Progress in Nonlinear Dynamics and Chaos Vol. 4, No. 2, 2016, 77-84 ISSN: 2321 – 9238 (online) Published on 19 September 2016 www.researchmathsci.org

Some Characterizations of Semi Prime Ideal in Lattices

Momtaz Begum¹, A.S.A.Noor² and M. Ayub Ali³

^{1,2}Department of ETE, Prime University, Dhaka, Bangladesh
¹E mail: momoislam81@yahoo.com
²E mail: asanoor100@gmail.com
³Department of Mathematics, Jagannath University, Dhaka, Bangladesh

E mail: ayub ju@yahoo.com

Received 1 September 2016; accepted 18 September 2016

Abstract. By Y. Rav, an ideal J of a lattice L is called a semi prime ideal if for all $x, y, z \in L$, $x \land y \in J$ and $x \land z \in J$ imply $x \land (y \lor z) \in J$. In this paper, for a subset A of L, we define $A^J = \{x \in L : x \land a = J \text{ for some } a \in A\}$. Here we prove that for a meet sub semi lattice A of a lattice L, A^J is an ideal, in fact a semi prime ideal if and only if J is semi prime. Then we include several characterizations of semi prime ideals J by using A^J where A is a filter of L. At the end we include a prime separation Theorem.

Keywords: Maximal filter, 0-distributive lattice, Semi prime ideal, Minimal Prime down set.

AMS Mathematics Subject Classification (2010): 06A12, 06A99, 06B10

1. Introduction

Varlet [9] introduced the concept of 0-distributive lattices to generalize the notion of pseudo complemented lattices. Then many authors including [2, 3, 6, 7, 10] have studied them explicitly for lattices and meet semilattices. A lattice *L* with 0 is called a 0-distributive lattice if for all $a, b, c \in L$, $a \land b = 0 = a \land c$ imply $a \land (b \lor c) = 0$. Of course every distributive lattice with 0 is 0-distributive. Also every pseudo complemented lattice is 0-distributive. It is well known that the non-distributive pentagonal lattice

 $R_5 = \{0, a, b, c, 1; a \le b, a \land c = b \land c = 0, a \lor c = b \lor c = 1\}$ is 0-distributive; while the diamond lattice $M_3 = \{0, a, b, c, 1; a \land b = b \land c = c \land a = 0, a \lor b = a \lor c = b \lor c = 1\}$ is not 0-distributive. Again [8] has extended the concept of 0-distributivity by introducing the notion of *semi prime ideals* in a lattice. In a lattice *L*, an ideal *J* is called a semi prime ideal if for all $x, y, z \in L, x \land y \in J, x \land z \in J$ imply $x \land (y \lor z) \in J$. Of course, a lattice itself is always a semi prime ideal. In distributive lattices, every ideal is semi prime. Moreover, every prime ideal is semi prime. Observe that in R_5 , (0], (*b*], (*c*] and R_5 itself are all semi prime but (*a*] is not. Again in M_3 , only semi prime ideal is M_3 itself. Recently [1,4] have given several characterizations of these ideals for lattices

including some prime separation theorems. On the other hand [5] have studied them for meet semilattices directed above and extended most of the results of [4]. Let J be an ideal of a lattice L. For a subset A of L, we define

 $A^{J} = \{x \in L : x \land a = J \text{ for some } a \in A\}$. In this paper we give several characterizations of semi prime ideals in term of A^{J} .

A non-empty subset *I* of a lattice *L* is called a down set if for $x \in I$ and $y \leq x$ $(y \in L)$ imply $y \in I$. Down set *I* is called an ideal if for $x, y \in I$, $x \lor y \in I$.

A non-empty subset F of L is called an upset if $x \in F$ and $y \ge x$ ($y \in L$) imply $y \in F$. An upset F of L is called a filter if for all $x, y \in F$, $x \land y \in F$. An ideal (down set) P is called a prime ideal (down set) if $a \land b \in P$ implies either $a \in P$ or $b \in P$. A filter Q of L is called prime if $a \lor b \in Q$ implies either $a \in Q$ or $b \in Q$.

A filter *F* of *L* is called a maximal filter if $F \neq L$ and it is not contained by any other proper filter of *L*. A prime down set *P* is called a minimal prime down set if it does not contain any other prime down set of *L*.

We include the following Lemmas which are very trivial.

2. Main results

Lemma1. For a non-empty subset A of a lattice L, A is a filter if and only if L-A is a prime down set. \Box

Lemma 2. For a non-empty proper subset of a lattice L, A is a prime ideal if and only if L-A is a prime filter. \Box

Following Lemma is due to [3] which is proved by using Zorn's Lemma.

Lemma 3. Let *F* be a filter and *I* be an ideal of a lattice *L*, such that $F \cap I = \varphi$. Then there exists a maximal filter $Q \supseteq F$ such that $Q \cap I = \varphi$. \Box

Theorem 4. Let J be an ideal of a lattice L. Then for any subset A of L, A^J is a down set containing J. Moreover, $A^J = L$ if $A \cap J \neq \varphi$.

Proof: Let $x \in A^J$, $y \le x$. Then $x \land a \in J$ for some $a \in A$. Now $y \land a \le x \land a \in J$ implies $y \land a \in J$, so $y \in A^J$. Therefore A^J is a down set. Again let $j \in J$. Then $a \land j \in J$ for all $a \in A$, which implies $j \in A^J$, and so $J \subseteq A^J$. Hence A^J is a down set containing *J*. The proof of last part of the theorem is trivial. \Box

Now we include a characterization of semi prime ideals.

Theorem 5. An ideal J of L is semi prime if and only if for every meet sub semi lattice A of L, A^{J} is a semi prime ideal of L containing J.

Some Characterizations of Semi Prime Ideal in Lattices

Proof: Suppose *J* is *semi prime*. We already know that A^J is a down set containing *J*. Now let $x, y \in A^J$. Then $x \land a \in J$, $y \land b \in J$ for some $a, b \in A$. Then $x \land a \land b \in J$, $y \land a \land b \in J$. Since *J* is *semi prime*, so $a \land b \land (x \lor y) \in J$. Now $a \land b \in A$ implies $x \lor y \in A^J$, and so A^J is an ideal. Finally let $x \land y \in A^J$, and $x \land z \in A^J$. Then $x \land y \land a_1 \in J$, $x \land z \land b_1 \in J$ for some $a_1, b_1 \in A$. Thus $x \land a_1 \land b_1 \land y \in J$, $x \land a_1 \land b_1 \land z \in J$. Then by the *semi prime* property of *J*, $x \land a_1 \land b_1 \land (y \lor z) \in J$. Thus $x \land (y \lor z) \in A^J$ as $a_1 \land b_1 \in A$. Therefore A^J is semi prime. Conversely, if A^J is a semi prime ideal for every meet sub semilattice *A* of *S*, then in particular $(a)^J$ is an ideal for all $a \in L$.

Now, suppose $x \land a, x \land b \in J$. This implies $a, b \in (x)^J$. Since $(x)^J$ is an ideal, so $a \lor b \in (x)^J$ and so $x \land (a \lor b) \in J$. Therefore J is semi-prime. \Box

Observe that in R₅

Figure 1:

J=(a] is not semiprime. Consider the filter A={b, 1}. It is easy to see that A^{J} ={0, a, c} which is not an ideal at all.

Following result is a generalization of [3, Lemma 1.12]

Theorem 6. Let A and B be filters of a lattice L, such that $A \cap B^J = \varphi$. Then there exists a minimal prime down set containing B^J and disjoint from A. **Proof:** Observe that $J \cap (A \lor B) = \varphi$. If not, let $j \in J \cap (A \lor B)$. Then $j \ge a \land b$ for some $a \in A$, $b \in B$. That is, $a \land b \in J$ as J is an ideal, which implies $a \in B^J$ gives a contradiction. Hence $J \cap (A \lor B) = \varphi$. Thus by Lemma-3, there exists a maximal filter M containing $A \lor B$ and disjoint to J. Now we prove that $M \cap B^J = \varphi$. If not, let

 $x \in M \cap B^J$. Then $x \in M$ and $x \wedge b_1 \in J$ for some $b_1 \in B \subseteq M$, so $x \wedge b_1 \in M$. This implies $M \cap J \neq \varphi$ which is a contradiction. Therefore, $M \cap B^J = \varphi$. Thus by

Lemma 1, L-M is a minimal prime down set containing B^{J} . Moreover, $(L-M) \cap A = \varphi$. \Box

Now we extend [3, Lemma 1.13]

Theorem 7. Let A be a filter of a lattice L. Then A^J is the intersection of all the minimal prime down sets containing J and disjoint from A.

Proof: Let N be any minimal prime down set containing J and disjoint from A. If $x \in A^J$, then $x \land a \in J$ for some $a \in A$ and so $x \in N$ as N is prime.

Conversely, let $y \in L - A^J$. Then $y \land a \notin J$ for all $a \in A$. Hence $(A \lor [y)) \cap J = \varphi$. If not, let $x \in (A \lor [y)) \cap J$, implies $x \in J$ and $x \ge a \land y$ for some $a \in A$. That is $a \land y \in J$, which implies $y \in A^J$ gives a contradiction. Hence $(A \lor [y)) \cap J = \varphi$. Then by Lemma 3, $A \lor [y] \subseteq M$ for some maximal filter M and disjoint to J. Thus by Lemma 1, L - M is a minimal prime down set containing J. Clearly $(L - M) \cap A = \varphi$ and $y \notin L - M$. \Box

Now we generalize Theorem 3.3 of [3] to give some characterizations of semi prime ideals.

Theorem 8. Let L be lattice with J. Then the following statements are equivalent; *i*) J is semi prime.

ii) If A and B are filters of L such that $A \cap B^J = \varphi$, then there is a minimal prime ideal containing B^J and disjoint from A.

iii) If A and B are filters of L such that $A \cap B^J = \varphi$, there is a prime filter containing A and disjoint from B^J .

iv) If A is a filter of L and B is a prime down set containing A^J , there is a prime filter containing L-B and disjoint from A^J .

v) If A is a filter of L and B is a prime down set containing A^J , there is a minimal prime ideal containing A^J and contained in B.

vi) For each $x \in L$ such that $x \notin J$ and each prime down set B containing $(x)^J$, there is a prime ideal containing $(x)^J$ and contained in B.

vii) For each $x \in L$ with $x \notin J$ and each prime down set B containing $(x)^J$, there is a prime filter containing L-B and disjoint from $(x)^J$.

Proof: (*i*) \Rightarrow (*ii*) Suppose (*i*) holds. Let A and B be filters of L such that $A \cap B^J = \varphi$. By Theorem 6, there is a minimal prime down set M such that $M \supseteq B^J$ and $M \cap A = \varphi$. Then L-M is a maximal filter disjoint to J. Since J is semi prime so by [1], L-M is a prime filter, and so by Lemma-1, M is a prime ideal.

(*ii*) \Rightarrow (*iii*) is trivial as L-M is a prime filter containing A and disjoint from B^{J} .

Some Characterizations of Semi Prime Ideal in Lattices

(*iii*) \Rightarrow (*iv*) By Lemma 1, F=L-B is a maximal filter such that $F \cap A^J = \varphi$. So by (*iii*), there exists a prime filter R containing F such that $R \cap A^J = \varphi$.

 $(iv) \Rightarrow (v)$. By iv), R is a prime filter containing F=L-B and disjoint with A^{J} . Thus L-R is a minimal prime ideal containing A^{J} and contained in B.

(v) \Rightarrow (vi). Let $x \in L$. Replace A by [x) in (v). Now B is a prime down set containing $A^J = (x)^J = [x)^J$. Thus by (v), there exists a minimal prime ideal containing $A^J = (x)^J$ and contained in B.

(*vi*) \Rightarrow (*vii*). By (vi), there exists a minimal prime ideal P containing $(x)^J$ and is contained in B. Thus L-P is a prime filter disjoint to $(x)^J$. Moreover $L - P \supset L - B$.

 $(vii) \Rightarrow (i)$. Suppose (vii) holds and let $x \in L$ such that $x \notin J$. By Lemma 1, L-[x) is prime down set not containing x. Let $t \in (x] \cap (x)^J$. Then $t \le x$ and $t \land x \in J$. This implies $t \ne x$. For otherwise $x \in J$ gives a contradiction. Thus, it follows that t < x. Hence $(x] \cap (x)^J \subset L-[x)$. L-[x) contains $(x)^J$, as L-[x) is a prime down set. By (vii), there is a prime filter B containing [x] = L - (L-[x)) and disjoint from $(x)^J$. Clearly $x \in B$ and $B \cap J = \varphi$ as $J \subseteq (x)^J$.

Now suppose $a, b, c \in L$ such that $a \land b \in J$ and $a \land c \in J$ but $a \land (b \lor c) \notin J$. By above proof there exists a prime filter B such that $a \land (b \lor c) \in B$ and disjoint from $(a \land (b \lor c))^J$, implies $a, b \lor c \in B$. Then either $b \in B$ or $c \in B$ as B is prime. This implies either $a \land b \in B$ or $a \land c \in B$. In any case $B \cap J \neq \varphi$, which gives a contradiction. Therefore $a \land (b \lor c) \in J$ a so J is semi prime. \Box

Hence by Theorem 5, we have the following characterization of semi prime ideals.

Corollary 9. Let A be a filter and J be an ideal of a lattice L. Then J is semi prime if and only if A^J is the intersection of all the minimal prime ideals disjoint from A. \Box

Now we include some characterizations of *a semi prime ideals of L* using the downs sets of the form A^{J} . This result is in fact a generalization of [3,Theorem 3.4]. In fact the results of [3] can be obtained by replacing J by (0].

Theorem 10. Let L be a lattice. Then the following statements are equivalent;

- i) J is semi prime.
- ii) For each $a \in S$, $(a)^J = [a)^J$ is a semi prime ideal containing J.
- iii) For any three filters A, B, C of L, $(A \lor (B \cap C))^J = (A \lor B)^J \cap (A \lor C)^J$
- iv) For all $a,b,c \in L$, $([a) \lor ([b) \cap [c)))^J = ([a) \lor [b))^J \cap ([a) \lor [c))^J$
- V) For all $a,b,c \in L$, $(a \land (b \lor c))^J = (a \land b)^J \cap (a \land c)^J$.

Proof: (i) \Leftrightarrow (ii). Follows by Theorem 3 and $(a)^J = [a)^J$ is trivial.

(i) \Rightarrow (iii). Let $x \in (A \lor B)^{J} \cap (A \lor C)^{J}$. Then $x \in (A \lor B)^{J}$ and $x \in (A \lor C)^{J}$. Thus $x \land f \in J, x \land g \in J$ for some $f \in A \lor B$ and $g \in A \lor C$. Then $f \ge a_{1} \land b$, and $g \ge a_{2} \land c$ for some $a_{1}, a_{2} \in A$, $b \in B$, $c \in C$. This implies $x \land a_{1} \land b \in J$, $x \land a_{2} \land c \in J$ and so $x \land a_{1} \land a_{2} \land b \in J$, $x \land a_{1} \land a_{2} \land c \in J$. Since J is *semi prime*, so $x \land a_{1} \land a_{2} \land (b \lor c) \in J$. Now $a_{1} \land a_{2} \in A$ and $b \lor c \in B \cap C$. Therefore, $(a_{1} \land a_{2}) \land (b \lor c) \in A \lor (B \cap C)$ and so $x \in (A \lor (B \cap C))^{J}$. The reverse inclusion is trivial as $A \lor (B \cap C) \subseteq A \lor B$, $A \lor C$. Hence (iii) holds.

(iii) \Rightarrow (iv) is trivial by considering A = [a], B = [b] and C = [c] in (iii).

Let (iv) holds. Suppose $x \in (a \land b)^J \cap (a \land c)^J$. (iv) \Rightarrow (v). Then $x \in ([a) \vee [b))^J \cap ([a) \vee [c))^J = ([a) \vee ([b) \cap [c)))^J$. This implies $x \wedge f \in J$ for some $f \in [a) \lor ([b) \cap [c))$. Then $f \geq a \wedge (b \vee c)$. It follows that $x \in (a \land (b \lor c))^J$. On $x \wedge a \wedge (b \lor c) \in J$ and so the other hand, $[a) \lor [b \lor c) \subseteq [a) \lor [b)$ and $[a) \lor [b \lor c) \subseteq [a) \lor [c)$ implies that $(a \land (b \lor c))^J \subseteq (a \land b)^J \cap (a \land c)^J$. Therefore (v) holds.

(v) \Rightarrow (i). Suppose (v) holds. Let $a, b, c \in L$ with $a \land b \in J$, $a \land c \in J$. Then $a \land (a \land b) \in J$, $a \land (a \land c) \in J$ implies $a \in (a \land b)^J \cap (a \land c)^J = (a \land (b \lor c))^J$. Thus, $a \land (a \land (b \lor c)) \in J$. That is $a \land (b \lor c) \in J$. So J is semi prime. \Box

For any subset A of a lattice L, we define $A^{\perp_J} = \{x \in L : x \land a = J \text{ for some } j \in J\}$. A^{\perp_J} is always a down set. By [4], A^{\perp_J} is a semi prime ideal containing J if and only if J is semi prime, clearly, for any $a \in L$, $(a)^J = [a)^J = (a)^{\perp_J} = (a]^{\perp_J}$.

Corollary 11. Let *J* be an ideal of a lattice *L*, *J* is semi prime if and only if $J = \bigcap_{a \in L} (a)^J$. **Proof:** By Theorem-4, $J \subseteq (a)^J$ for every $a \in L$, and so $J \subseteq \bigcap_{a \in L} (a)^J$. For reverse inclusion, let $x \in \bigcap_{a \in L} (a)^J$. Then $x \in (a)^J$ for every $a \in L$. Thus, in particular, $x \in (x)^J$. This implies $x \land x = x \in J$ and so $\bigcap_{a \in L} (a)^J \subseteq J$. Therefore $J = \bigcap_{a \in L} (a)^J$. \Box

We conclude with few more characterizations of *semi prime ideal of L*. This is also a generalization of [3, Theorem3.5].

Theorem 12. Let *L* be a lattice. Then the following are equivalent;

- i) J is semi prime.
- ii) For any three filters A, B, C of L. $((A \cap B) \lor (A \cap C))^J = A^J \cap (B \lor C)^J$
- iii) For any two filters A, B of L, $(A \cap B)^J = A^J \cap B^J$

Some Characterizations of Semi Prime Ideal in Lattices

- iv) For all $a, b \in L$, $(a)^J \cap (b)^J = (a \lor b)^J$.
- v) For all $a, b \in L$, $(a]^{\perp_j} \cap (b]^{\perp_j} = (a \lor b]^{\perp_j}$.

Proof: (i) \Rightarrow (ii). Suppose *J* is *semi prime*, Since $(A \cap B) \lor (A \cap C) \subseteq A$ and $B \lor C$, so $((A \cap B) \lor (A \cap C))^J \subseteq A^J \cap (B \lor C)^J$. Now suppose

 $x \in A^{J} \cap (B \lor C)^{J}$. Then $x \in A^{J}$ and $x \in (B \lor C)^{J}$. Thus $x \land a \in J$ for some $a \in A$ and $x \land b \land c \in J$ for some $b \in B$, $c \in C$. Hence $x \land a \in J$, $x \land b \land c \in J$ implies $x \land c \land a \in J$; $x \land c \land b \in J$. Since J is semi prime, so $x \land c \land (a \lor b) \in J$. Then $a \lor b \in A \cap B$. Now $x \land a \in J$ implies $x \land a = x \land (a \lor b) \land a \in J$. Also $x \land (a \lor b) \land c \in J$. Since J is semi prime, so $x \land (a \lor b) \land a \in J$. But $a \lor b \in A \cap B$ and $c \lor a \in C \cap A$. Hence $x \in ((A \cap B) \lor (A \cap C))^{J}$ and so (ii) holds.

(ii) \Rightarrow (iii) is trivial by considering B = C in (iii).

(iii) \Rightarrow (iv). Choose A = [a) and B = [b) in (iii). Then by (iii), $(a)^{J} \cap (b)^{J} = [a)^{J} \cap [b)^{J} = ([a) \cap [b))^{J} = ([a \lor b))^{J} = (a \lor b)^{J}$. (iv) \Leftrightarrow (v) is obvious.

(v) \Rightarrow (i).Suppose (v) holds and for $a,b,c \in L$, $a \land b \in J$, $a \land c \in J$. Then $a \in (b]^{\perp_J} \cap (c]^{\perp_J} = (b \lor c]^{\perp_J}$. Therefore, $a \land (b \lor c) \in J$ and so J is semi prime. \Box

Observe that in Figure-1 of R_5 , J = (a] is not semi prime. Here we can easily check that

$$(b \land (a \lor c))^{J} = \{b\}^{J} = \{0, a, c\}, \ (b \land a)^{J} \cap (b \land c)^{J} = (a)^{J} \cap (0)^{J} = L \cap L = L.$$

Thus $(b \land (a \lor c))^{J} \neq (b \land a)^{J} \cap (b \land c)^{J}.$

Moreover, $(a)^{J} \cap (c)^{J} = L \cap \{0, a, b\} = \{0, a, b\}$, while $(a \lor c)^{J} = \{1\}^{J} = \{0, a\}$. Thus $(a)^{J} \cap (c)^{J} \neq (a \lor c)^{J}$.

We conclude the paper with a prime Separation Theorem by using A^{J} . For this we need the following results which are due to [4]

Lemma 13. Let I be an ideal of a lattice L. A filter M disjoint from I is a maximal filter disjoint from I if and only if for all $a \notin M$, there exists $b \in M$ such that $a \land b \in I$. \Box

Theorem 14. Let *L* be a lattice and *J* be an ideal of *L*. The following conditions are equivalent;

- i) J is semi prime.
- ii) $\{a\}^{\perp_J} = \{x \in L : x \land a \in J\}$ is a semi prime ideal containing J.
- iii) $A^{\perp_J} = \{x \in L : x \land a \in J \text{ for all } a \in A\}$ is a semi prime ideal containing J.
- iv) $I_{I}(L)$ is pseudo complemented.

- v) $I_{J}(L)$ is a 0-distributive lattice.
- vi) Every maximal filter disjoint from J is prime. \Box

Thus we have the following Separation Theorem.

Theorem 15. Let J be a semi prime ideal of a lattice L and A be a meet sub semi lattice of L. Then for a filter F disjoint from A^J , there exists a prime ideal containing A^J and disjoint from F.

Proof: By lemma 3, there exists maximal filter M containing F and disjoint from A^J . We claim that $A \subseteq M$. If not then there exists $a \in A$ but $a \notin M$. Then $M \vee [a] \supseteq M$. By the maximality of M, $(M \vee [a)) \cap A^J \neq \varphi$. If $t \in (M \vee [a)) \cap A^J$, the $t \ge m \wedge a$ for some $m \in M$ and $t \wedge a_1 \in J$ for some $a_1 \in A$. This implies $m \wedge a \wedge a_1 \le t \wedge a_1 \in J$, and $a \wedge a_1 \in A$. Thus $m \in A^J$ which is a contradiction. Hence $A \subseteq M$. Now let $z \notin M$. Then by maximality of M, $(M \vee [z)) \cap A^J \neq \varphi$. Suppose $y \in (M \vee [z)) \cap A^J$. Then $y \ge m_1 \wedge z$ and $y \wedge a_2 \in J$ for some $a_2 \in A$. Hence $m_1 \wedge a_2 \wedge z \in A^J$ and $m_1 \wedge a_2 \in M$. Therefore by lemma 13, M is a maximal filter disjoint to A^J . Since by Theorem 5, A^J is semi prime, so by [4, Theorem 2], M must be prime. Therefore, L-M is a prime ideal containing A^J , but disjoint from F. \Box

REFERENCES

- 1. M.Ayub Ali, R.M.Hafizur Rahman, A.S.A.noor and M.M.Rahman, Some Properties of semi prime ideals in a lattice, *Annals of Pure and Applied Mathematics*, 1(2) (2012) 176-185.
- 2. M.Ayub Ali, R.M.Hafizur Rahman and A.S.A.Noor, Prime separation theorem for α-ideals in a 0-distributive lattice, Accepted in IJPAMST.
- 3. P.Balasubramani and P.V.Venkatanarasimhan, Characterizations of the 0distributive lattices, *Indian J. Pure appl.Math.*, 32(3) (2001) 315-324.
- 4. R.M. Hafizur Rahman, M.Ayub Ali and A.S.A.Noor, On Semi prime Ideals of a lattice, J. Mech. Cont. & Math. Sci., 7(2) (2013)1094-1102.
- 5. A.S.A.Noor and Momtaz Begum, Prime Separation Theorems for Semi Prime Ideals in Meet-Semilattices, *International Journal of Pure and Applied Sciences and Technology*, 17(1) (2013) 48-53.
- 6. A.S.A.Noor and Momtaz Begum, Some properties of 0-distributive Meet Semilattices, *Annals of Pure and Applied Mathematics*, 2(1) (2012) 60-66.
- Y.S.Powar and N.K.Thakare, *0-Distributive semilattices*, *Canad. Math. Bull.*, 21(4) (1978) 469-475.
- 8. Y. Rav, Semi prime ideals in general lattices, *Journal of Pure and Applied Algebra*, 56 (1989) 105- 118.
- 9. J.C.Varlet, A generalization of the notion of pseudo-complementedness, *Bull. Soc. Sci. Liege*, 37 (1968) 149-158.
- 10. Md. Zaidur Rahman, Md. Bazlar Rahman and A.S.A.Noor, 0-distributive Nearlattice, *Annals of Pure and Applied Mathematics*, 2(2) (2012) 177-184.