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1. Introduction
In 1940, Ulam [22] proposed a general Ulam stabititoblem in the talk before the
Mathematics Club of University of Wisconsin in whice discussed a number of
important unsolved problems. In the following yeldgers [12] affirmatively answered
partially to the Ulams' question. Further in 19R8ssias [20-21] generalized the results of
Hyers' and since then the stability of functiormli@ions have been investigated by many
researchers as an emerging field of mathematicalysis [1,2,5,13,14,16,18] and the
books [15,17,20-23].
Existence and uniqueness of solutions of varioasscbf fractional differential
equations are recently studied by the authors,#163L1] by using variety of techniques.
In this paper, we will study four Ulam-type stati@s of solution of nonlinear
initial value problem (IVP)
fx(t) = f(t,x(t),Dfx(t)), t€]=[LT]T>1, 1
(x(k)(l) =x, x€RY, k=01,--,m—1, @)
for system of implicit fractional differential egtions for somex € (m — 1,m], m € N,
where f: ] x R® X R™ - R™ be a nonlinear continuous functiatt,] - R™ and DY is
the Caputo-Hadamard derivative of order
The rest of the paper is organized as follows:€ati®n 2, we give the definitions
and preliminary results. In Section 3, we prove fhar Ulam-type stabilities. An
illustrative example is given in last section.

2. Preliminaries
Let B = C™(J,R™) be a Banach space of continuous functions ffomto R™ having
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mt" order derivatives with supremum notin ||g. The well-known function frequently
used in the solution of fractional differential egjons is the Mittag-Leffler function

k
E.(2) =Y2, m z € R,Re(a) > 0, 1)

whereTl'(x) = f0°° e~ tt*1dt,x > 0, is the Gamma function.

Definition 1. [17] The Hadamard fractional integral of order @ > 0 for a continuous
function g(t):[1,+o) — R isdefined as

~ 1 ot _ d
3F9®) =1 Jy Qog D g(®)T, a>0. @)

Definition 2. [17] The Caputo-Hadamard fractional derivative of order a for a

continuous function g(t): [1,4+) — R isdefined as

1 t t\n—q— d
49(t) = s Jy (0gD" IO F, n—1<a<n, ()

whered™ = (t%)”,n € N.

Lemmal. [17]Ifm—-—1<a<mmeN and g € C™[1,T], then
~ -1 9P@
JE[DF9(] = g(t) - BRE Fy) (ogd™

Lemma?2.[17] Forall u >0 and v > —1,

Lt oe By (ogs)r & = L@+
F(u)fl (logs) (logs) s I(u+v+1)

(logt)#*v.

Lemma3.[17] Let g(t) =tH, where u > 0 andif m—1 < a <m,m € N, then
0 if ne{01,---,m—-1},

a T I
D1 (logt) (% (logt)[t+a’ if ueNu=2m or puegN,u>m-—1.

Lemma4.[19] Forany t € [1,T],

t tyog— da
u(t) < a(t) +b(t) f; log)*  u(s) =,
where all the functions are not negative and copotis. The constant > 0,b is a
bounded and monotonic increasing function[dyT"), then,

u(®) < a(®) + J; (S Chre-log )" ta(9)] T, t€[LT).
Remark 1. Under the hypothesis of Lemma 4, if a(t) be a nondecreasing function on
[1,T). Then

u(t) <a@)E,(b(tH)I'(a)logt®).

Definition 3. A function x € B is said to be a solution of problem (1) if x satisfies
nonlinear implicit fractional differential system of equations

Zx(t) = f(t, x(t), D¥x(t)) on J together with initial conditions x®) (1) = x;, k =
01, m—1 x, €ER", m—1<a<m, meN.
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3. Ulam-type stability
In this section, we present our main results caringrthe stability of solutions for IVP

1)
The following lemma is proved in [11] which is egalience of IVP (1) with
integral equation

)k + 1 HNa-1 as
wherep € B satisfies the functional equatlon
P(O) = f(t, X i (logh)* + 3{p(6),p(D), tEJ. (5)

Lemma 5. [11] Suppose that f:] x R™ x R® - R" be a continuous function. Then
system (1) isequivalent to the fractional integral equation (5).
Next, we make the following assumptions:
] xR"x R®™ - R" be continuous function and satisfies the Lipsetyipe
condition: forx, y, %, € R™ there exist constantd > 0 and0 < N < 1 such that

W @&xy) = f&EDI < Ml|lx —X[]| + Nlly =3[, te].

(H2) Let ® € C(J,R,) be a nondecreasing function. There exists a conhsta
K > 0 satisfying0 < K6 <1 and

I i i Qog ) @) TS KD(0), te],

whereg = 2L > 0.
1-N

Lete >0 and®:]J » R, be a continuous function. We consider the follayin
inequations:

1Dy () = fty(@©, DIyl e, t€], (6)
1Dy (®) = fFy(©, DIy < @), t€], (@)
DTy (@) = fF&y(©), DIy(O)| < e®(t), t€]. (8)

Definition 4. Problem (1) is Ulam-Hyers stable if there exists a real number Ky > 0 such
that for each € > 0 and for each solution y:J - R™ in B of inequality (7), thereexistsa
solution x:J = R™ of Problem (1) in B with

ly(®) —x(O|l < eKp;  tE].

Definition 5. Problem (1) is generalized UlamHyers stable if there exists y €
C(R,,R,),1p(0) = 0 suchthat for each € > 0 and for each solution y:J - R™ in B of
inequality (7), thereexistsa solution x:J - R™ of Problem (1) in B with

lly(®) —x®OIl =¥(e);  tE].

Definition 6. Problem (1) isUlam-Hyers-Rassias stablewith respect to @, if thereexistsa
real number K4 > 0 suchthat for each ¢ > 0 and for each solution y:/ — R™ in B of
inequality (9), thereexistsa solution x:J - R™ of Problem (1) in B with

ly@®) — x| < eKpo®(t);  tE]J.
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Definition 7. Problem (1) is generalized Ulam-Hyers-Rassias stable with respect to @, if
there exists a real number K4 > 0 such that for each £ > 0 and for each solution
y:J] - R™ in B of inequality (7), there exists a solution x:/ - R™ of Problem (1) in B
with
ly@®) — x|l < Kpp®P(t);  tE]J.
Now we see Ulam-type stabilities for Problemi{§)using successive approximations.

Theorem 1. Supposethat f satisfies assumption (H1). For every € > 0, if y:J - R" in
B satisfies inequality (7), then there exists a unique solution x:J — R™ in B of Problem
(1) with x®1)=y® 1), for k=0,1,--,m—1. Moreover, Problem (1) is
Ulam-Hyers stable with
M
y@®) —x@®ll < ( )e, t€), and 8 = (;=) > 0.
Proof: For everye >0, lety:] - R" in B satlsfies inequality (7), then there exists a
function g, (t) € B (depending ory) such that
lloy (Ol <& and DIy(t) = f(L,y(t), DIy(®)) + 0oy (t), tE].
In the light of Lemma 5y satisfies the fractional integral equation
(k)
Y(©) = I35 T (080* +31p°(0) + S50, (1), ),

wherep® € B satisfies functional equatign® (¢t) = f(t, y(t),p°(t)) for t € J.

Define x°(t) = y(t),t € ] and consider the sequenfe’} € B given by

Ea(Q(logT) -1

(Greh
() = TR gy (080" + 55 [y Qog)* P/ ) T te), (9)
wherep/~1(t) € B (j € N) is such that
P/ @) = f(t,xI @), p (D), tEJ. (10)
By using the principle of mathematical inductiwe prove that
_ 1 e [6(logt)*)) ,
/(O = Ol S gy JENTES. (11)

First we show that inequality (12) is true foe= 1. By using successive approximations
for any t € J, we obtain

1 ~
[l (6) = x°(O1] =1 £ 22 (loge)* + 3¢p°(0) = ¥(©)

(1) -
=1l ¥ i(kﬂ)( 0gt)" + i J; (log )™ 1P ()T

— (s 228 (logn)* + 3Ep°() - 35y (0) |
= 1350, @l
<t Ji (0g)* Moy OIS

(logt) teJ

F(a+1)
which proves inequality (12) fgf = 1. Now, we assume that the inequality (12) hold for
j=r,r€N and prove it forj=r+1. Again by definition of successive
approximations, for any € J, we have

2@ = 2" Ol < 5 Jy Gog D Hp"®) =p I (12)
Sincep’(t) = f(t,x/ (t),p’(t)), t € ] and using assumption (H1), we have
p" (@) —p" YOI = [If (&, x" (), p" () — f(&x"1(®), p" ()
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< M||x" (&) = x"" 1O + NlIp™ (&) —p" (O
=0|lx"(t) — x|, tEJ.
Using the above estimate in inequality (13), wiainb
6 _ _
[l () —x %wu<§5ﬂ<lfwlnw%®—xr%@m?
1 £ [6(logs)*]", ds
F(a)f ( )“ 9 F(ra+1) ]

a— l(logs) ds
F(ra+1) (f ( ) I'(a) s)
_ £(600g)y)+D)
T 0 Ta(r+D+1) ’ J
which is inequality (12) foj = r + 1. The proof of inequality (12) is completed by the
principle of mathematical induction.
Furthermore, for any € J, from inequality (12), we obtain

J(t) —xJ=1 Eyoo  (6(logN)®) ;
2/ () = x77 (Ol < g Xjia TGorD and j € N.

This gives

|Ix7(£) = x/71 ()] < 5 (B (6(logT)™) — 1). (13)
Hence the series®(t) + X1 [x/(t) — x/~1(t)] converges absolutely and uniformly

on J with respect to the norrfj - ||. Consider

x(t) =x°®) + X2 [ (@) -2 @®)], teE). (14)

Then
x'() = x°(t) + Xjoy [ () =/ ()]

is thert" partial sum of the series (15), and gives

Tli_)r£10||xr(t) —x(t)|| =0, for all t €]. (15)
Since convergence is uniform,e B. We prove that the limit functiow is a solution of

()
x(8) = TR Fop Uogt)* + i [} (o8 )™ ()T, e,
wherep € B satisfies the functional equatiar(¢t) = f(t, x(t),p(t)), t €.
For anyt € J, we provep” € B, (r = 0,1,---) generated in (10) satisfies
lim ||p"(©) = p®)I| = 0. (16)
Using assumptiorfH1), we obtain
lIp" (@) = pOIl = 1If (&, x" (), p" (1)) — f (&, x(2), p(O)I]
< M||x" (@) — x|l + N|p" () = p(®)]]
=0llx"(t) —x(®Il, te]. a7)
Further, using equation (16), equation (17) caedmly proved. Again, by definition of
successive approximations

I 2(t) = RS tgergy (log )R+T>f (log9)* p(s) <
=l x(@®) —x/() +3 pJ 1(t) 3@ |l
< le(t)—x’(t)ll+ra)f (log )“'1llpj'1(5)—p(5)ll%

Note that left hand side of above inequality ideipendent of, taking limit asj — oo,
we obtain

x(6) = S 2 (logd) + = [} (ogH*p() %, te). (18)

k=0 rr+1)
This meansx(t) is solution of Problem (1) with initial condition
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x® (1) =y® 1), x®),y®1)eRk=01,-,m—1.
Lastly, from inequality (14) with series (15)fillows that Problem (1) is Ulam-Hyers

stable with
Ea(G(logT) )—-1

y (@ —x(@©Ol] = ( )e, tE]. (19)

To prove uniqueness of solutior(t), assume thak(t) is another solution of
Problem (1) with initial conditionx® (1) = y® (1), x®(1),y® (1) e R", k=
0,1,---,m—1. Then

_ 1) 1, \d
x(t) = sy i(,m)( g + 1 i Qog ) p() T, tel,

wherep € B satisfiesp(t) = f(t, x(t), p(t)). Therefore
12(6) = 21| < 15 J; (og )™ Ip(s) =PI, t€].
By hypothesis (H1),
llp(®) =D < 0]|x(t) — x(O)].
Hence
_ 0 _ _
12(®) = ¥ O] < 705 J; (og )™ Ix(s) = XN T, t €.
Applying Lemma 4 to above inequality with(¢) = ||x(t) — X(t)|| anda(t) = 0, we
obtain ||x(t) — x(t)|| = 0, for all t € J. The proof is completed.

Corollary 1. Suppose that all the assumptions of Theorem 1 are satisfied. Then Problem

(1) isgeneralized Ulam-Hyers stable.
Proof: Let y(e) = (200D "0, in (19) theny(0) = 0. Thus, Problem (1) is

generalized Ulam-Hyers stable.

Theorem 2. Suppose that (H1) and (H2) hold. Then for every e > 0 and y:J - R™ in B
satisfying inequality (9), there exists a unique solution x:/ - R™ in B of Problem (1)
with x® (1) = y® (1), k =0,1,---,m — 1, that satisfies
ly(®) = x| < () @(®), tE].
Proof: For everye > 0, let y:J - R" in B satisfies inequality (9). Then there exists a
function o, € B (depending ory) such that
lloy (O] < e®(t), and DIy(t) = f(t,y(t), DIy(t)) + 0y (t), tE].
By Lemma 5,y satisfies the fractional integral equation
y(©) = S35 22D (logt)* + 3£p°(6) + 30, (1), L €,
wherep® € B satisfies functional equatign(t) = £(t, y(t), p°(t)),t € J.
Consider the sequende’/} € B defined by (10) withk®(t) = y(t),t € J. By
the principle of mathematical induction, we prokiatt
|Ix/ () = /"1 (D) < 5 (KOY d(t), jEN,tE]. (20)
First we show the inequality (21) is true fo= 1. For anyt € J, using definition of
successive approximations and assumption (H2),ave h
llx* (&) = x° (O = |Ix* (&) — y @)l
= I3y (DIl
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< r i Qog ) Moy (NI
a— ds
< m,)f (logH)* 1 d(s) <
=l @ )f (log )“ 1<I>(s)
< S (KOYD(t), te].

Thus, inequality (21) holds fgr= 1. Assume that inequality (21) is true fpe= 7,7 €
N and using similar arguments as we presented ioréhe 1, we have

|lx7*2 () — T(t>||<@f (log D ||x"(s) = x (IS
s F(ga) f (log )“ 1(1)(5)—

= e(K6)" "T)f (log )“ (s )—||

< e(KO)TKD(0).

Therefore
Ix7*1(1) = x" ()] < 2 (KO (1), t€],
which is inequality (21) forj =r + 1. By the principle of mathematical induction,
inequality (21) istrue for all and the proof of inequality (21) is completed. Nasing
inequality (21) and assumptidh< K6 < 1, we have
T IX(© =T ©1 < 2 Ty (KNP =5 (72, (6K = D).

Therefore

T @) -l < 5 (

Since ®(t) is continuous on compact sgtit is bounded. Clearly, from above inequality
(22), it follows that the serieg®(t) + Y1 [x/(t) — x/~1(t)] converges absolutely and
uniformly on J, with respect to the norrij - ||. Define

x(®) =x°() + T2 () — 2D, te), (22)
and following the proof of Theorem 1, finally wbtain

lly(®) = x(@®)]] < e(Z D), tEJ.

re ~ DO = g(ﬁ)q)(t)- (21)

Corollary 2. Under hypothesis of Theorem 1, Problem (1) is generalized Ulam-Hyers
-Rassias stable with respect to @ € C(J, R,).

Proof: Sete =1 andKy 4 = %, it directly follows that Problem (1) is generalize
Ulam-Hyers-Rassias stable.

4. An example
Let R? be the normed space with the norm

_ _ x|l = el F ], x = (x,x,) € R2,
Consider the following nonlinear implicit fractiahinitial value problem
5
( Dix(t) = f(t,x(0), Dix(t)), t€[le] (23)
x® 1) =x,, xx €R%Lk=0,1,2,

wherex:[1,e] » R? and a nonlinear functiofi: [1,e] X R? X R? - R? as
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(£, x (), D2x(t)) = f(t, (x1 (L), x2(6)) (D2x1 (), D32, (1))

— log(2+t) D22 (8) |+]D2x, (1)

, : 9 5 teftel]
PO POF 2442, (014102, 0

For anyx = (x1,%),y = (y1,¥2), X = (X1,%,),§ = (J1,¥2) € R?, we have
||f(t,x,y) _f(t'f')_])” < ”f(t' (xlle)' (yl'yZ)' (}_]1'}72))”

1l ( log(2+t) [y1l+1y2|
T+xq |[+]22] " et +1(1+]yy | +]y2])
—( log(2+t) 7114172

1+ [+]%2] " e +1(1+] 74 [ +]72])
1
=l (log(2 + t -
(og(2 + Ol o) ~ Timivim
1 [ Yal+ly2]  —  |Val+]Y2l D I
241 L4y [+]y,| | 1|+||371||‘|'||372|| o
X1|=|xq1|+]|X2|=]x2
=l (log(2 +t ——
(og(2 + Ol Feparim D
1 [ [Y11=¥11+|Y2]— P2 D I
et +1 LA+ y [+|y2 ) (1+71 [ +1721)

|1 |=|x1]|+]X2|—|x;]
= log(2 + ¢
08(2 + Ol T mea B+ 15D

1,

e

1 | |Y1|=|F1|+y2]=172] |
et?+1 ! (1+]y |+y2 D (A+|T1 [+F2)

For anya,b = 0, we havel < (1 + a + b). Therefore
Ilf(t,af,y) — &P <log(Z + O)|(J%1]| — |x1| + |x2] — [x2]]
tozm [yl = Iyl + vzl = 172D
_ 1 _
< log(2 + O[] = [lxIDI + —=7 Ay I = 1YIDII
_ 1 —
< log(Z + e)||x — x|| + = |ly = ¥Il.

Thus, functionf satisfies condition (H1) witt =log(2+¢e) >0 and0 < N = iz <
e

1. By Theorem 1 [11], Problem (24) has a unique gmiubn [1, e].
Moreover, as shown in Theorem 1, for every 0 if y:[1,e] » R? satisfies

5 5
[|Dix() — f(tx(@),Dix(D)]|| <& te€[le] (24)
there exists a unique solutian[1,e] - R? such that

EE(Q(loge)g)—l
ly(®) = x(©)]] < (Z——)e, for all t€ [Le],

e?log(2+e)

M
wheref = — = @D

. Hence problem (24) is Ulam-Hyers stable.
EE(Q)—l
Next, by corollary 24(e) = —=,—¢ then(0) = 0 which means Problem
(24) is generalized Ulam-Hyers stable.
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