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Abstract. The unsteady three-dimensional Couette flow of a viscous incompressible fluid 
between two porous flat plates with uniform injection and periodic suction in the 
presence of magnetic field, radiation and heat source/sink has been investigated. 
Perturbation technique has been used to obtain approximate solutions for the velocity and 
temperature fields, skin friction and Nusselt number. The velocity and temperature 
profiles have been plotted to study the effects of heat parameter, Hartmann number and 
other non-dimensional parameters on them. Furthermore, skin friction and Nusselt 
number have been tabulated for different values of the non-dimensional parameters. 
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1. Introduction 
Dusty Couette flows in the presence of magnetic field finds its application in many 
industrial processes in the field of aerodynamics, nuclear cooling and geophysics. Some 
of their applications include liquid metal cooling of nuclear reactors, electromagnetic 
casting and plasma confinement. The steady two-dimensional plane Couette flow with 
transpiration cooling for uniform injection and suction at the porous plates for a clear 
fluid has been discussed in Eckert [7].  

Raptis [2] studied the steady two dimensional free convection flow through a 
very porous medium subjected to a constant suction velocity and bounded by a vertical 
infinite porous plate in the presence of radiation. The flow velocity was found to be 
increasing with the radiation parameter. Seddeek [15] investigated the effect of variable 
viscosity on free convective flows with magnetic field and radiation. The solutions were 
obtained using the shooting method and similarity solutions.  

The unsteady two-dimensional flow of a viscous incompressible and electrically 
conducting fluid between two parallel plates in the presence of a uniform transverse 
magnetic field has been analysed by Bodosa and Borkakati [8]. The fluid velocity and 
temperature profiles were obtained for different lower and upper plate temperatures as 
well as adiabatic lower plate. The radiation effects on an unsteady free convective flow 
through a porous medium bounded by an oscillating plate with a variable wall 
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temperature was analysed by Pathak and Maheshwari [9]. The analytical solution of 
resulting ordinary differential equations was obtained in terms of repeated integrals of 
complementary error functions.  

The steady three dimensional Couette flow with uniform suction at the stationary 
plate and transverse sinusoidal injection at the uniformly moving plate has been studied 
by Sharma et al. [5] to study the effects of Prandtl number, radiation parameter and 
injection parameter on the rate of heat transfer. The unsteady Couette flow of an 
electrically conducting, viscous, incompressible fluid bounded by two parallel non-
conducting porous plates with uniform suction and injection in the presence of transverse 
magnetic field was studied with heat transfer by Attia [10]. The effects of magnetic field 
and uniform injection and suction was examined on the velocity and temperature fields.  

Loganathan and Prathiba [6] studied the effect of uniform magnetic field on a 
viscous, incompressible fluid past a spherical and permeable aggregate. Jump boundary 
conditions were used at the interface between the porous region and clear fluid. The 
magnetic field with variable permeability is found to effect the stress jump coefficient 
which changes the normalized drag and torque. Baoku et al. [11] investigated the effects 
of thermal radiation and magnetic field on hydromagnetic Couette flow of a highly 
viscous fluid with temperature-dependent viscosity and thermal conductivity at constant 
pressure through a porous channel. The relevant governing partial differential equations 
were transformed to non-linear coupled ode and solved numerically using a marching 
finite difference scheme to obtain the velocity and temperature profiles. The 
magnetohydrodynamic flow of viscous incompressible fluid past a vertical porous plate 
in the presence of radiation was analysed by Guria et al. [13]. The main fluid velocity 
was found to decrease with increase in Hartmann number, radiation parameter as well as 
suction parameter for cooling of the plate and increase for heating of the plate.  

Radiation effects on free convection MHD Couette flow started exponentially 
with variable wall temperature in the presence of heat generation were investigated by 
Das et al. [16]. The governing equations were solved analytically using the Laplace 
transform technique and the variations of velocity and fluid temperature were analysed. 
Unsteady MHD couette flow between two infinite parallel porous plates in an inclined 
magneticfield with heat transfer were studied by Joseph et al. [12]. The governing 
equations were solved by variable separable technique to study the effects of various 
parameters such as Hartman number and Prandtl number on the flow field.  

Jha et al. [3] investigated the unsteady MHD free convective Couette flow of 
viscous incompressible electrically conducting fluid between two infinite vertical porous 
plates in the presence of transverse magnetic field and thermal radiation. Solutions for 
time dependent energy and momentum equations were obtained by the implicit finite 
difference method and verified by steady state solutions obtained by using the 
perturbation method. Similar method was applied by Jha et al. [4] to study the combined 
effect of injection/suction. 
  Guria [14] investigated the three dimensional flow of a viscous incompressible 
fluid through a vertical channel in the presence of radiation in slip flow regime. The right 
plate was subjected to a uniform injection and the left plate to a periodic suction velocity 
distribution. The present work aims to extend the work of Guria [14] and extend it for 
heat source and radiation in the presence of magnetic field.  
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2. Flow description and governing equations 
The flow under investigation has been modelled as an unsteady three dimensional flow of 
a viscous, incompressible, dusty fluid between two horizontal porous flat plates separated 
by a distance ‘d’ in a slip flow regime with uniform suction at the stationary plate and 
periodic suction at the plate in motion. A uniform magnetic field �� is applied to the plate 
as shown in Fig. 1. 

 

 
Figure 1: Couette dusty flow with constant injection and periodic suction at the porous 

plates. 
 

The upper plate is assumed to be the one in motion with uniform velocity � in 
the direction of the flow. The Cartesian coordinate system is chosen with its origin on the 
lower stationary plate, �∗- axis in the direction of the flow, �∗- axis taken perpendicular 
to the plate and directed into fluid flowing in laminar regime with a uniform free stream 
velocity � and �∗- axis is taken normal to the �∗�∗- plane. 

The upper plate is subjected to a constant injection −	� and the lower plate to a 
transverse sinusoidal time dependent suction velocity distribution of the form   


∗=	−V� 
1 + ε cos ���
∗

�∗ − ct∗��                                      (1) 

 
where ��≪ 1� is the amplitude of the suction velocity as shown in Fig 2.1. The distance 
between the plates is taken equal to the suction velocity. The slip condition is assumed 
for the fluid phase and similar slip condition is also assumed for the particle phase. 

Denoting dimensional velocity components as �∗, 
∗ and  ∗ in the directions �∗, 
�∗ and �∗ axes respectively for the fluid phase, �!∗ , 
!∗ and  !∗ in the directions �∗, �∗ and 

x∗ 

y∗ 

z∗ 
 

T� T& 

u∗ 

B� 

y∗ = d y∗ = 0 

SV� 

t = 0 
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�∗axes respectively for the particle phase and -∗ and -!∗ for the temperature of the fluid 
and particle phase respectively, the governing equations are given as: 

 
For fluid phase: 
 
./∗
.0∗ +	

.1∗

.2∗    = 0             (2) 

.3∗

.4∗ + 
∗
.3∗
.0∗ + ∗

.3∗

.2∗  = 5 � .63.0∗6 +	
.63
.2∗6� + 789�-∗ −	-:∗� −

;<=63∗
> +

																																																																											?@=> A�!∗ −	�∗B                 (3) 

./∗

.4∗ + 
∗
./∗
.0∗ + ∗

./∗

.2∗  = 5 � .6/.0∗6 +	
.6/
.2∗6� +

.!∗

.0∗ +	
?@=
> A
!∗ −	
∗B         (4) 

.1∗
.4∗ + 
∗

.1∗

.0∗ + ∗
.1∗
.2∗   = 5 �.61.0∗6 +	

.61

.2∗6� +
.!∗
.2∗ −

;<=61∗
> +

 																																																											?@=> A !∗ −	 ∗B                                                 (5) 

CD! �.9
∗

.4∗ + 
∗
.9∗
.0∗ + ∗

.9∗

.2∗� = E � .69.0∗6 +	
.69
.2∗6� −

.FG∗
.0 + H�-∗ − -�� + 

																																																																										>IJKLM A
!
∗ −	
∗B                        (6) 

For particle phase: 
 
./I∗
.0∗ +	

.1I∗
.2∗    = 0             (7) 

.3I∗

.4∗ + 
!∗
.3I∗
.0∗ +  !∗

.3I∗

.2∗   = 
?
NI
A�∗ −	�!∗ B            (8) 

./I∗

.4∗ + 
!∗
./I∗
.0∗ + !∗

./I∗

.2∗  = 
?
NI
A
∗ −	
!∗B            (9) 

.1I∗
.4∗ + 
!∗

.1I∗

.0∗ + !∗
.1I∗
.2∗   = 

?
NI
A ∗ −	 !∗B           (10) 

.9I∗

.4∗ + 
!∗
.9I∗
.0∗ + !∗

.9I∗

.2∗  = 
O
LI A-

∗ −	-!∗B                                    (11) 

The corresponding boundary conditions are: 
 

�∗ =	PO∗ .3
∗

.0∗ ; 
∗ =	−V� 
1 + ε cos �
��∗
�∗ − ct∗��;    ∗ =	PO∗

.1∗

.0∗  ; -∗ =	-� + PQ∗
.9∗
.0∗ ; 

�!∗ = 	PO∗ .3I
∗

.0∗ ; 
!∗ =	−V� 
1 + ε cos �
��∗
�∗ − ct∗��;    !∗ = 	PO∗

.1I∗

.0∗  ; -!∗ =	-� + PQ∗
.9∗
.0∗      

    at  � = 0                                  (12) 
 
�∗ = �;  
!∗ =	−V�;   ∗ = 0 ;  -∗ =	-O;  �!∗ = �;  
!∗ =	−V�;   !∗ = 0 ;  -!∗ =	-O 
       at  � = R                                  (13) 
 

where PO∗ = 	�QSTT � P, PQ∗ = �QSTT � PU and P = 	V � W
QX>�

O QY
 is the mean free path and Z is 

the Maxwell's reflection coefficient.  
 

The radiative heat transfer is taken similar to Guria et al. [14] which results in: 
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.FG∗
.0   = 4�-∗ − -��\                                                         (14) 

where  

\  = ] _̂= �.`ab.9 �� Rc
d
�                                                  (15) 

 
By introducing the following non-dimensional parameters: 

� = 	0∗:  ;  � = 	 2∗:  ;   e = fe∗;   g = 	 !∗>h=6  ;  � = 	
3∗
i  ;  
 = /∗

h= ;     =
1∗
h=  ;   j = 	 9∗S9k∗9=∗S9k∗

 ;  

Γ! = m:
h= ; �! = 3I∗

i  ; 
! = /I∗
h= ;  ! = 1I∗

h=  ; j! =	 9I
∗S9k∗
9=∗S9k∗

 ; Reynolds number no = h=:
p  ; 

Prandtl number qZ = rJI
s  ; Mass concentration parameter t = @=N

>  ; Slip parameter 

ℎ = v
: ; Grashof number wZ = xyM:A9=∗S9k∗B

ih=  ; Frequency parameter c = z:6
p  ; Relaxation 

time parameter Λ = NIh=
:?  ; Hartmann number | = ;<=6:6

r  ;  Radiation parameter }O =
~�:6
rJI ;  Heat source parameter }Q = �:6

rJI; Heat parameter } = }O − }Q.        

                                                                                                                 (16) 
The governing equations (2-13) can be rewritten in non-dimensional form as follows: 
 
./
.0 +

.1

.2     = 0                                    (17) 

c .3.4 + no �

.3
.0 +  

.3

.2�  = �.63.06 +
.63
.26� + nowZj −|� +

��`
m A�! − �B    

                                    (18) 

c ./.4 + no �

./
.0 + 

./

.2�  = �.6/.06 +
.6/
.26� − no

.!

.0 +
��`
m A
! − 
B             (19) 

c .1.4 + no �

.1
.0 + 

.1

.2� = �.61.06 +
.61
.26� − no

.!

.2 −| +
��`
m A ! −  B  

                                                 (20) 

cqZ .�.4 + noqZ �

.�
.0 +  

.�

.2�  = �.6�.06 +
.6�
.26� − }noqZj +

Q
�
��`
m Aj! − jB      (21) 

./I
.0 +

.1I
.2     = 0                                                             (22) 

c .3I.4 + no �
!
.3I
.0 +  !

.3I
.2 �  = 

�`
m A� − �!B                                                    (23) 

c ./I.4 + no �
!
./I
.0 + !

./I
.2 �  = 

�`
m A
 − 
!B                                                  (24) 

c .1I.4 + no �
!
.1I
.0 + !

.1I
.2 �  = 

�`
m A −  !B                                                   (25) 

c .�I.4 + no �
!
.�I
.0 +  !

.�I
.2 �  = 

�`
m Aj − j!B                                                    (26) 

 
The corresponding boundary conditions  are:  
 

� = ℎO .3.0 ;  
 = −S�1 + ε	 cos�πz − t��;       = ℎO .1.0  ;       j = ℎQ .�.0; 

�! = ℎO .3I.0  ;  
! =	−S�1 + ε	 cos�πz − t��;    ! = ℎO .1I.0  ;    j! =	ℎQ .�I.0        

        at � = 0                      (27) 
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� = 1;   
 = 	−S;    = 0 ;    j = 	1 ;   �! = 1 ;   
! =	−S;   ! = 0 ;  j! = 	1 
        at � = 1                     (28) 
 
3. Solution of the problem 
When the amplitude of oscillation in the suction velocity is small �� ≪ 1�, we can 
assume   �, 
,  , j, �!, 
!,  !, j! and g in the following form to solve the differential 
equations  (17)-(26).  

 
���, �, e� = ����� + ��O��, �, e� + �Q�Q��, �, e� + ⋯ 

��, �, e� = 
���� + �
O��, �, e� + �Q
Q��, �, e� + ⋯ 
	 ��, �, e�   =   ���� + � O��, �, e� + �Q Q��, �, e� + ⋯ 
	j��, �, e� = j���� + �jO��, �, e� + �QjQ��, �, e� + ⋯ 

			�!��, �, e�      =    �!���� + ��!O��, �, e� + �Q�!Q��, �, e� + ⋯ 

			
!��, �, e�    =  
!���� + �
!O��, �, e� + �Q
!Q��, �, e� + ⋯ 

			 !��, �, e�      =    !���� + � !O��, �, e� + �Q !Q��, �, e� + ⋯ 

			j!��, �, e�    = j!���� + �j!O��, �, e� + �Qj!Q��, �, e� + ⋯ 

     			g��, �, e�       =      g���� + �gO��, �, e� + �QgQ��, �, e� + ⋯             
                       
                            (29) 
When � = 0, the differential equations pertaining to two dimensional flow are obtained 
as: 
 

�U         = 0                              (30) 

��UU − no
���U + nowZj� −|�� + ��`
m ��!� − ���  = 0                              (31) 

g�U        = 
�
m �
!� − 
��           (32) 

 �UU − no
� �U −| � + ��`
m � !� − ��   = 0                              (33) 

j�UU − noqZ
�j�U − qZ}j� + Q
�
��`
m �j!� − j��   = 0                              (34) 


!�U         = 0                              (35) 


��!�U +
O
m ��!� − ���      = 0                              (36) 


!�        = 
�                            (37) 


� !�U +
O
m � !� − ��     = 0                             (38) 


�j!�U +
O
m �j!� − j��      = 0                              (39) 

 
Subject to the boundary conditions:  

�� = ℎO .3=.0  ;        
� = −�;        � = ℎO .1=.0  ;        j� =	ℎQ .�=.0  ; 

�!� = ℎO
.3I=
.0  ;    
!� = −S;       !� = ℎO

.1I=
.0  ;     j!� =	ℎQ

.�I=
.0   at � = 0         (40) 

�� = 1;    
� = −S;     � = 0;  j� = 	1; 
�!� = 1;  
!� = −S;   !� = 0; j!� = 	1         at � = 1         (41) 
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The solutions for the equations (30), (32), (35) and (37) are 

�  = 
!�  = −�                                          (42) 

g�U   = 0                                                    (43) 
 
Substituting equations (42) and (43) in the remaining equations and rearranging as done 
in Govindarajan et al. [1], we get 
 
−ΛS��UUU + �1 − noΛ�Q���UU + �no��1 + t� + Λ|����U −|��       =  
																																																																																																				−nowZj� + ΛnowZ�j�U          (44) 
−ΛS �UUU + �1 − noΛ�Q� �UU + �no��1 + t� + Λ|�� �U −| �                 =0            (45) 

−ΛSj�UUU + �1 − noqZΛ�Q�j�UU + �no� �qZ + Q
� t� + Λ�qZ}�j�U − qZ}j� =0            (46) 

−ΛS�!�U + �!�  = ��                                                  (47) 

−ΛS !�U +  !�  =  �                                                              (48) 

−ΛSj!�U + j!�   = j�                                                                          (49) 

 
The solution to the remaining equations are: 
 
 �  =  !�  = 0                             (50) 

j�  = �Oo��0 + �Qo�60 + ��o��0                                                                   (51) 

j!�  = �~o��0 + ��
�OSm��� o

��0 + �6
�OSm�6� o

�60 + ��
�OSm��� o

��0                            (52) 

��  = ��o��0 + �O�o��0 + �OOo��0 + �OQo��0 + �O�o�60 + �O~o��0          (53) 
�!�  = �O�o��0 + �O�o��0 + �O�o��0 + �O�o��0 + �O�o��0 + �Q�o�60 +
																												�QOo��0                                                                                                  (54) 
The unsteady state equations of first order are: 
 
./�
.0 +

.1�
.2      = 0          (55) 

c .3�.4 + no �−�
.3�
.0 + 
O

.3=
.0 �   = �.63�.06 +

.63�
.26 � + nowZjO −|�O +

																																																																																									��`m ��!O − �O�                                 (56) 

c ./�.4 + no �−�
./�
.0 �    = �.6/�.06 +

.6/�
.26 � − no

.!�
.0 + 

 																																																																											��`m �
!O − 
O�                                 (57) 

 

c .1�.4 + no �−�
.1�
.0 �     = �.61�.06 +

.61�
.26 � − no

.!�
.2 −| O +

 																																																																											��`m � !O −  O�                               (58) 

cqZ .��.4 + noqZ �−�
.��
.0 + 
O

.�=
.0 � = �.6��.06 +

.6��
.26 � − qZ}j + 

 																																																																												Q�
��`
m �j!O − jO�                             (59) 

./I�
.0 + .1I�

.2      = 0                                             (60) 
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c .3I�.4 + no �−�
.3I�
.0 + 
!O

.3I=
.0 �  = 

�`
m ��O − �!O�                     (61) 

c ./I�.4 + no �−�
./I�
.0 �    = 

�`
m �
O − 
!O�                     (62) 

c .1I�.4 + no �−� .1I�.0 �    = 
�`
m � O − !O�                     (63) 

c .�I�.4 + no �−�
.�I�
.0 + 
!O

.�I=
.0 � = 

�`
m �jO − j!O�                                 (64) 

 
The boundary conditions become  
 

�O = ℎO .3�.0  ;  
O = −SAf����� − e�B;   O = ℎO .1�.0  ;  jO =	ℎQ .��.0  ; 

�!O = ℎO
.3I�
.0  ; 
!O = −SAf����� − e�B ;   !O = ℎO

.1I�
.0  ; j!O = 	ℎQ

.�I�
.0        

           at     � = 0                  (65) 
 
�O = 
O =  O = jO =	�!O = 
!O =  !O = j!O = 	0     at     � = 1                  (66) 

 
In order to solve these partial differential equations �O, 
O,  O, jO, �!O, 
!O,  !O, j!O 
and gO are assumed to be of the following complex form: 
 

�O��, �, e� = �OO���o��W2S4� 

O��, �, e� = 
OO���o��W2S4� 
 O��, �, e�  = 

�
W 
OOU ���o��W2S4� 

jO��, �, e� = jOO���o��W2S4� 
�!O��, �, e�  = �!OO���o��W2S4� 

!O��, �, e�  = 
!OO���o��W2S4� 
 !O��, �, e�   = 

�
W 
!OOU ���o��W2S4� 

j!O��, �, e�  = j!OO���o��W2S4� 
gO��, �, e� = gOO���o��W2S4�              

                                                                                                                                         (67) 
Now using (67) in equations (55)-(64) and rearranging as before, we get 

�OOUU + no��OOU + �−�Q +  c − |��OO + ��`
m ��!OO − �OO� =

 																																																																												−nowZjOO + no
OO��U                     (68) 


OOUU + no�
OOU + �−�Q +  c�
OO + ��`
m �
!OO − 
OO�   = nogOOU          (69) 


OOUUU + no�
OOUU + �−�Q +  c − |�
OOU + ��`
m �
!OOU − 
OOU �  = �QnogOOU     

        (70)                                                    

jOOUU + noqZ�jOOU + �−�Q +  cqZ − qZ}�jOO + Q
�
��`
m �j!OO − jOO�   

     = no
OOj�U                               (71) 

−Λ�!OOU + �1 − �_m
�` ��!OO   = �OO − Λ
!OO�!�U                                 (72) 
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−Λ
!OOU + �1 − �_m
�` � 
!OO   = 
OO                                                     (73) 

−Λ
!OOUU + �1 −
�_m
�` � 
!OOU    = 
OOU                          (74) 

−Λj!OOU + �1 − �_m
�` � j!OO  = jOO − Λ
!OOj!�U                                 (75) 

 
Boundary conditions are 
 

�OO = ℎO .3��.0  ;       
OO = −�;    OO = ℎO .1��.0  ;   jOO = 	ℎQ .���.0  ; 

�!OO = ℎO
.3I��
.0 ;  
!OO = −�;   !OO = ℎO

.1I��
.0  ;  j!OO =	ℎQ

.�I��
.0    

                   at  � = 0        (76) 
 
�OO = 
OO =  OO = jOO = 	�!OO = 
!OO =  !OO = j!OO = 	0 at � = 1        (77) 
 
The solutions of the equations (68)-(75) subject to boundary conditions (76)-(77) are 
 

OO  = �Oo�¡0 + �Qo�¢0 + ��o��=0 + �~o���0 + ��o��60 + ��o���0             (78) 

!OO  = ��o���0 + ��o�¡0 + ��o�¢0 + �O�o��=0 + �OOo���0 + �OQo��60 +

														�O�o���0                            (79) 

 OO = 
�
W ��O£�o�¡0 + �Q£�o�¢0 + ��£O�o��=0 + �~£OOo���0 + ��o��60 +																												��	£O�o���0�                         (80) 

 !OO = 
�
W ¤
��£O~o���0 + ��£�o�¡0 + ��£�o�¢0 + �O�£O�o��=0
+�OO£OOo���0 + �OQ£OQo��60 + �O�£O�o���0 ¥                         (81) 

 
jOO = DOo���0 + DQo���0 + D�o���0 + (D~o�¡0 + D�o�¢0 + D�o��=0 +    

D�o���0 + D�o��60 	+ D�o���0 + DO�o���0)	o��0+ (DOOo�¡0 +  
 DOQo�¢0 + DO�o��=0 + DO~o���0 +DO�o��60 + DO�o���0+   
 DO�o���0�o�60 +(DO�o�¡0 + DO�o�¢0 + 	DQ�o��=0 + DQOo���0 + 
 DQQo��60 + DQ�o���0 + DQ~o���0�o��0 + �DQ�o�¡0 + 		DQ�o�¢0 +  
 DQ�o��=0 + DQ�o���0 + DQ�o��60 + D��o���0 + D�Oo���0�	o��0           (82) 

 
j!OO    = D�Qo���0 + D��o���0 + D�~o���0 + D��o���0 + �D��o�¡0 + 

  D��o�¢0 + D��o��=0 +		D��o���0 + D~�o��60 	+ D~Oo���0 + 
  D~Qo���0)	o��0 +(D~�o�¡0 + D~~o�¢0 + D~�o��=0 + D~�o���0 + 
  D~�o��60 + D~�o���0 + D~�o���0 )	o�60 + �D��o�¡0 + D�Oo�¢0 +  
 														D�Qo��=0 + D��o���0 + D�~o��60 + D��o���0 + D��o���0�	o��0 + 
  (D��o�¡0 + D��o�¢0 + D��o��=0 + D��o���0 + D�Oo��60 + 
  D�Qo���0 + D��o���0�	o��0                       (83) 
 
�OO = ¦Oo��¡0 +¦Qo��¢0 +¦�o�6=0 + ¦~o���0 + ¦�o���0 +¦�o���0 + 
  (¦�o�¡0 +¦�o�¢0 +¦�o��=0 + ¦O�o���0 + ¦OOo��60 + ¦OQo���0 + 
  ¦O�o���0�	o��0 + �¦O~o�¡0 +¦O�o�¢0 +¦O�o��=0 + ¦O�o���0 +  
              ¦O�o��60 + 	¦O�o���0 +¦Q�o���0�o�60 +(¦QOo�¡0 + ¦QQo�¢0 +  
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              ¦Q�o��=0 +¦Q~o���0 +¦Q�o��60 + ¦Q�o���0 + ¦Q�o���0)	o��0 + 
              (¦Q�o�¡0 +¦Q�o�¢0 +¦��o��=0 +¦�Oo���0 + ¦�Qo��60 +  
 														¦��o���0 +	¦�~o���0�	o��0 +(¦��o�¡0 + ¦��o�¢0 + ¦��o��=0 +  
 															¦��o���0 +¦��o��60 +¦~�o���0 +¦~Oo���0�	o��0 +(¦~Qo�¡0 + 
 															¦~�o�¢0 + ¦~~o��=0 +¦~�o���0 +¦~�o��60 +¦~�o���0 +  
 															¦~�o���0�o��0 + �¦~�o�¡0 +¦��o�¢0 + ¦�Oo��=0 +¦�Qo���0 +  
 															¦��o��60 +¦�~o���0 +¦��o���0�	o��0                      (84) 
 
�!OO = ¦��o���0 +¦��o��¡0 +¦��o��¢0 +¦��o�6=0 + ¦��o���0 +  

 															¦�Oo���0 + 	¦�Qo���0 + �¦��o�¡0 + ¦�~o�¢0 +¦��o��=0 +  
 															¦��o���0 +¦��o��60 + 	¦��o���0 + ¦��o���0�	o��0 + �¦��o�¡0 + 
 															¦�Oo�¢0 + ¦�Qo��=0 + ¦��o���0 + 	¦�~o��60 +¦��o���0 +  
 															¦��o���0�	o�60 + �¦��o�¡0 +¦��o�¢0 +¦��o��=0 +¦��o���0 +  
 														¦�Oo��60 + ¦�Qo���0 + ¦��o���0�	o��0 + �¦�~o�¡0 + ¦��o�¢0 +  
 														¦��o��=0 + ¦��o���0 + ¦��o��60 + ¦��o���0 +¦��o���0�	o��0 + 
             (¦�Oo�¡0 + ¦�Qo�¢0 + ¦��o��=0 +¦�~o���0 +¦��o��60 +  
 														¦��o���0 +¦��o���0�	o��0 + �¦��o�¡0 +¦��o�¢0 +¦O��o��=0 + 
 														¦O�Oo���0 + ¦O�Qo��60 +	¦O��o���0 +¦O�~o���0�	o��0 +													 
 													�¦O��o�¡0 +¦O��o�¢0 +¦O��o��=0 +¦O��o���0 +¦O��o��60 +  
 														¦OO�o���0 + ¦OOOo���0�	o��0                       (85) 
 
Skin friction 
 
The skin friction at the wall  due to main flow is given by: 

§¨ = �:3:0�0©� = �:3=:0 �0©� + � �
:3��
:0 �0©� o

��W2S4� + Ο��Q� 
 = §3= + �no¨ cos��� − e + «¨�                       (86) 
 
The skin friction at the wall due to cross flow is given by: 

§2 = �:1:0�0©� = �:1=:0 �0©� + � �
:1��
:0 �0©� o

��W2S4� + Ο��Q� 
 = �no2 cos��� − e + «2�                                     (87) 
 
Nusselt number 
 
The rate of heat transfer from the plate can be calculated using the formula                

¬1 = −�.9.0�0©� and can be written in non-dimensional form as Nusselt number: 

 

­� = −�:�:0�0©� = −�:�=:0 �0©� − � �
:���
:0 �0©� o

��W2S4� + Ο��Q� 
 = −j�U�0� + �no9 cos��� − e + «9�                       (88) 

 
4. Numerical results 
The velocity and temperature profiles have been plotted in Fig 2 to Fig 13 to study the 
effect of different non-dimensional parameters on the profiles. Furthermore, skin friction 
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and Nusselt number have been tabulated (Table 1-4) for different values of non-
dimensional parameters such as Grashof number (Gr), Reynolds number (Re), Prandtl 
number (Pr), heat parameter (F), mass concentration parameter (f), relaxation time 
parameter (Λ), suction parameter (S), temperature slip parameter (h2) and Hartmann 
number (M). 

Increasing the Hartmann number (M) results in an increase in the main velocity 
magnitude for both fluid and particle phase (Fig 2-3) but it has little effect on the cross 
flow velocity. An increase in the suction parameter (S) results in circulation in the flow 
profiles and the main flow velocity also increases for both the phases (Fig 12-13). A 
similar trend is also observed with the cross-flow velocity profile as expected for 
increasing suction parameter (Fig 8-9). The fluid and particle temperature profiles 
increase with increasing value of the temperature slip parameter (Fig 6-7). For the 
increasing heat parameter, the temperature profiles were also found to be increasing for 
both fluid and particle phases (Fig 4-5). 

The temperature profiles for the fluid phase when suction parameter are +1 and -
1 are as expected. For both the cases, increasing the magnitude of suction parameter 
results in an increase in the over all temperature of the fluid (Fig 10). The particle 
temperature profiles were found to be more uniformly increasing with increasing suction 
parameter magnitude. This is because increasing the suction parameter results in a 
decrease in relaxation time for the phases thereby resulting in a more uniform 
cooling/heating depending on the sign of the suction parameter (Fig 11). 
  The amplitude of the shear stress and the tangent of phase shift due to main flow 
decreases with the increasing Hartmann number (M) (Table 1). For the increasing suction 
parameter (S), there is no clear trend in the amplitude of shear stress or the magnitude of 
tangent of phase shift due to main flow (Table 1). On the other hand, the amplitude of the 
shear stress and the tangent of phase shift due to the cross flow velocity increases with 
increasing suction parameter (S) as seen in Table 2. 

The amplitude of Nusselt number and the amplitude of the tangent of the phase 
shift are found to increase with the increasing magnitude of the heat parameter (F) as 
seen from   Table 3. The amplitude of Nusselt number is found to be decreasing for F>0 
and increasing for F<0 but there is no clear trend for the tangent of phase shift (Table 3).  

The amplitude of Nusselt number decreases with increasing values of the 
temperature slip parameter (h2) but there is little effect on the tangent of the phase shift 
(Table 4). 

 
5. Conclusion 
We have extended the work of Guria [14] to study the effect of dust particles and the 
magnetic and heat parameter with slip condition on the three dimensional unsteady 
couette flow of viscous incompressible fluid between two horizontal porous flat plates. A 
periodic suction is applied to the stationary plate and a constant injection is applied to the 
uniformly moving plate. The conclusions of the study are: 

� Increasing the Hartmann number (M) increases the main flow velocity for both 
fluid and particle phase. 

� Hartmann number (M) has little effect on the cross flow velocities. 
� Increase in the suction parameter (S) results in circulation in the flow profiles. 
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� The fluid and particle temperature profiles increase with increasing value of the 
temperature slip parameter (h2). 

� The particle temperature profiles were found to be more uniformly increasing 
with increasing suction parameter magnitude. 

� The amplitude of the shear stress and the tangent of phase shift due to main flow 
decreases with the increasing Hartmann number (M). 

� The amplitude of Nusselt number and the amplitude of the tangent of the phase 
shift are found to increase with the increasing magnitude of the heat parameter 
(F). 

 
 

Figure 2: Main velocity u vs y for λ = 5, Re = 5, Gr 
= 5, Pr = 0.71, S = 1, F = 1, h1 = 0.5, h2 = 0.5, f = 
0.2,Λ = 0.2,z = 0.0, t = 0.0, ε = 0.05 

 

Figure 3: Main particle velocity up vs y for λ = 5, Re 
= 5, Gr = 5, Pr = 0.71, S = 1, F = 1, h1 = 0.5, h2 = 
0.5, f = 0.2, Λ = 0.2, z = 0.0, t = 0.0, ε = 0.05 

 
  

 

Figure 4: Temperature θ vs y for λ = 5, Re = 5, Gr = 
5, Pr = 0.71, S = 1, M = 1, h1 = 0.5, h2 = 0.5, f = 0.2, 
Λ = 0.2, z = 0.0, t = 0.0, ε = 0.05 

Figure 5: Particle temperature θ p vs y for λ = 5,Re = 
5, Gr = 5, Pr = 0.71, S = 1, M = 1, h1 = 0.5, h2 = 0.5, 
f = 0.2, Λ = 0.2, z = 0.0, t = 0.0, ε = 0.05 
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Figure 6: Temperature θ vs y for λ = 5, Re = 5, Gr = 
5, Pr = 0.71, S = 1, M = 1, F = 1, h1 = 0.5, f = 0.2, Λ 
= 0.2, z = 0.0, t = 0.0, ε = 0.05 

Figure 7: Particle temperature θ p vs y for λ = 5, Re 
= 5, Gr = 5, Pr = 0.71, S = 1, M = 1, F = 1, h1 = 0.5, f 
= 0.2, Λ = 0.2, z = 0.0, t = 0.0, ε = 0.05 

Figure 8: Cross-flow velocity w vs y for λ = 5, Re = 
5, Gr = 5, Pr = 0.71, M = 1, F = 1, h1 = 0.5, h2 = 0.5, 
f = 0.2, Λ = 0.2, z = 0.0, t = 0.0, ε = 0.05 

Figure 9: Cross-flow particle velocity wp vs y for λ 
= 5, Re = 5, Gr = 5, Pr = 0.71, M = 1, F = 1, h1 = 0.5, 
h2 = 0.5, f = 0.2, Λ = 0.2, z = 0.0, t = 0.0, ε = 0.05 

 
 

Figure 10: Temperature θ vs y for λ = 5, Re = 5, Gr 
= 5, Pr = 0.71, M = 1, F = 1, h1 = 0.5, h2 = 0.5, f = 
0.2, Λ = 0.2, z = 0.0, t = 0.0, ε = 0.05 

Figure 11: Particle temperature θ p vs y for λ = 5, Re 
= 5, Gr = 5, Pr = 0.71, M = 1, F = 1, h1 = 0.5, h2 = 
0.5, f = 0.2, Λ = 0.2, z = 0.0, t = 0.0, ε = 0.05 
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Figure 12: Main flow velocity u vs y for λ = 5, Re = 
5, Gr = 2.5, Pr = 0.71, M = 1, F = 1, h1 = 0.5, h2 = 
0.5, f = 0.2, Λ = 0.2, z = 0.0, t = 0.0, ε = 0.05 
 

Figure 13:  Main flow particle velocity u p vs y for λ 
= 5, Re = 5, Gr = 2.5, Pr = 0.71, M = 1, F = 1, h1 = 
0.5, h2 = 0.5, f = 0.2, Λ = 0.2, z = 0.0, t = 0.0, ε = 
0.05 

Table 1: Shear stress due to main flow at y = 0 for λ = 5, Re = 2, Gr = 5, Pr = 0.71, F = 1, 
h1 = 0.5, h2 = 0.5, f = 0.2, Λ = 0.2, z = 0.0, t = 0.0, ε = 0.05. 

S no¨ tan«¨ 
 

M = 1 M = 5 M = 10 M = 1 M = 5 M = 10 
1 0.0802 0.4325 0.2901 -0.1182 -0.2760 -4.8287 

1.25 59.6476 1.6503 1.4687 -2.5139 -0.8443 -0.8526 
1.5 26.2496 1.9640 1.4572 -2.5800 0.6884 -0.2186 

Table 2: Shear stress due to cross flow at y = 0 for λ = 5, Re = 2, Gr = 5, Pr = 0.71, M = 
1, F = 1, h1 = 0.5, h2 = 0.5, f = 0.2, Λ = 0.2, z = 0.0, t = 0.0, ε = 0.05. 

S no2 tan«2 
1 0.9161 -0.8255 

1.25 0.9591 -0.6211 
1.5 1.0096 -0.3926 

Table 3: Nusselt number at y = 0 for λ = 5, Re = 2, Gr = 5, Pr = 0.71, M = 1, h1 = 0.5, h2 
= 0.5, f = 0.2, Λ = 0.2, z = 0.0, t = 0.0, ε = 0.05. 

F no9 tan«9 

 
S = 1 S = 1.25 S = 1.5 S = 1 S = 1.25 S = 1.5 

30 60.7026 41.7222 4.1472 -0.4293 -2.9963 -0.6552 
0 0.0969 0.6256 1.1400 -0.2994 0.0486 0.4655 

-30 0.0953 0.6303 0.9268 -44.4020 0.0705 0.3132 

Table 4: Nusselt number at y = 0 for λ = 5, Re = 2, Gr = 5, Pr = 0.71, M = 1, F = 1, S = 
1, h1 = 0.5, f = 0.2, Λ = 0.2, z = 0.0, t = 0.0, ε = 0.05. 

h2 no9 tan «9 
0 0.7102 -0.5908 
2 0.2292 -0.6000 
4 0.2060 -0.5608 
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APPENDIX 
 

AOQ = 
�±²³´�mµ¶�SO�·��

�mµ¶��¸�OSm±²µ6�¶�6¸��`¹�O¸��¸mºµ�¶�Sº ; 

AO� = 
�±²³´�mµ¶6SO�·6�

�mµ¶6�¸�OSm±²µ6�¶66¸��`¹�O¸��¸mºµ�¶6Sº ; 

AO~ = 
�±²³´�mµ¶�SO�·��

�mµ¶��¸�OSm±²µ6�¶�6¸��`¹�O¸��¸mºµ�¶�Sº ; 

AO� = �¢
(OSm¹��� ; AO� = ��=

(OSm¹��� ; 
AO� = ���

(OSm¹��� ; AO� = ��6
(OSm¹��� ; 

AQ� = ���
(OSm¹�6� ; AQO = ���

(OSm¹��� ; 
�O = �� �−¼�£� + 1 − �_½

�` �; 
�Q = �� �−¼�£� + 1 − �_½

�` �; 
�� = �O� �−¼�£O� + 1 − �_½

�` �; 
�~ = �OO �−¼�£OO + 1 − �_½

�` �; 
�� = �OQ �−¼�£OQ + 1 − �_½

�` �; 
�� = �O� �−¼�£O� + 1 − �_½

�` �; 
ℱ(�� = −¼��� + �Q �1 − ¼noqZ�Q − �_½

�` � + � �noqZ� �1 − �_½
�` �� +

                               Q� tno� − Λ�(−�Q +  cqZ − noqZ}� + Q
�  ct + �1 − �_½

�` � (−�Q +
                                 cqZ − noqZ}� ; 
D~ = 

6
�

¿ÀÁÂ¡Ã�Ä�
�ÅÆÇÄ� S½¹�`<�����6¸�OSÈaÆ

ÀÁ ��`<�����
ℱ(��¸�¡�  ; 

D� = 
6
�

¿ÀÁÂ¢Ã�Ä�
�ÅÆÇÄ� S½¹�`<6����6¸�OSÈaÆ

ÀÁ ��`<6����
ℱ(��¸�¢�   ; 

D� = 
6
�

¿ÀÁÂ�=Ã�Ä�
�ÅÆÇÄ� S½¹�`<�����6¸�OSÈaÆ

ÀÁ ��`<�����
ℱ(��¸��=�  ; 

D� = 
6
�

¿ÀÁÂ��Ã�Ä�
�ÅÆÇÄ� S½¹�`<�����6¸�OSÈaÆ

ÀÁ ��`<�����
ℱ(��¸����  ; 

D� = 
6
�

¿ÀÁÂ�6Ã�Ä�
�ÅÆÇÄ� S½¹�`<�����6¸�OSÈaÆ

ÀÁ ��`<�����
ℱ(��¸��6�  ; 

D� = 
6
�

¿ÀÁÂ��Ã�Ä�
�ÅÆÇÄ� S½¹�`<�����6¸�OSÈaÆ

ÀÁ ��`<�����
ℱ(��¸����  ; 

DO� = 
6
�

¿ÀÁÂ�Ã�Ä�
�ÅÆÇÄ�

ℱ(��¸����  ; 

DOO = 
6
�

¿ÀÁÂ¡Ã6Ä6
�ÅÆÇÄ6 S½¹�`<��6�66¸�OSÈaÆ

ÀÁ ��`<��6�6
ℱ(�6¸�¡�  ; 

DOQ = 
6
�

¿ÀÁÂ¢Ã6Ä6
�ÅÆÇÄ6 S½¹�`<6�6�66¸�OSÈaÆ

ÀÁ ��`<6�6�6
ℱ(�6¸�¢�  ; 
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DO� = 
6
�

¿ÀÁÂ�=Ã6Ä6
�ÅÆÇÄ6 S½¹�`<��6�66¸�OSÈaÆ

ÀÁ ��`<��6�6
ℱ(�6¸��=�  ; 

DO~ = 
6
�

¿ÀÁÂ��Ã6Ä6
�ÅÆÇÄ6 S½¹�`<��6�66¸�OSÈaÆ

ÀÁ ��`<��6�6
ℱ(�6¸����  ; 

DO� = 
6
�

¿ÀÁÂ�6Ã6Ä6
�ÅÆÇÄ6 S½¹�`<��6�66¸�OSÈaÆ

ÀÁ ��`<��6�6
ℱ(�6¸��6�  ; 

DO� = 
6
�

¿ÀÁÂ��Ã6Ä6
�ÅÆÇÄ6 S½¹�`<��6�66¸�OSÈaÆ

ÀÁ ��`<��6�6
ℱ(�6¸����  ; 

DO� = 
6
�

¿ÀÁÂ�Ã6Ä6
�ÅÆÇÄ6

ℱ(��¸����  ;  DQ� = 
6
�

¿ÀÁÂ¡Ã�Ä�
�ÅÆÇÄ�

ℱ(��¸�¡�  ; 

DQ� = 
6
�

¿ÀÁÂ¢Ã�Ä�
�ÅÆÇÄ�

ℱ(��¸�¡�  ;  DQ� = 
6
�

¿ÀÁÂ�=Ã�Ä�
�ÅÆÇÄ�

ℱ(��¸�¡�  ; 

DQ� = 
6
�

¿ÀÁÂ��Ã�Ä�
�ÅÆÇÄ�

ℱ(��¸�¡�   ;  DQ� = 
6
�

¿ÀÁÂ�6Ã�Ä�
�ÅÆÇÄ�

ℱ(��¸�¡�   ; 

D�� = 
6
�

¿ÀÁÂ��Ã�Ä�
�ÅÆÇÄ�

ℱ(��¸�¡�  ;  D�O = 
6
�

¿ÀÁÂ�Ã�Ä�
�ÅÆÇÄ�

ℱ(��¸�¡�  ; 
ℊ(�� = −¼��� + �Q �1 − ¼no�Q − �_½

�` � + � �no� �1 − �_½
�` �� + tno� −

                                  Λ�(−�Q +  c − |� +  ct + �1 − �_½
�` � (−�Q +  c − |�; 

¦~ = ½¹�`ÊTJ����S�OSÈaÆ
ÀÁ ��`ÊTJ�

ℊ(����  ; 
¦� = ½¹�`ÊTJ6���S�OSÈaÆ

ÀÁ ��`ÊTJ6
ℊ(����  ; 

¦� = ½¹�`ÊTJ����S�OSÈaÆ
ÀÁ ��`ÊTJ�

ℊ(����  ; 
¦� =  ��`<¡��¢��¸½¹�`ÊTJ�(��¸�¡�S�OSÈaÆ

ÀÁ ��`ÊTJ�S½¹�`<���6��6¸�OSÈaÆ
ÀÁ ��`<���6��

ℊ(��¸�¡�  ; 
¦� = ��`<¢��¢��¸½¹�`ÊTJ�(��¸�¢�S�OSÈaÆ

ÀÁ ��`ÊTJ�S½¹�`<6��6��6¸�OSÈaÆ
ÀÁ ��`<6��6��

ℊ(��¸�¢�  ; 
¦� = ��`<�=��¢��¸½¹�`ÊTJ�(��¸��=�S�OSÈaÆ

ÀÁ ��`ÊTJ�S½¹�`<���6��6¸�OSÈaÆ
ÀÁ ��`<���6��

ℊ(��¸��=� ; 
¦O� = ��`<����¢��¸½¹�`ÊTJ�(��¸����S�OSÈaÆ

ÀÁ ��`ÊTJ�S½¹�`<���6��6¸�OSÈaÆ
ÀÁ ��`<���6��

ℊ(��¸���� ; 
¦OO = ��`<�6��¢��¸½¹�`ÊTJ¡(��¸��6�S�OSÈaÆ

ÀÁ ��`ÊTJ¡S½¹�`<���6��6¸�OSÈaÆ
ÀÁ ��`<���6��

ℊ(��¸��6� ; 
¦OQ = ��`<����¢��¸½¹�`ÊTJ¢(��¸����S�OSÈaÆ

ÀÁ ��`ÊTJ¢S½¹�`<���6��6¸�OSÈaÆ
ÀÁ ��`<���6��

ℊ(��¸���� ; 
¦O� = ��`<��6=�6¸½¹�`ÊTJ�=(��¸����S�OSÈaÆ

ÀÁ ��`ÊTJ�=
ℊ(��¸����  ; 

¦O~ = ��`<¡�6=�6¸½¹�`ÊTJ��(��¸�¡�S�OSÈaÆ
ÀÁ ��`ÊTJ��S½¹�`<�����66¸�OSÈaÆ

ÀÁ ��`<�����6
ℊ(�6¸�¡� ;  

¦O� = ��`<¢�6=�6¸½¹�`ÊTJ�6(��¸�¢�S�OSÈaÆ
ÀÁ ��`ÊTJ�6S½¹�`<6����66¸�OSÈaÆ

ÀÁ ��`<6����6
ℊ(�6¸�¢� ; 
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¦O� =
           ��`<�=�6=�6¸½¹�`ÊTJ��(��¸��=�S�OSÈaÆ

ÀÁ ��`ÊTJ��S½¹�`<�����66¸�OSÈaÆ
ÀÁ ��`<�����6

ℊ(�6¸��=� ; 
¦O� =
          ��`<���6=�6¸½¹�`ÊTJ��(��¸����S�OSÈaÆ

ÀÁ ��`ÊTJ��S½¹�`<�����66¸�OSÈaÆ
ÀÁ ��`<�����6

ℊ(�6¸���� ; 
¦O� =
          ��`<�6�6=�6¸½¹�`ÊTJ��(��¸��6�S�OSÈaÆ

ÀÁ ��`ÊTJ��S½¹�`<�����66¸�OSÈaÆ
ÀÁ ��`<�����6

ℊ(�6¸��6� ; 
¦O� =
          ��`<���6=�6¸½¹�`ÊTJ��(��¸����S�OSÈaÆ

ÀÁ ��`ÊTJ��S½¹�`<�����66¸�OSÈaÆ
ÀÁ ��`<�����6

ℊ(�6¸���� ; 
¦Q� = ��`<��6=�6¸½¹�`ÊTJ��(��¸����S�OSÈaÆ

ÀÁ ��`ÊTJ��
ℊ(�6¸����  ; 

 
The remaining constants are also known and not presented here for the sake of 

brevity but the constants were used for drawing the profiles of both fluid and particle 
phases. 
 


