of S.

That is a subsemigroup A of a Γ -semiring S is a (2, 0)-bi-ideal of S if $A\Gamma S\Gamma A \subseteq A$ and $A\Gamma A\Gamma S \subseteq A$.

Definition 4.2. A (2, 0)-bi-ideal A of S is said to be a 0-minimal (2, 0)-bi-ideal of S if $A \neq \{0\}$ and $\{0\}$ is the only proper (2, 0)-bi-ideal of S contained in A.

Definition 4.3. *S* is said to be 0-(2, 0)-bi-simple Γ -semiring if $S\Gamma S \neq \{0\}$ and $\{0\}$ is the only proper (2, 0)-bi-ideal of *S*.

Theorem 4.4. Let A be a non-empty subset of a Γ -semiring S. Then A is a (2, 0)-bi-ideal of S if and only if A is an ideal of some right ideal of S.

Proof: Let *A* be a (2, 0)-bi-ideal of *S*. Therefore, $A\Gamma A\Gamma S \subseteq A$ and $A\Gamma S\Gamma A \subseteq A$ by definition. $(A\Gamma S)\Gamma A = A\Gamma S\Gamma A \subseteq A$, shows that *A* is a left ideal of some right ideal $A\Gamma S$ of *S*. Now $A\Gamma(A\Gamma S) = A\Gamma A\Gamma S \subseteq A$, which shows that *A* is a right ideal of some right ideal $A\Gamma S$ of *S*. Therefore *A* is an ideal of some right ideal $A\Gamma S$ of *S*. Conversely, suppose *A* is an ideal of some right ideal *R* of *S*. Hence $A\Gamma R \subseteq A$, $R\Gamma A \subseteq A$ and $R\Gamma S \subseteq R$. Then we consider $A\Gamma A\Gamma S \subseteq A\Gamma(R\Gamma S) \subseteq A\Gamma R \subseteq A$. This shows that *A* is a 2(2, 0)-ideal of *S*.

Theorem 4.5. If *A* is a 0-minimal (2, 0)-bi-ideal of *S*, then $A\Gamma A = \{0\}$ or $a\Gamma a\Gamma S = A$, for any $a \in A \setminus \{0\}$.

Proof: Let *A* be a 0-minimal (2, 0)-bi-ideal of *S*. Then we have $A\Gamma A\Gamma S \subseteq A$ and $A\Gamma S\Gamma A \subseteq A$. If $A\Gamma A = \{0\}$, then theorem holds. Assume that $A\Gamma A \neq \{0\}$. For any $a \in A \setminus \{0\}$, $a\Gamma a\Gamma S$ is a (2, 0)-bi-ideal of *S*. Hence $a\Gamma a\Gamma S \subseteq A$ and *A* is a 0-minimal (2, 0)-bi-ideal imply $a\Gamma a\Gamma S = A$.

Theorem 4.6. *S* is 0-(2, 0)-bi-simple if and only if $a\Gamma a\Gamma S = S$, for any $a \in S \setminus \{0\}$. **Proof:** Let *S* be a 0- (2, 0)-bi-simple Γ -semiring. For any $a \in S \setminus \{0\}$, $a\Gamma a\Gamma S$ is a (2, 0)bi-ideal of *S*. $a\Gamma a\Gamma S \subseteq S$ and *S* is a 0-(2, 0)-bi-simple Γ -semiring imply $a\Gamma a\Gamma S = S$. Conversely, suppose that $a\Gamma a\Gamma S = S$, for any $a \in S \setminus \{0\}$. Let *A* be a non zero (2, 0)-biideal of *S*. Then for any $a \in A \setminus \{0\}$, $a\Gamma a\Gamma S$ is a (2, 0)-bi-ideal of *S*. By assumption

R.D.Jagatap

 $a\Gamma a\Gamma S = S$. Therefore $S = a\Gamma a\Gamma S \subseteq A\Gamma A\Gamma S \subseteq A$. Hence we get S = A. Thus S is a 0-(2, 0)-bi-simple Γ -semiring.

Theorem 4.7. *S* is 0-(2, 0)-bi-simple if and only if S is right 0-simple.

Proof: Let *S* be a 0- (2, 0)-bi-simple Γ -semiring. By Theorem3.3, every right ideal of *S* is a (2, 0)-bi-ideal of *S*. Therefore *S* is 0- (2, 0)-bi-simple implies *S* is right 0-simple. Conversely, suppose that *S* is a right 0-simple. For any $a \in S \setminus \{0\}$, $a\Gamma S$ is a non zero right ideal of *S* (see Result 2.7). As *S* is right 0-simple, we have $a\Gamma S = S$. Now $a\Gamma a\Gamma S = a\Gamma S = S$. Hence by Theorem 4.6, *S* is a 0-(2,0)-bi-simple Γ -semiring.

Theorem 4.8. If A is a 0-minimal (2, 0)-bi-ideal of S, then $A\Gamma A = \{0\}$ or A is right 0-simple.

Proof: Let *A* be a 0-minimal (2, 0)-bi-ideal of a Γ -semiring *S*. Hence $A\Gamma A\Gamma S \subseteq A$ and $A\Gamma S\Gamma A \subseteq A$. If $A\Gamma A = \{0\}$, then theorem holds. Assume that $A\Gamma A \neq \{0\}$. Then by Theorem 4.5, $a\Gamma a\Gamma S = A$, for any $a \in A \setminus \{0\}$. For $a \in A \setminus \{0\}$, $(a\Gamma a\Gamma A)\Gamma(a\Gamma a\Gamma A)\Gamma S \subseteq a\Gamma a\Gamma A\Gamma (A\Gamma S\Gamma A)\Gamma S \subseteq a\Gamma a\Gamma A\Gamma A\Gamma S \subseteq a\Gamma a\Gamma A \cdot Hence$ $a\Gamma a\Gamma A$ is a (2, 0)-ideal of *S*. Also $(a\Gamma a\Gamma A)\Gamma S\Gamma(a\Gamma a\Gamma A) \subseteq a\Gamma a\Gamma (A\Gamma S\Gamma A)\Gamma a\Gamma A \subseteq a\Gamma a\Gamma A\Gamma A \subseteq a\Gamma a\Gamma A$. Therefore $a\Gamma a\Gamma A$ is a bi-ideal of *S*. Hence $a\Gamma a\Gamma A$ is a (2, 0)-bi-ideal of *S* and $a\Gamma a\Gamma A \subseteq A$. Therefore $a\Gamma a\Gamma A = A$. Hence by Theorems 4.6 and 4.7, *A* is right 0-simple.

REFERENCES

- 1. T.K.Dutta and S.K.Sardar, Semi-prime ideals and irreducible ideals of Γ semiring . *Novi Sad Jour. Math.*, 30(1) (2000) 97-108.
- 2. R.A.Good and D.R.Hughes, Associated groups for a semigroup, *Bull. Amer. Math.* Soc., 58 (1952) 624-625.
- 3. R.D.Jagatap and Y.S.Pawar, Quasi-ideals and minimal quasi-ideals in Γ-semirings, *Novi Sad Jour. of Mathematics*, 39(2) (2009) 79-87.
- 4. R.D.Jagatap and Y.S.Pawar, Quasi-ideals in regular Γ-semirings, *Bull. Kerala Math. Asso.*, 6 (2) (2010) 51-61.
- 5. Krgovic Dragica, On 0-minimal bi-ideals in semigroups, *Publications De L'Institut Mathematique*, 27(41) (1980) 135-137.
- 6. S.Lajos, Generalized ideals in semigroups, Acta. Sci. Math. Szeged, 22(1961) 217-222
- 7. S.Lajos and F.Szasz, On the bi-ideals in associative ring, *Proc. Japan Acad.*, 46 (1970) 505-507.
- 8. S.Lajos and F.Szasz, On the bi-ideals in semigroups, *Proc. Japan Acad.*, 45(1969) 710-712.
- 9. S.Lajos and F.Szasz, On the bi-ideals in semigroups II, *Proc. Japan Acad.*, 47 (1971) 837-839.
- 10. M.M.K.Rao, Γ-semirings 1, Southeast Asian Bull. of Math., 19 (1995) 49-54.
- 11. M.Shabir, A.Ali and S.Batool, A note on quasi-ideals in semirings, *Southeast Asian Bull. of Math.*, 27 (2004) 923-928.