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Abstract. By Y. Rav, an ideal J of a lattice L is called a semi prime ideal if for all 
,,, Lzyx ∈   Jyx ∈∧ and   Jzx ∈∧   imply   Jzyx ∈∨∧ )( . In this paper, for a 

subset A of L, we define { }AasomeforJaxLxAJ ∈=∧∈= : . Here we prove that 

for a meet sub semi lattice A of a lattice L, JA  is an ideal, in fact a semi prime ideal if 
and only if J is semi prime. Then we include several characterizations of semi prime 

ideals J  by using  JA where A is a filter of L. At the end we include a prime separation 
Theorem. 
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1. Introduction 
Varlet [9] introduced the concept of 0-distributive lattices to generalize the notion of 
pseudo complemented lattices. Then many authors including [2, 3, 6, 7, 10] have studied 
them explicitly for lattices and meet semilattices.  A lattice L with 0 is called a  0-
distributive lattice if for all Lc,b,a ∈ , caba ∧==∧ 0  imply 0=∨∧ )cb(a . Of 
course every distributive lattice with 0 is 0-distributive. Also every pseudo complemented 
lattice is 0-distributive. It is well known that the non-distributive pentagonal lattice 

}1,0,;1,,,,0{5 =∨=∨=∧=∧≤= cbcacbcabacbaR  is 0-distributive; while the 

diamond lattice }1,0;1,,,,0{3 =∨=∨=∨=∧=∧=∧= cbcabaaccbbacbaM  

is not 0-distributive. Again [8] has extended the concept of 0-distributivity by introducing 
the notion of semi prime ideals in a lattice. In a lattice L, an ideal J is called a semi prime 
ideal if for all  ,,, Lzyx ∈   Jyx ∈∧ ,   Jzx ∈∧   imply   Jzyx ∈∨∧ )( . Of course, 
a lattice itself is always a semi prime ideal. In distributive lattices, every ideal is semi 
prime. Moreover, every prime ideal is semi prime. Observe that in 5R , ]0( , ](b , ](c  and 

5R  itself are all semi prime but ](a  is not. Again in 3M , only semi prime ideal is 

3M itself. Recently [1,4] have given several characterizations of these ideals for lattices 
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including some prime separation theorems. On the other hand [5] have studied them for 
meet semilattices directed above and extended most of the results of [4]. Let J  be an 
ideal of a lattice L. For a subset A of L, we define  

{ }AasomeforJaxLxAJ ∈=∧∈= : . In this paper we give several characterizations 

of semi prime ideals in term of JA . 
 A non-empty subset I of a lattice L is called a down set if for Ix ∈ and  xy ≤   

)( Ly ∈ imply Iy ∈ . Down set I is called an ideal if for   Iyx ∈, ,  Iyx ∈∨ . 

                A non-empty subset F of L is called an upset if  Fx ∈  and xy ≥  )( Ly ∈    

imply Fy ∈ . An upset F of L is called a filter if for all   Fyx ∈, ,  Fyx ∈∧ . An 

ideal (down set) P is called a prime ideal    (down set) if  Pba ∈∧  implies either  
Pa ∈  or Pb ∈ . A filter Q of L is called prime if Qba ∈∨  implies either Qa ∈  or 

Qb∈ . 

 A filter F of L is called a maximal filter if F ≠ L and it is not contained by any 
other proper filter of L. A prime down set P is called a minimal prime down set if it does 
not contain any other prime down set of L.  
 
We include the following Lemmas which are very trivial. 
 
2. Main results 
Lemma1. For a non-empty subset A of a lattice L, A is a filter if and only if L-A is a 
prime down set. � 
 
Lemma 2. For a non-empty proper subset of a lattice L,  A is a prime ideal if and only if 
L-A is a prime filter. � 
 
Following Lemma is due to [3] which is proved by using Zorn’s Lemma. 
 
Lemma 3.  Let F be a filter and I be an ideal of a lattice L, such that ϕ=∩ IF . Then 

there exists a maximal filter FQ ⊇  such that ϕ=∩ IQ .   � 

Theorem 4. Let J be an ideal of a lattice L. Then for any subset A of L, JA is a down set 

containing J. Moreover, LAJ =  if ϕ≠∩ JA . 

Proof:  Let JAx ∈ , xy ≤ . Then Jax ∈∧  for some Aa ∈ . Now Jaxay ∈∧≤∧  

implies Jay ∈∧ , so JAy ∈ . Therefore JA  is a down set.  Again let Jj ∈ . Then 

Jja ∈∧  for all Aa ∈ , which implies JAj ∈ , and so JAJ ⊆ . Hence JA  is a down 
set containing J. The proof of last part of the theorem is trivial.  � 
 
Now we include a characterization of semi prime ideals. 
 
Theorem 5.  An ideal J of L is semi prime if and only if for every meet sub semi lattice A 

of L, JA is a semi prime ideal of L containing J.  
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Proof:  Suppose J  is semi prime. We already know that JA  is a down set containing J. 

Now let JAyx ∈, . Then Jax ∈∧ , Jby ∈∧ for some Aba ∈, . Then  

Jbax ∈∧∧ , Jbay ∈∧∧ . Since J  is semi prime, so Jyxba ∈∨∧∧ )(  . Now  

Aba ∈∧  implies JAyx ∈∨ , and so  JA  is an ideal. Finally let JAyx ∈∧ , and  
JAzx ∈∧ . Then Jayx ∈∧∧ 1 , Jbzx ∈∧∧ 1  for some Ab,a ∈11 . Thus 

Jybax ∈∧∧∧ 11 , Jzbax ∈∧∧∧ 11 . Then by the semi prime property of J, 

Jzybax ∈∨∧∧∧ )(11  . Thus  JAzyx ∈∨∧ )( as  Aba ∈∧ 11 . Therefore JA  is 

semi prime. Conversely, if JA  is a semi prime ideal for every meet sub semilattice A of 

S, then in particular  Ja)(  is an ideal for all La ∈ .    

Now, suppose Jbxax ∈∧∧ , . This implies Jxba )(, ∈ . Since Jx)( is an ideal, so 
Jxba )(∈∨  and so Jbax ∈∨∧ )( . Therefore J is semi prime. � 

 
Observe that in  R5 

 

                                                                                                      1 

 

 b 
 

                     c 
 
   a 
 
                                                                   0 
                                                                   R5 

 
 Figure 1: 
 
J=(a] is not semiprime. Consider the filter  A={b, 1}. It is easy to see that AJ={0, a, c} 
which is not an ideal at all. 
 
Following result is a generalization of [3, Lemma 1.12] 
 

Theorem 6. Let A and B be filters of a lattice L, such that ϕ=∩ JBA . Then there 

exists a minimal prime down set containing JB and disjoint from A. 
Proof:  Observe that ϕ=∨∩ )( BAJ . If not, let   )( BAJj ∨∩∈ . Then baj ∧≥  

for some Aa ∈ , Bb ∈ . That is, Jba ∈∧ as J is an ideal, which implies JBa ∈  gives 
a contradiction. Hence ϕ=∨∩ )( BAJ . Thus by Lemma-3, there exists a maximal filter 

M containing  BA ∨  and disjoint to J. Now we prove that ϕ=∩ JBM  . If not, let 
JBMx ∩∈  . Then Mx ∈   and Jbx ∈∧ 1  for some MBb ⊆∈1 , so Mbx ∈∧ 1 . 

This implies ϕ≠∩ JM  which is a contradiction. Therefore,  ϕ=∩ JBM . Thus by 
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Lemma 1,  ML −  is a minimal prime down set containing JB . Moreover,                            
ϕ=∩− AML )( .    � 

 
Now we extend [3, Lemma 1.13] 
 
Theorem 7.  Let A be a filter of a lattice L. Then JA  is the intersection of all the minimal 
prime down sets containing J and disjoint from A.    
Proof:  Let  N  be any minimal prime down set containing J and disjoint from A. If 

JAx ∈ , then  Jax ∈∧  for some Aa ∈  and so Nx ∈  as N is prime.  

            Conversely, let JALy −∈ . Then Jay ∉∧  for all Aa ∈ . Hence 

ϕ=∩∨ JyA ))[( .  If not, let JyAx ∩∨∈ ))[( , implies Jx ∈  and yax ∧≥  for 

some Aa ∈ . That is Jya ∈∧ , which implies JAy ∈  gives a contradiction. Hence 

ϕ=∩∨ JyA ))[( . Then by Lemma 3, MyA ⊆∨ )[ for some maximal filter M and 

disjoint to J. Thus by Lemma 1, ML −   is a minimal prime down set containing J. 
Clearly ϕ=∩− AML )(  and MLy −∉ .      � 
 
Now we generalize Theorem 3.3 of [3] to give some characterizations of semi prime 
ideals. 
 
Theorem 8. Let L be lattice with J. Then the following statements are equivalent; 
i)   J is semi prime. 

ii ) If A and B are filters of L such that ϕ=∩ JBA , then there is a minimal prime ideal 

containing JB  and disjoint from A. 

iii)  If A and B are filters of L such that ϕ=∩ JBA , there is a prime filter containing A 

and disjoint from JB . 

iv) If A is a filter of L and B is a prime down set containing JA  , there is a prime filter 
containing L-B and disjoint from JA . 

v)  If A is a filter of L and B is a prime down set containing JA , there is a minimal prime 
ideal containing JA  and contained in B. 

vi)  For each Lx∈  such that Jx ∉  and each prime down set B containing Jx)( , there is 

a prime ideal containing Jx)( and contained in B. 

vii)  For each Lx ∈  with Jx ∉  and each prime down set B containing Jx)( , there is a 

prime filter containing  L-B and disjoint from  Jx)( . 

Proof: (i) ⇒(ii)   Suppose (i) holds. Let A and B be filters of L such that ϕ=∩ JBA . 

By Theorem 6, there is a minimal prime down set M such that JBM ⊇  and 
ϕ=∩ AM . Then L-M is a maximal filter disjoint to J. Since J is semi prime so by [1], 

L-M is a prime filter, and so by Lemma-1, M is a prime ideal. 

(ii) ⇒(iii) is trivial as L-M is a prime filter containing A and disjoint from JB . 
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(iii) ⇒(iv)  By Lemma 1, F=L-B is a maximal filter such that ϕ=∩ JAF . So by (iii), 

there exists a prime filter R containing F such that ϕ=∩ JAR . 

(iv) ⇒(v). By iv), R is a prime filter containing F=L-B and disjoint with JA . Thus L-R is 

a minimal prime ideal containing  JA  and contained in B.  
(v) ⇒(vi). Let Lx ∈ . Replace A by [x) in (v). Now B is a prime down set containing 

JJJ xxA )[)( == . Thus by (v), there exists a minimal prime ideal containing JJ xA )(=  
and contained in B. 

(vi) ⇒(vii).  By  (vi), there exists a minimal prime ideal P containing Jx)(  and is 

contained in B. Thus L-P is a prime filter disjoint to Jx)( .  Moreover BLPL −⊃− . 

(vii) ⇒(i).  Suppose (vii) holds and let Lx∈  such that Jx ∉ . By Lemma 1, )[ xL −  is 

prime down set not containing x. Let Jxxt )(]( ∩∈ . Then xt ≤  and Jxt ∈∧ . This 

implies xt ≠ . For otherwise  Jx ∈  gives a contradiction. Thus, it follows that xt < . 

Hence ).[)(]( xLxx J −⊂∩  L-[x) contains Jx)( , as )[ xL − is a prime down set. By 

(vii), there is a prime filter B containing  ))[()[ xLLx −−=  and disjoint from Jx)( . 

Clearly Bx ∈  and ϕ=∩ JB  as JxJ )(⊆ . 

      Now suppose Lcba ∈,,  such that Jba ∈∧  and Jca ∈∧  but Jcba ∉∨∧ )( . By 

above proof there exists a prime filter B such that Bcba ∈∨∧ )(  and disjoint from 
Jcba ))(( ∨∧ , implies Bcba ∈∨, . Then either Bb∈  or Bc ∈  as B is prime. This 

implies either Bba ∈∧  or Bca ∈∧ . In any case ϕ≠∩ JB , which gives a 

contradiction. Therefore Jcba ∈∨∧ )(  a so J is semi prime. � 
 
Hence by Theorem 5, we have the following characterization of semi prime ideals. 
 
Corollary 9. Let A be a filter and J be an ideal of a lattice L. Then J is semi prime if and 

only if  JA  is the intersection of all the minimal prime ideals disjoint from A. � 
 
          Now we include some characterizations of a semi prime ideals of L using the 
downs sets of the formJA . This result is in fact a generalization of [3,Theorem 3.4]. In 
fact the results of [3] can be obtained by replacing J by (0]. 
 
Theorem 10.  Let L be a lattice. Then the following statements are equivalent;  

i) J  is semi prime. 
ii)  For each Sa ∈ , JJ aa )[)( =  is a semi prime ideal containing J. 
iii)  For any three filters A, B, C of L, 

JJJ CABACBA )()())(( ∨∩∨=∩∨  
iv) For all  Lcba ∈,, , JJJ cabacba ))[)([))[)([)))[)([)([ ∨∩∨=∩∨  
v) For all Lcba ∈,, , JJJ cabacba )()())(( ∧∩∧=∨∧ . 

Proof:  (i) ⇔ (ii). Follows by Theorem 3 and JJ aa )[)( = is trivial. 



Momtaz Begum, A.S.A.Noor and M. Ayub Ali 

82 
 

(i) ⇒ (iii).  Let JJ CABAx )()( ∨∩∨∈ . Then JBAx )( ∨∈ and  JCAx )( ∨∈ .  

Thus  Jfx ∈∧ , Jgx ∈∧  for some BAf ∨∈  and  CAg ∨∈ . Then baf ∧≥ 1 , 

and cag ∧≥ 2  for some  Aaa ∈21, , Bb ∈ , Cc ∈ . This implies Jbax ∈∧∧ 1 , 

Jcax ∈∧∧ 2 and so Jbaax ∈∧∧∧ 21 , Jcaax ∈∧∧∧ 21 . Since J  is semi 

prime, so Jcbaax ∈∨∧∧∧ )(21 . Now Aaa ∈∧ 21  and CBcb ∩∈∨ . Therefore, 

)()()( 21 CBAcbaa ∩∨∈∨∧∧ and so JCBAx ))(( ∩∨∈ . The reverse inclusion is 

trivial as   CABACBA ∨∨⊆∩∨ ,)( . Hence (iii) holds.  

(iii) ⇒ (iv) is trivial by considering )[aA = , )[bB =  and )[cC =  in (iii). 

(iv) ⇒ (v).  Let (iv) holds. Suppose JJ cabax )()( ∧∩∧∈ . Then  
JJJ cbacabax )))[)([)([))[)([))[)([ ∩∨=∨∩∨∈ . This implies Jfx ∈∧  for 

some ))[)([)[ cbaf ∩∨∈ . Then )( cbaf ∨∧≥ . It follows that      

Jcbax ∈∨∧∧ )(  and so Jcbax ))(( ∨∧∈ . On the other hand, 

)[)[)[)[ bacba ∨⊆∨∨  and )[)[)[)[ cacba ∨⊆∨∨ implies that  
JJJ cabacba )()())(( ∧∩∧⊆∨∧ . Therefore (v) holds.  

(v) ⇒ (i).  Suppose (v) holds. Let Lcba ∈,,  with  Jba ∈∧ , Jca ∈∧ . Then 

Jbaa ∈∧∧ )( , Jcaa ∈∧∧ )(  implies  JJJ cbacabaa ))(()()( ∨∧=∧∩∧∈ . 

Thus, Jcbaa ∈∨∧∧ ))(( .  That is Jcba ∈∨∧ )(  . So J  is semi prime.   � 
 

      For any subset A of a lattice L, we define  { }JjsomeforJaxLxA J ∈=∧∈=⊥ : . 
JA⊥  is always a down set. By  [4],  JA⊥ is a semi prime ideal containing J if and only if 

J is semi prime, clearly, for any La ∈ , JJ aaaa JJ ⊥⊥ === ]()()[)( . 
 

Corollary 11. Let J be an ideal of a lattice L, J is semi prime if and only if J

La
aJ )(

∈
= ∩ . 

Proof: By Theorem-4, JaJ )(⊆ for every La ∈ , and so J

La
aJ )(

∈
⊆ ∩ . For reverse 

inclusion, let J

La
ax )(

∈
∈ ∩  . Then Jax )(∈  for every La ∈ . Thus, in particular, 

Jxx )(∈ . This implies Jxxx ∈=∧ and so Ja J

La
⊆

∈
)(∩ . Therefore J

La
aJ )(

∈
= ∩ .  � 

  
We conclude with few more characterizations of semi prime ideal of L. This is also a 
generalization of [3, Theorem3.5]. 
 
Theorem 12.  Let L be a lattice. Then the following are equivalent; 

i) J  is semi prime. 
ii)  For any three filters A, B, C of L. 

JJJ CBACABA )())()(( ∨∩=∩∨∩  
iii)  For any two filters A, B of L, JJJ BABA ∩=∩ )(  
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iv) For all Lba ∈, , JJJ baba )()()( ∨=∩ . 
v) For all Lba ∈, , JJJ baba ⊥⊥⊥ ∨=∩ ](](]( .   

Proof:  (i) ⇒ (ii). Suppose J  is semi prime, Since ACABA ⊆∩∨∩ )()(  and   

CB ∨ , so JJJ CBACABA )())()(( ∨∩⊆∩∨∩ . Now suppose  
JJ CBAx )( ∨∩∈ . Then JAx ∈   and JCBx )( ∨∈ . Thus Jax ∈∧  for some 

Aa ∈  and Jcbx ∈∧∧ for some Bb∈ , Cc ∈ . Hence Jax ∈∧ , Jcbx ∈∧∧  
implies Jacx ∈∧∧ ; Jbcx ∈∧∧  . Since J  is semi prime, so Jbacx ∈∨∧∧ )( . 

Then BAba ∩∈∨ . Now Jax ∈∧ implies Jabaxax ∈∧∨∧=∧ )( . Also 

Jcbax ∈∧∨∧ )( . Since J  is semi prime, so  Jacbax ∈∨∧∨∧ )()( . But 

BAba ∩∈∨  and ACac ∩∈∨ . Hence JCABAx ))()(( ∩∨∩∈  and so   (ii) 
holds.  
(ii) ⇒ (iii) is trivial by considering B = C in (iii). 
(iii) ⇒ (iv). Choose  )[aA =  and )[bB = in (iii). Then by (iii),  

.)())([))[)([)[)[)()( JJJJJJJ bababababa ∨=∨=∩=∩=∩  
 (iv) ⇔  (v) is obvious. 
(v) ⇒ (i).Suppose (v) holds and for  Lcba ∈,, , Jba ∈∧ , Jca ∈∧ . Then 

JJJ cbcba ⊥⊥⊥ ∨=∩∈ ](](](  . Therefore, Jcba ∈∨∧ )(  and so J  is semi prime.   �  

           Observe that in Figure-1 of  R5 , ](aJ =  is not semi prime. Here we can easily 
check that  

},,0{}{))(( cabcab JJ ==∨∧ , LLLacbab JJJJ =∩=∩=∧∩∧ )0()()()( .  

             Thus JJJ cbabcab )()())(( ∧∩∧≠∨∧ .  

Moreover, },,,0{},,0{)()( babaLca JJ =∩=∩  while },0{}1{)( aca JJ ==∨ . Thus 
JJJ caca )()()( ∨≠∩ . 

 

We conclude the paper with a prime Separation Theorem by using JA . For this we need 
the following results which are due to [4] 
 
Lemma 13. Let I be an ideal of a lattice L. A filter M disjoint from I is a maximal filter 
disjoint from I if and only if for all Ma ∉ , there exists Mb∈ such that Iba ∈∧ .    � 
 
Theorem 14.  Let L be a lattice and J be an ideal of L. The following conditions are 
equivalent; 
      

i) J  is semi prime. 
ii)  }:{}{ JaxLxa J ∈∧∈=⊥

 is a semi prime ideal containing J. 
iii)  }:{ AaallforJaxLxA J ∈∈∧∈=⊥  is a semi prime ideal 

containing  J. 
iv) )(LI J  is pseudo complemented. 
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v) )(LI J is a 0-distributive lattice. 

vi) Every maximal filter disjoint from J is prime.     � 

Thus we have the following Separation Theorem. 
 
Theorem 15. Let J be a semi prime ideal of a lattice L and A be a meet sub semi lattice of 

L. Then for a filter F disjoint from JA , there exists a prime ideal containing JA  and 
disjoint from F.  

Proof: By lemma 3, there exists maximal filter M containing F and disjoint from JA . 
We claim that MA ⊆ . If not then there exists Aa ∈  but Ma ∉ . Then MaM ⊇∨ )[ . 

By the maximality of M, ϕ≠∩∨ JAaM ))[( . If JAaMt ∩∨∈ ))[( , the amt ∧≥  

for some Mm∈ and Jat ∈∧ 1  for some Aa ∈1 .This implies Jataam ∈∧≤∧∧ 11 , 

and Aaa ∈∧ 1 . Thus JAm∈ which is a contradiction. Hence MA ⊆  . Now let Mz ∉ . 

Then by maximality of M, ϕ≠∩∨ JAzM ))[( . Suppose JAzMy ∩∨∈ ))[( . Then 

zmy ∧≥ 1  and Jay ∈∧ 2 for some Aa ∈2 . Hence JAzam ∈∧∧ 21  and 

Mam ∈∧ 21 . Therefore by lemma 13, M is a maximal filter disjoint to JA . Since by 

Theorem 5, JA is semi prime, so by [4, Theorem 2 ], M must be prime. Therefore, L-M is 
a prime ideal containing JA , but disjoint from F.  � 
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