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Abstract. We prove that the property of being proximinalddaive in Banach spaces is
enjoyed by G if and only it?(x,G) has it inL?(u, X). Half of this result has been
done in [2]. Furthermore, we prove that: With thieperty assumed, G is a Chebychev
subspace of X if and only it?(x,G) is Chebyshev inl?(u, X if and only if

L?(u,G) is Chebyshev irL®(u, X ,)1< p<oo.
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1. Introduction
For the subseB of the normed linear spack, {. | ), We define, fox U X, d (xG) = inf

{||X—g||:gDG}. If G is a subspace oK, an elemeng, UG is called a best

approximant ofx in G if [x-g.| = d(xG). We shall denote the set of all best

approximants ok in G asP(x ,G). If for eachx LIX, the seP (x, G) # ¢, thenG is said

to be proximinal inX, and if P(x, G) is a singleton for eachx X thanG is called a
Chebychev subspace.
An increasing functiorg : [ 00) — [ 00) is said to be a modulus function if it

vanishes at zero, and is subadditive. This measisgitx + y) < ¢(X) + ¢(y)for all x
and y in [0,0). Examples of modulus functions arex’, 0 < p<1, and In(1%).
P(%)
1+¢(x)

also evident that the composition of two modulugcfions is a modulus function [5].
Let X be a real Banach space and let (T, 1) beite fineasure space. For a

modulus functiong , we define the Orlicz spade’ (1, X) , as the set

{f T & X; j¢(|| f () du(t) < oo} .

Furthermore, if¢ is a modulus function, theg@(x) = is again modulus. It is
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The function d :L?(u, X) x (1, X) - [0,0) given by:
d(f,9) = j(p(” f (t) — g(t)[) du(t) tunsL?(u, X) into a complete metric space [5].
T

For f OL?(u, X), we write Hfo_[(pQ\fﬁ)H)dﬂﬂ). In what follows, wheng is
T

mentioned, it is to be assumed a modulus functidmwould also like to mention that in
the literature, except for what we partly did ij,[ we did not find conditions under

which the Chebyshevness @fin X is equivalent to the of Chebyshevnd€{, G) in

L?(u, X) and to the ChebyshevnessL8{y,G) in L°(u, X),1< p<o. Here we

show that the condition of proximinal additivitygain, gives the required equivalence.

In the present time, researchers are workinthe extensions of classical results in
which they consider Haar subspaces for approximasiets, for reference one may
consider [4].

2. Proximinal Additivity
Definition 2.1. A subspace G of a Banach space X is said to pinaily additive if G is
closed andz, + z, P (x, + X,,G) wheneverz, 1P (x,G) and z, P (X,,G).
Example2.2. Let X =R? andlet G ={(X,0) X XDF&. ThenG is proximinally
additive inX, with the Euclidean norm.
Lemma 2.3. Suppose thab is a proximinal subspace of a Banach spaead thaiG is
proximinally additive inX. ThenG is a semiChebyshev.
Proof: LetxLIX\G andz,, z, LIP(x,G), then-z,,-z, LIP(x,G)
SinceG is proximinally additive and, LIP(x,G), -z, LIP(-x,G), then
z,+(-z,)OP(x+(-x),G) = z, -z, JP(0,G)
But P(0,G) = {0}, since LIG = 7z -2z, =0= z =z,. Therefore,G is a
semi-Chebyshev subspace Xf &

3. Main results

It is of a great significance to make the followiegima which will be used in the
upcoming results. This lemma appeared with its fprebich we give here, in a
Master thesis written by Dwaik, the coauthor oftb¢l] and [2], under the
supervision of the first author of this article. afhwas at An-Najah National
University back in the year 2000. It turns out thpmbximinal additivity is

transformed from the Orlicz spacE’(1,G to the subspsce G of X. Specifically,
we have the following:

Theorem 3.1. Let X be a Banach space and G be a closed subsgax. If
L?(u,G) is proximinally additive in £( 1,X), then G is proximinally additive in
X.
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Proof: Suppose ¥ ( u4,G) is proximinally additive in ¥ ( i ,X), and let
z, UP(x,,G) for i=1, 2; we want to show, # z, LIP(x, + x,,G).
Now let f () = x, and g, (t) = z,, 0t LI Q and for i=1,2; and since
|X| < 0, OxOX (by definition of the norm ), therf,, f,,g,,9, OL*(, X).
Sincel* (4, X) O L?(u, X )by [5], then f, f,,9,,9, UL ?(u,X) such that for

i=12, g,0L?(u,G).
First, we show that g-/P(f, L?(u,G)) (i= 1, 2).
Now for i =1, 2, we have
z, UP(x,,G) =[x —z|<|x -V OyUG.

= |t -g®)|<[f®-y] OyDGandO DL,

= |f®-g.0)|<|f®)-ht) OtHL andOhl L?(u,G).
Since ¢ is strictly increasing, then we have
Alf,© -9 0D <@l f. ) -h®)), O tH L2 andOhu L (4,6).
= [ -gl,=[f —h||¢,DhU L?(u,G)= g, LUP(f,L?(u,G)i=1,2.
Since LY (u,G) is proximinally additive in £ ( u,X),
0,0, LIp( f,+f, ,L¢(p ,G)). By the same arguments as in Lemma 2.10]of [8
we have that (g+ g,)(t) Lp(( f,+ £,)(), L‘”(,u,G))) a.e. t
Hence, z+ z, LIP(x,+ x, ,G). Therefore G is proximinally additive in &.

Remark : By [(2.3) of [2]), theorem (3.1), now reads:
Let X be a Banach space aflbe a closed subspace Xf ThenG is proximinally

additive inX if and only ifL? (i ,G) is proximinally additive irL?( 1 ,X).

Theorem 3.2. Let G be a closed subspace of a Banach spaceeX. thi following are
equivalent :
() G is proximinally additive in X

(i) L' (u,G) is proximinally additive in L( z,X).

Proof: Suppose (i) holds and let, for i=1,%, OL" (,X) andg, OP(f ,L' (u,G).
Our objective is to show thay, + g, OP(f, + f,, L' (¢,G).

By [Lemma (2.10) of [8]], for i=1,2,q, (t) U P(f,(t),G)aetT . This, by proximinal
additivity of G in X, implies that(g, + g,)(t) OP((f, + f,)(t),G)ae tOT.
Hence,d((f, + f,)(t).G) =||( fo+ 1)) = (9, +9,)(t) ” aetuT.

Therefore, we have:

(6, + £)0 - (8, + 6.)O | <[(, + £)0) - ] for all yOG aeOT.

105



A.A.Hakawati and G.Ghawadrah
It now follows that:
||( f,+ f,)(t)— (g9, +9,)(t) || s||( f + f,)() - h(t)|| aeOTand forall hOL' (u,G).
Thus,||(fl +f,)-(g,+ 92)"1 < ||(fl +f,)- h||1 for all hOL'(u,G).
Thereforeg, + g, OP(f, + f,,L" (1 ,G).Hencel" (1 ,G)is proximinally additive in
L (u,X).
For the converse, suppose (ii) holds and let fard= x [ X and z OP(x,G).We

will show thatz + z, OP(x, + X,,G) .To thisend, and for i=1,2, consider the
constant function f, (t) = x and g;(t) =z forall tOT .
Clearly, f, f,,9,,0,0L" (,G) .
Now, fori =1, 2, we have:
[f:® - g, 0] =[x - 2] forall tOT

<|x -vy| for all yOG

=||f,®)~y| for all yOG andall tOT.
Thus, for alli =1,2, and all hOL*(x,G) we have:
|f.(t) = g, (®)] <[ f; ) = h(t)| for all t OT. This implies that
|f. =g, <||f —h|, forallhOL*(x,G)and alli = 12

So g OP(f ,L'(u,G))foralli=1,2.

Since L' (4, G) is proximinally additive inL*(4, X), then :

g, +9, OP(f, + f,,L"(&,G)), and so, again by [8],

(9, +9,)®) OP((f, + f,)(t),G) for all t 0T .Thus z, + z, D P(x, + %,,G).
Therefore, G is proximinally additivell

Theorem 3.3. Let G be a closed subspace of a Banach spaceeX. thie
following are equivalent :
(i) G is proximinally additive in X
(i) LP(u,G) is proximinally additive i’ (i, X ) 1< p<oo.
Proof : Suppose (i) holds and let, for i=1,8,.] L " (x,X) andg, LIP( f,,
L"(u,G)) 1<p<oo .Then for eacthUL " (u,G) we have
I =al, <[ -hl,

Using Lemma (2.10) of [8], one gets thi(t) - g, (t)| <|/f,®) -y ae.
t,dy0G fori =1, 2. Then we have @) L/ P(f, (t,G) ae. t

Since G is proximinally additive in X, then
(9,+ 9,)OUP((f,+1,)(),G) ae. t.
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Hence, for all y1G, we have
I(f,+ £)(0) = (9, + 9,) O < (L + £,)(0) - Y] ae. t
HenceOhU L " (4,G) we have
I(f,+ )0 — (0, + @) <[(f, + ) -ht)|  ae. t
= [(f,+ )0 = (g + g) )" <[(f,+ ) -h®)]° ae. tl<pe.
= | f+ £ = (0, + 0|} <[ f+ f,=h|]
= |f,+f,-(g,+ )|, <[ f.+f,-h| O L"(u,G).
Hence, g+ g, UP(f+f,, L’ (1,G)), 1 <p <. Therefore L (u,G)is

proximinally additive in L° (u,X),1<p<o.
Conversely, let xLIX and z |—|P(xi ,G) for i =1, 2. We want to show that
z,+2, |—|P(x1+ X, ,G). Consider the constant functiofigt) = x; and g (t) = z;, fori =

1,2anddt0Q. Clearly f U L° (u,X), 1<p<w,andg L) L"(u,G)fori=1, 2.
We claim that g|—|P( f,L P (u,G)) fori=1, 2.

[f = al’= [If.®-0®)] du) =[x -z du) <[|x -y dut). oyoc
because ﬂ]PQ(xi ,G). ’ ’

And so for alho L® (u,G) and i=1, 2, we get

[t =gl < [Ix -hol du® =[]0 -ho[ dut) =[f -h].

Then, for aIIhQDL " (1,G), we have] ::i —g [ <[f - . i=12

Hence gOP(f,, L"(u,G)),i=1, 2.

Since L’ (u,G) is proximinally additivein L " (4,X) 1 < p <, then
9,+ g, O P(f+ f,,L7 (1,6)).

Thus for allh 7L " (4 ,G), we have

” 1:1 + fz _(gl + gz)np s ” fl + f2 _h”p

And [f,+f,=(g,+ )|, <[ f,+ f,-h];
Now we have

[+ £, = (9 + &) 0= [I(F + £)0 = (0, + 9,)0)] du(t)

(l<p<o).
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Hx +%) =z +2,)] du(t)
Q

400+ %) = (2 +2)]" u(Q)
[, + £, =hl7 = [lct,+ £.)0) - ho) du)

04+ %) = h(V)] " duact).
So we have thatQ
[+ %)= (@ +2)|" 4(Q) < [[(x+%) = h@)]"du(t), ChIL" (4 G).

In particular, fory(G, let hy M=y 0t0 2 be a constant function, and clearly

h OL P (4 ,G), and so we have
[04+%) =@ +2)|” (@) < [[(x + %)) - Y| du®

fox+ %) = y" w(Q).
Since(u, ) is a finite measure space (i,2(Q) <») and assumg(Q) >0, then
|06 +%) = (2 + )" < (% + %) = " (3.34)
Since Y1G was arbitrary,
|6 +%,) - (z+2)|< |(x +%) -y, DyG.
Hence z+ z, LIP(x,+ x, ,G). Therefore Gs proximinally additive irX. ®
Theorem 3.4. Let G be a closed subspace of a Banach space Xhwhi

proximinally additive in X, then the following aeguivalent:
(i) G is a Chebyshev subspace of X

(i) L?(u,G)is a Chebyshev subspace bf(u,G) .

(iii) L°(u,G)is a Chebyshev subspace bf (1, X)such that< p<oo.

Proof: By theorem (3.7) of [1]Gis proximinal in X if and only if L?(,G) is
proximinal in L?(u, X) if and only if L'(x, G) is proximinal inL*(x, X) . By [[5]
p.297] L'(x,G) is proximinal in L*(x, X) if and only if LP (&, G) is proximinal in

L (u, X) such that< p<o. Now invoke Theorems [(3.1),(3.2) and (3.4)] and
Lemma 2.3. This completes the proof of the theor@®m.

Theorem 3.5. Let G be a closed subspace of a Banach space Xsw@gmubse
L®(u,G) is a Chebyshev subspace d6f(li,X). If G is proximinally additive in

X, then L (u,G) is proximinally additive in E ( 1, X).
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Proof: Let f LIL"(u,X), i=1,2. Since L' (,G) is Chebyshev, then'l( 11,G) is

proximinal in L” (u,X), and so G is proximinal in X. Therefore, G iaédyshev
(because G has is proximinally additive in X). Tieeo 3.3 and Theorem 3.5
imply that L*(4,G) is Chebyshev and proximinally additive irt(lz, X). Then
fori =1, 2,0 h, JL*wG) such thath, /P( f ,L*(w,G)); and since
@] <2f,t)] ae.t, them, L (u,G).
By using the same arguments as in ([3], Theorem 1.&) have h K& [/
P(f,L"(u,G)).

Now sincen, /P( f, ,L*(1,G)), i =1,2, and L(4,G )s proximinally additive
in L*(x, X), thenh,+ h, JP( f + f, L*(&,G)).

Sincef,+ f,0 L~ (x,G) and|n(t) +h,(t)] < 2| f,t) + f,(t)| ae. t then
once again; using the same arguments as in ([&orEm 1.1) we have
h,+ h, JP( f,+ f,,L"(uG)); and since E(u,G) is Chebyshev, then'l( u,G)

is proximinally additive in I (x,X). =

Finally, in [2], example (3.8), it was showrat being proximinally additive is
not sufficient for subspace G to be proximinakKin
Specifically, we have the following:

Example 3.6. Let X =c,, the space of null sequences, equipped with tpe su

norm. LetG :{XDCO SIVADEE 0}.
n=1
We found it worth proving that this space is ttial. The following setup
shows how, and was suggested by Heavilin duringsia at An-Najah National
University back in the year 2007/2008. Here isdbiestruction:

Choose a real sequenge (x,) 0 (c, \G sugh thatz 27"x, <o, and assume

n=1

thata = iZ‘“xrl # 0. Now, consider the sequence = (y,) =

n=1

-a if n=1
X, ifnx2

It is clear thaty # 0 and we want to show thatJG. To this end;
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:—£+£22_mxm :—£+£:O_
2 24 2 2

Therefore,y 0 G and soG is not trivial.

4. A note on optimization theory

Optimization in mathematics is to search for mdaysvhich extreme values of
functions are detected within some feasible regfogood optimizing technique
is expected to arrive at best solution(s). Part®larm Optimization (PSO) is,
now, a standard method of advanced optimizatiomnigoe and has been
empirically shown to perform well on many of theggimization problems. It is

lucidly and widely used to find the global optimwwolution in a complex search
space. This, in a sense, is another face of bgsbxipation theory, each in its
field of application. The difference is in the fabtat, optimal solutions occur as
values of functions while proximinal maps have basic problem of non-being
linear. It is routine check [by 3.2 of 2] that tieearity of proximity maps should

be maintained under proximinal additivity. Havingng this, the scope of
invoking such maps in the theory of best approxiomatvill be much wider. For

further development, we would like to refer thedesato [1,2,7].
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