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Abstract. We round up the concept of cone metric spacesjvayggmajor tries, to make
general, the concept of metric spaces. Authoraydweached the conclusion that they
didn't really arrive at any clear generalizatiofe last try was given in [5] where the
paper set closed, the possibility for cone metadse real generalizations of metrics.
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1. Introduction

The concept of cone metric spaces goes back to W880e until that time, fixed point
theory was systematically dealt with, essentidlypugh contractive conditions on maps.
However, there are fixed points for maps which dbsatisfy any contractive condition
[1].The cause, therefore, was to find means, atien metrics, to check for fixed points
for maps which do not satisfy regular contractieaditions. What should replace 49,

as a scale of distance, the question was. The amggealmost unanimous; Cones in real
Banach spaces. We begin with the following backgdou

Definition 1.1. Let E be a real Banach space with nofr). A nonempty convex closed
subsetP [J E is called a cone if it satisfies:

i) P#{0}.

ii) O<a,b0R and x, yOPimply that ax+ by P.

iii) xOP and —xOP imply that x =0.

The spaceE can be partially ordered by the coRd] E as follows:x <y if
and only if y—=xOP. We write Xx<<y (X is way behindy) if y—xUOP°, where
P° denotes the interior ¢1.

Also, x < ymeans tha < ybut x# y.
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Definition 1.2. [8] A cone P in (E, |.|)) is called:

(N) Normal: if there exists a constank >0 such that:0< x<Yy implies that

[ < K]yl

The least positive integde is called the normal constant BX. It is known that there are
no cones with constark <1, [9].

(R) Regular: if every increasing sequence which is bounded@lmconvergent. That is;
if {xn}r121 is a sequence such that<x,<...<yfor some ylIE , then there is

x[J E such thatlim|x, — x| = 0.

Equivalently; the cond® is regular if and only if every decreasing seqeemhich is
bounded below is convergent.

(M) Minihedral: if sugx,y} existsfor all x, yOE, and strongly minihedral if
every subset ok which is bounded above has a supremum.

(S)Solid : if P° #g..
In the following, we suppose that E is a real Banggace, P is a cone in E with
nonempty interior ang is the partial ordering with respect k.

Definition 1.3. [1] Let X be a honempty set. Assume that the mapping
D: Xx X - E satisfies:

i) 0<D(xYy) for all x,yOO0X and D(x,y)=0if andonlyif x=y.

i) D(x,y)=D(y,x) for all x,yOE.

i) D(x,y)<D(x,2)+D(zy) for allx,yand zOX .
Then D is called a cone metric oK , and (X, D) is called a cone metric space.
We give the following examples:

Examplel.4. Any metric space is a cone metric space vtk [0, ).

ExampleL5. [10] Let q>0,E =19,andP ={{x } ., DE:x, =0 for alln. }
Let (X, ,0) be a metric space arl: X x X — E be defined by:

d(x,y)= pxY) . Then(X,d) is a cone metric space and the normal constant
2" .

of P is equal to 1.

Now, from the top of One’s head, replacing the interiiado) with arbitrary
cones, which are many, reveals obvious generdlityas we will see, the answer is not
as (clear-cut) affirmative as One wishes. In fachody has ever been able to explicitly
define generalityln a sense, it should mean that we can completdgribe fixed point
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occurrence in terms of cone metrics. Specificdlynap T has a fixed point if and only if
it obeys some contractive condition subject to soore metric D.

The following list of definitions is essential cammakes up exact mimics of their
classical synonyms.

Definition 1.6. Let (X,d) be a cone metric space afx),) be a sequence iX , then:
(xn) is said to be convergent if for every e >> 0 there isn, [1 N such that:

n=n, = d(x,,X) <<e. In this case, we write, — X.

(xn) is called a Cauchy sequenceXnwhenever for everg >> 0 there isn, [1 N such
that: mn=n = d(x,, X ) <<e.

(X,d) is called a complete cone metric space if evenycBp sequence is convergent.

Pathologically, The theory of cone metric spaces \wotivated by the observations
reviewed by the following examples :

Example1.7. Let E=R*and let P ={(x, YOR?: X,y 0} :
Then P is a normal cone in E .

Let X :{(x,O)D R?:0< xs]}D{(O,y)D R*:0< ysl}.
Consider the mapping : X x X - E defined by :

d((x.0),(y.0) :(§|x—>4 x=y]),
d((0.%).(y.0)) = (x— ] §|x— W),

d«x,O),(o,y))=d((o,y),(x,0))=(§x+y,x+§y>.

Then (X,d) is a complete cone metric space.
Take the mappingl : X — X defined as :

T((x0))= (0,%) and T((0,x)) = (g x0) .

Now, T satisfies the contractive condition:
AT (04 %)), T (Vi ¥2))) < k(% ), (%1, ¥2)) For all (%, %), (s, y,) O X,

with constantk = %D 0D .

It is obvious thafl has the unique fixed poirﬁ0,0) of X . But, on the other
hand, we see that is not a contractive mapping in the Euclidean imein X .

Example 1.8. [13] LetE = Cé[O,l] be the space of all first differentiable functimrsthe
interval [0,1] being equipped with the nofpx| = | +HX/H .
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Let P :{XD E:x(t)=0forallt [0,1]}. Then P is a cone which is not normal.

n

Now, consider, for eachN, x,(t) = t—and Y, = 1 .
n n

Then, ForallnON,0<x, <y, andlimy, =0. But we have:
tn . n-1.
gl =ma st 02+ a1 D103

So,||xn||=%+1>1.

Hence, the sequende,,) does not converge to zero. Thus, the Sandwich ¢hedails

here.

What happened in this form of partial order is ttiet cone is not normal. The
components of the string of inequalities do notaambe consistently with the norm-needs
when invoked.

Having noted this, we, on the one hand, have a isggmnew partial order
which may host contractive conditions that metpaces don’t. But, on the other hand,
unless the cone is normal, we lost one of the nmogbrtant tools in analysis, the
Sandwich theorem [.].

So the guestion has always been: Do cone metidly generalize metrics?
Recently this question has been investigated byymaathors and was answered in the
negative in many occasions. This article is intehiepresent the most recent major tries
along those lines.

It remains to mention that it was Bogdan Rzepeekio appeared to us in the
literature to introduce the concept of cone andecmetric (as a generalized metric ).
That was in 1980 [14]. Then in 1987 an articlettadi“a common fixed point theorem in
abstract spaces” came out by Lin, S.-D. Howewer2007, when L.G. Huang, and X.
Zhang, wrote their article “ Cone metric spaces fixetl point theorems for contractive
mappings”, researchers started to consider thetieafunders of the topic. Readers are
urged to see this development in [1]. Throughoig #ticle, unless otherwise specified,
we assume that E is a Banach space, and P is tieeiccE which induces the partial
order.

It is necessary for us to mention, here, that itts¢ &uthor was among those who
were trying hard to introduce means of generatimafor the concept of metric in the
theory of cone metric spaces . But, as the curagtitle shows, This attempt is an
impossibility.

We would also like to point out that it is evenatimematician's interest to find
means of, relatively, weak, or sometimes stronglitmms, under which One can embed
certain aspects. For deeper study, the reader amjder [15], [16], and [17].

2. Cone metric toplogy

It was noted that metrics and cone metrics plainrchangeable role in the generation
of topology, the same topology. Thus, it is impbksifor a topologist to distinguish
between the two terms. This fact disables the kefinc generalization means through
topological tests. Here are the details.
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Theorem 2.1. [2] For every cone metri® : X X X - E there is a metric
d: XxX - [0,00) which is sequentially equivalent to D . This mednst D and d
have exactly the same convergent sequences.

One way to do this is to take (X, y) = inf{||u||: D(x,y) < u} .

Theorem 2.2. [4] Every cone metric spadeX, D) is a topological space which is first
countable.

. 1
As usual, for local bases, One can take for laddtsut a pointp of X, B(P,—c).
n

Theorems [2,3] imply :

Theorem 2.3. [3] Suppose thatX, D) is a cone metric apace afig is the topology
induced onX by D. Suppose thatd is the metric induced oiX by the cone metric
D, and letT, stand for the topology oiX generated by the metrid. ThenT, =T,.

In conclusion for this section, there will be n@ge of generalization along topological
occur ounces.

3. Cone normed spaces and best approximation
In the normed linear spadeX,| . ||) . We define, for

xDX,d(x,G)=inf{||x—g||:gDG}. If G is a subspace oK, an elemenyy OIG is
called a best approximant afin G if |x—g.| =d(x,G) . We usually denote the set of

all best approximants atin GasP(x,G). If for each x X, the set P(x,G)# ¢ ,
then G is said to be proximinal ixX , and if P(x,G) is a singleton for eachxd X

then G is called a Chebyshev subspace Xf A classical reference for best
approximation theory in normed spaces we alwaysiden [5]. We also refer readers to
[8,9] for recent developments in the theory. Bembe approximation theory is now
being embedded in cone metric spaces and henamerormed spaces which we. It is
advisable that readers see [6] for classificaticeans of best approximation in cone
normed spaces.

Definition 3.1. Let X be a real vector space afidbe a real Banach space ordered by
the strongly minihedral conP . Then the ordered pair

(X,].].) is called a cone normed space whe#) : X — E is a function such that:
) | x|, =0and|x| =0if andonlyif x=0.
i) [ax|, =|a]| x|, for all aDR and all xOX.
W eyl <, +Is, for ailxy .
For a subspac& of X and x[ X, we define the cone metric distance betwgeand
G as:d, (xG) =inf{x-g|_: gOG}.
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The techniques of the following result are true rosmof parts of a master's
thesis written back in the year 2000 at An-Najaltidvel University by Dwaik and
supervised jointly by the first author of this maarpt and Deeb. The thesis was
considering classical best approximation in norrspdces, and entitled as “The S-
Property and Best Approximation”.

Theorem 3.2.[3] Let (X,||.| ) be a cone normed space aBdbe a subspace o .

Then:
a) d.(x+9,G)=d.(x,G) forall xOOXandg[G.
b) d.(x+y,G) <d.(x,G) +d.(y,G) forall x,y[ X

0 d,(a x,G) =|ald,(x,G) forall @ DRandxO X

d) ”dc(X’G) —d.(y. G)”c s ”X - y"c :
We also have the following:

Theorem 3.3.[3] Let (X, .| ) be a cone normed space a@Bdbe a subspace o .
Then:
a) If xOG thenP,(x,G) ={x}
b) If Gis not closed ther.(x,G) =g forall x X .

c) forall xOX, P.(x,G) is a convex set .
For the next result, we need to make the follovdefnition .

Definition 3.4. [7] Let (X,|.|.) be a cone normed space. A subéeof X is said to be
bounded in X ifsupﬂ|x— y|, :x yO A}existsin E.

Theorem 3.5.[3] LetG be a subspace of a cone normed sifacg .| ) . Then :
(a) The setP.(x,G)is boundedfor all x[O X .

(b) If G is closed then the s& (X,G) is closed for allx[] X .
For a conclusion of this section, we adoptftilewing:

Definition 3.6. [3] Let (X,|.||.) be a cone normed spac®,0] X,andx [ X .

We say thatx is orthogonal tdG , written X J G if
|¥. <[x+ag]| forall scalarseandg 0G..

Theorem 3.7.[3] Let (X,|.|.) be a cone normed spac@,d X, xO X \GandgOG.
Then: g0 P.(x,G)if andonlyif (x-g)0OG.
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It is therefore evident that, in terms esbapproximation, cone metrics do not make
any remarkable extension to cones.

4. A list of generalization thoughts
As we saw in example (1.7), L.G. Huang, X. Zhangstaucted a map with a unique
fixed point. That map did not obey any metric caation conditions, but satisfied a cone
metric contraction condition from which they dreleir conclusion of the existence of
the unique fixed point.

That was basically the motive to search for geimtbn means. But then
researchers started to get negative results irditéstion. Here are some tries.

Proposition 4.1. [4] We had already seen (Theorem 2.2) that cone negtaces are first
countable. Furthermore, sequentially compactaetsompact, just as in metric spaces.

Proposition 4.2. [2] Every cone metric space is metrizable (by Theoret) @nd the
equivalent metric space satisfies the same coiveaconditions as the cone metric. So
most of the fixed point theorems which have be@vgul are straightforward results from
the metric case.

Proposition 4.3. [11] Let (E,|.|)) be a real Banach space with a strongly minihedral

normal cone P. Then there is a nc{rihﬂ] on E with respect to which P is a normal cone
with normal constant 1.

Remark 4.4. [10] We find the following statement as the conclusioade in [10]:

Every theorem about Banach spaces is autcatigitirue for the corresponding cone
metric spaces, so it is redundant to prove redoltsone metric spaces where the
underlying space is a real Banach space.

Remark 4.5. The resulof proposition (4.2) was first conjectured wittopf in [10].
Authors of [11] proved the result in a totally @ifent approach. This, now, makes
Remark (4.4) stronger.

5. A concluding note
We remind with the following:

Definition 5.1. [14] Let (X, D) be a cone metric space. A functidn X — Xis called
a contraction if there i® < c <1 such thatD(f (x), f(y)) <cd(x,y) forall x,y X..

Remark 5.2. [14] In general, contractions are used in fixed pdiebty. One can easily
show that if the function f is a contraction foethone metric spacgX, D) then it is

also a contraction for the metric spgc€,d), whered is the induced metric oX by
the cone metrid as in (2.1).
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Thus, after a sum of more than six hundred pagesting with cone metric spaces have
been published so far, the notion of cone metracsp is not more general than that of a
metric space [14].

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

REFERENCES
L.G.Huang and X.Zhang, Cone metric spaces and fixaéat theorems of contractive
mappings,J.Math. Anal. App).332 (2007) 1468-1476.
M. Asadi, S.M.Vaezpour and H.Soleimani, Metrizdlilof cone metric spaces,
arXiv.org > math > arXiv:1102.2353v1, 2011.
A.Hakawati, S.AL-Dwaik, Best Approximation in conaermed spaceg\n-Najah
Journal of Scientific Researct80(1) (2016) 101-110.
D.Turkoglo and M.Abuloha, Cone metric spaces anadi point theorems in
diametrically contractive mapping&cta Mathematica?26(3) (2010) 489-496.
I.Singer, Best approximation in normed linear spaty elements of linear
subspaces, Springer-Verlay, New York.
S.Rezapour, Best approximation in cone metric spddathematica Moravicall
(2007), 85-88.
T.Abdeljawad, D.Turkoglo and M.Aboloha, Some the&eseand examples in cone
Banach spaced, Computational Anal. And Ap.2(4) (2010) 739-753.

A.A.Hakawati and S.A.Dwaik, On best approximationi(x, X)and L?(u, X)

Annals of Pure and Applied Mathematit2(1) (2016) 1-8.

A.A.Hakawati and S.A.Dwaik. On best Approximatidmurnal of Mathematics and
Informatics 6 (2016) 31-39.

M. Asadi, M. Vaezpour, B. Rhodes snd H.Soleimangtfizability of cone metric
spaces via renorming the Banach spatldéA 2012, 1-5. Article ID jnaa-00160.

A. A. Hakawati, H. D. Abu-Sarris, Cone metric spa@re usual metric spaces by a
renorming in the Banach spackurnal of Nonlinear Analysis and ApplicatioB,
(2016) 106-110.

Z. Ercan, On the end of the cone metric spatepplogy and its Applicationd66
(2014) 10-14.

M. Asadi and H. Soleimani, Examples in Cone MeBjgaces: A SurveyMiddle
East Journal of Scientific Researdi(12) (2012) 1636-1640.

Rzepecki B. On fixed point theorems of Maia tygeyblications de ['Institut
Math’ematique28(42) (1980) 179-186.

A.A.Hakawati, B.Manasrah and M.Abu-Eadeh, Weak ewgence of filters.
Progress in Nonlinear Dynamics and Chabgl) (2017) 11-15.

A.A.Hakawati and M.Abu-Eadeh, On weak convergerfdéters and netsAnnals of
Pure and Applied Mathematic4 (3) (2017) 525-530.

A.A.Hakawati and M.Abu-Eadeh, On strong topologiaghects in uryson spaces,
Annals of Pure and Applied Mathematit§(1) (2018) 117-125.

L.A.Zadeh, The concept of a linguistic variable atdapplication to approximate
reasoning-l, Information Sciences, 8 (1975) 199-249

J.E.Hopcroft and J.D.Ullman, Introduction to Autdemarheory, Languages and
Computation, Addison-Wesley Publishing, Reading,,l¥9.

106



