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1. Introduction 
In 1940, Ulam [22] proposed a general Ulam stability problem in the talk before the 
Mathematics Club of University of Wisconsin in which he discussed a number of 
important unsolved problems. In the following year, Hyers [12] affirmatively answered 
partially to the Ulams' question. Further in 1978, Rassias [20-21] generalized the results of 
Hyers' and since then the stability of functional equations have been investigated by many 
researchers as an emerging field of mathematical analysis [1,2,5,13,14,16,18] and the 
books [15,17,20-23]. 

Existence and uniqueness of solutions of various class of fractional differential 
equations are recently studied by the authors in [3,4,6-11] by using variety of techniques. 

In this paper, we will study four Ulam-type stabilities of solution of nonlinear 
initial value problem (IVP)  

 �����(�) = 
(�, �(�), ����(�)),    � ∈ � = [1, �], � > 1,�(�)(1) = �� ,    �� ∈ ℝ�,    � = 0,1, ⋯ , � − 1, �            (1) 

 for system of implicit fractional differential equations for some � ∈ (� − 1, �], � ∈ ℕ, 
where 
: � × ℝ� × ℝ� → ℝ� be a nonlinear continuous function, �: � → ℝ� and ��� is 
the Caputo-Hadamard derivative of order �. 

The rest of the paper is organized as follows: in Section 2, we give the definitions 
and preliminary results. In Section 3, we prove the four Ulam-type stabilities. An 
illustrative example is given in last section.  

 
2. Preliminaries 
Let # = $%(�, ℝ�) be a Banach space of continuous functions from � into ℝ� having 
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�&' order derivatives with supremum norm || ⋅ ||#. The well-known function frequently 
used in the solution of fractional differential equations is the Mittag-Leffler function  

 *�(+) = ∑  -�./ 01
2(��3�) ,    + ∈ ℝ, 45(�) > 0,                         (1)  

 where Γ(�) = 7  
-/ 58&�98�:�, � > 0, is the Gamma function.  

 
Definition 1. [17]The Hadamard fractional integral of order � > 0 for a continuous 
function ;(�): [1, +∞) → ℝ is defined as  

 ℑ��;(�) = �
2(�) 7  

&� (log &
B)�8�;(C) DB

B ,    � > 0.                       (2) 

 
Definition 2. [17] The Caputo-Hadamard fractional derivative of order �  for a 
continuous function ;(�): [1, +∞) → ℝ is defined as  

 ���;(�) = �
2(�8�) 7  

&� (log &
B)�8�8�E�(;)(C) DB

B ,    F − 1 < � < F,    (3) 

 where E� = (� D
D&)�, F ∈ ℕ.  

 
Lemma 1. [17] If � − 1 < � ≤ �, � ∈ ℕ and ; ∈ $%[1, �], then  

 ℑ��[���;(�)] = ;(�) − ∑  %8��./ I(1)(�)
2(�3�) (log�)� . 

 
Lemma 2. [17] For all J > 0 and K > −1,  

 
�

2(L) 7  
&� (log &

B)L8�(logC)M DB
B = 2(M3�)

2(L3M3�) (log�)L3M. 
 
Lemma 3. [17] Let ;(�) = �L , where J ≥ 0 and if � − 1 < � ≤ �, � ∈ ℕ, then  

 ���(log�)L = O0,  P
   J ∈ {0,1, ⋯ , � − 1},2(L3�)
2(L3�3�) (log�)L3�,  P
   J ∈ ℕ, J ≥ �   ST   J ∉ ℕ, J > � − 1.� 

 
Lemma 4. [19] For any � ∈ [1, �],  

 V(�) ≤ W(�) + X(�) 7  
&� (log &

B)�8�V(C) DB
B , 

where all the functions are not negative and continuous. The constant � > 0, X  is a 
bounded and monotonic increasing function on [1, �), then,  

 V(�) ≤ W(�) + 7  
&� [∑  -�.� (Y(&)2(�))Z

2(��) (log &
B)��8�W(C)] DB

B ,    � ∈ [1, �). 
  
Remark 1. Under the hypothesis of Lemma 4, if W(�) be a nondecreasing function on [1, �). Then  

 V(�) ≤ W(�)*�(X(�)Γ(�)log��). 
 
Definition 3. A function � ∈ # is said to be a solution of problem (1) if �  satisfies 
nonlinear implicit fractional differential system of equations  ����(�) = 
(�, �(�), ����(�))  on �  together with initial conditions �(�)(1) = �� , � =0,1, ⋯ , � − 1, �� ∈ ℝ�, � − 1 < � ≤ �, � ∈ ℕ.  
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3. Ulam-type stability  
In this section, we present our main results concerning the stability of solutions for IVP  
(1) 

The following lemma is proved in [11] which is equivalence of IVP (1) with 
integral equation  

 �(�) = ∑  %8��./ 912(�3�) (log�)� + �
2(�) 7  

&� (log &
B)�8�[(C) DB

B ,    � ∈ �,      (4) 

 where [ ∈ # satisfies the functional equation  
 [(�) = 
(�, ∑  %8��./ 912(�3�) (log�)� + ℑ��[(�), [(�)),    � ∈ �.           (5) 

 
Lemma 5. [11] Suppose that 
: � × ℝ� × ℝ� → ℝ�  be a continuous function. Then 
system (1)  is equivalent to the fractional integral equation (5).  

Next, we make the following assumptions:   
    
: � × ℝ� × ℝ� → ℝ� be continuous function and satisfies the Lipschitz-type 

condition: for �, \, �], \] ∈ ℝ� there exist constants ̂ > 0 and 0 < _ < 1 such that  
 ||
(�, �, \) − 
(�, �], \])|| ≤ ^||� − �]|| + _||\ − \]||,    � ∈ �. 

  
 (H2) Let Φ ∈ $(�, ℝ3) be a nondecreasing function. There exists a constant a > 0 satisfying 0 < ab < 1 and  

 ∥ �
2(�) 7  

&� (log &
B)�8�Φ(C) DB

B ∥≤ aΦ(�),    � ∈ �, 
 where b = d

�8e > 0.  

 Let f > 0 and Φ: � → ℝ3 be a continuous function. We consider the following 
inequations:  

 ||���\(�) − 
(�, \(�), ���\(�))|| ≤ f,        � ∈ �,                     (6) 
  

 ||���\(�) − 
(�, \(�), ���\(�))|| ≤ Φ(�),    � ∈ �,                    (7) 
  

 ||���\(�) − 
(�, \(�), ���\(�))|| ≤ fΦ(�),    � ∈ �.                   (8) 
 
Definition 4. Problem (1) is Ulam-Hyers stable if there exists a real number ag > 0 such 
that for each f > 0 and for each solution \: � → ℝ� in # of inequality (7), there exists a 
solution �: � → ℝ� of Problem (1) in # with  

 ||\(�) − �(�)|| ≤ fag;         � ∈ �. 
 
Definition 5. Problem (1) is generalized Ulam-Hyers stable if there exists i ∈$(ℝ3, ℝ3), i(0) = 0 such that for each f > 0 and for each solution \: � → ℝ� in # of 
inequality (7), there exists a solution �: � → ℝ� of Problem (1) in # with  

 ||\(�) − �(�)|| ≤ i(f);         � ∈ �. 
  
Definition 6. Problem (1) is Ulam-Hyers-Rassias stable with respect to j, if there exists a 
real number ag,k > 0 such that for each f > 0 and for each solution \: � → ℝ� in # of 
inequality (9), there exists a solution �: � → ℝ� of Problem (1) in # with  

 ||\(�) − �(�)|| ≤ fag,lΦ(�);         � ∈ �. 
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Definition 7. Problem (1) is generalized Ulam-Hyers-Rassias stable with respect to j, if 
there exists a real number ag,k > 0 such that for each f > 0 and for each solution \: � → ℝ� in # of inequality (7), there exists a solution �: � → ℝ� of Problem (1) in # 
with  

 ||\(�) − �(�)|| ≤ ag,lΦ(�);         � ∈ �. 
  Now we see Ulam-type stabilities for Problem (1) by using successive approximations. 
 
Theorem 1. Suppose that 
 satisfies assumption (H1). For every f > 0, if \: � → ℝ� in # satisfies inequality (7), then there exists a unique solution �: � → ℝ� in # of Problem 
(1) with �(�)(1) = \(�)(1),  for � = 0,1, ⋯ , � − 1.  Moreover, Problem (1) is 
Ulam-Hyers stable with  

 ||\(�) − �(�)|| ≤ (mn(o(pqrs)n)8�
o )f, � ∈ �, and  b = ( d

�8e) > 0. 
Proof: For every f > 0, let \: � → ℝ� in # satisfies inequality (7), then there exists a 
function wx(�) ∈ # (depending on \) such that  

 ||wx(�)|| ≤ f,    and    ���\(�) = 
(�, \(�), ���\(�)) + wx(�),    � ∈ �. 
 In the light of Lemma 5, \ satisfies the fractional integral equation  

 \(�) = ∑  %8��./ x(1)(�)
2(�3�) (log�)� + ℑ��[/(�) + ℑ��wx(�), � ∈ �, 

 where [/ ∈ # satisfies functional equation [/(�) = 
(�, \(�), [/(�)) for � ∈ �. 
 Define �/(�) = \(�), � ∈ � and consider the sequence {�y} ⊆ # given by  

 �y(�) = ∑  %8��./ x(1)(�)
2(�3�) (log�)� + �

2(�) 7  
&� (log &

B)�8�[y8�(C) DB
B , � ∈ �,        (9) 

 where [y8�(�) ∈ # ({ ∈ ℕ) is such that  
 [y8�(�) = 
(�, �y8�(�), [y8�(�)),    � ∈ �.                           (10) 

 By using the principle of mathematical induction, we prove that  

 ||�y(�) − �y8�(�)|| ≤ |
o

[o(pqr&)n]}
2(�y3�) ,    { ∈ ℕ, � ∈ �.                   (11) 

 First we show that inequality (12) is true for { = 1. By using successive approximations 
for any � ∈ �, we obtain  

 ||��(�) − �/(�)|| =∥ ∑  %8��./ x(1)(�)
2(�3�) (log�)� + ℑ��[/(�) − \(�) ∥ 

 =∥ ∑  %8��./ x(1)(�)
2(�3�) (log�)� + �

2(�) 7  
&� (log &

B)�8�[/(C) DB
B  

     −(∑  %8��./ x(1)(�)
2(�3�) (log�)� + ℑ��[/(�) − ℑ��wx(�)) ∥ 

 = ||ℑ��wx(�)|| 
 ≤ �

2(�) 7  
&� (log &

B)�8�||wx(C)|| DB
B  

 ≤ f (pqr&)n
2(�3�) ,    � ∈ �, 

which proves inequality (12) for { = 1. Now, we assume that the inequality (12) hold for { = T, T ∈ ℕ  and prove it for { = T + 1.  Again by definition of successive 
approximations, for any � ∈ �, we have  

 ||�~3�(�) − �~(�)|| ≤ �
2(�) 7  

&� (log &
B)�8�||[~(C) − [~8�(C)|| DB

B .     (12) 

 Since [y(�) = 
(�, �y(�), [y(�)), � ∈ � and using assumption (H1), we have  
 ||[~(�) − [~8�(�)|| = ||
(�, �~(�), [~(�)) − 
(�, �~8�(�), [~8�(�))|| 
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 ≤ ^||�~(�) − �~8�(�)|| + _||[~(�) − [~8�(�)|| 
 = b||�~(�) − �~8�(�)||,    � ∈ �. 

 Using the above estimate in inequality (13), we obtain  

 ||�~3�(�) − �~(�)|| ≤ o
2(�) 7  

&� (log &
B)�8�[||�~(C) − �~8�(C)||] DB

B  

 ≤ o
2(�) 7  

&� (log &
B)�8�[|

o
[o(pqrB)n]�

2(~�3�) ] DB
B  

 = |o�
2(~�3�) (7  

&� (log &
B)�8� (pqrB)�n

2(�)
DB
B ) 

 = |
o

(o(pqr&)n)(���)
2(�(~3�)3�) ,    � ∈ �, 

which is inequality (12) for { = T + 1. The proof of inequality (12) is completed by the 
principle of mathematical induction. 

Furthermore, for any � ∈ �, from inequality (12), we obtain  

 ||�y(�) − �y8�(�)|| ≤ |
o ∑  -y.� (o(pqrs)n)}

2(y�3�)     and  { ∈ ℕ. 
 This gives  

 ||�y(�) − �y8�(�)|| ≤ |
o (*�(b(log�)�) − 1).                      (13) 

 Hence the series �/(�) + ∑  -y.� [�y(�) − �y8�(�)] converges absolutely and uniformly 
on � with respect to the norm || ⋅ ||. Consider  

 �(�) = �/(�) + ∑  -y.� [�y(�) − �y8�(�)],    � ∈ �.                   (14) 
 Then  

 �~(�) = �/(�) + ∑  ~y.� [�y(�) − �y8�(�)] 
 is the T&' partial sum of the series (15), and gives  

 lim~→-||�~(�) − �(�)|| = 0,    for  all  � ∈ �.                           (15) 

 Since convergence is uniform, � ∈ #. We prove that the limit function � is a solution of  

 �(�) = ∑  %8��./ x(1)(�)
2(�3�) (log�)� + �

2(�) 7  
&� (log &

B)�8�[(C) DB
B ,    � ∈ �, 

 where [ ∈ # satisfies the functional equation [(�) = 
(�, �(�), [(�)), � ∈ �. 
For any � ∈ �, we prove [~ ∈ #, (T = 0,1, ⋯ ) generated in (10) satisfies  
 lim~→-||[~(�) − [(�)|| = 0.                                             (16) 

 Using assumption (H1), we obtain  
 ||[~(�) − [(�)|| = ||
(�, �~(�), [~(�)) − 
(�, �(�), [(�))|| 
 ≤ ^||�~(�) − �(�)|| + _||[~(�) − [(�)|| 
 = b||�~(�) − �(�)||,    � ∈ �.                                        (17) 

 Further, using equation (16), equation (17) can be easily proved. Again, by definition of 
successive approximations  

 ∥ �(�) − ∑  %8��./ 912(�3�) (log�)� + �
2(�) 7  

&� (log &
B)�8�[(C) DB

B ∥ 

 =∥ �(�) − �y(�) + ℑ��[y8�(�) − ℑ��[(�) ∥ 

 ≤ ||�(�) − �y(�)|| + �
2(�) 7  

&� (log &
B)�8�||[y8�(C) − [(C)|| DB

B . 
 Note that left hand side of above inequality is independent of {, taking limit as { → ∞, 
we obtain  

 �(�) = ∑  %8��./ x(1)(�)
2(�3�) (log�)� + �

2(�) 7  
&� (log &

B)�8�[(C) DB
B ,    � ∈ �.   (18) 

 This means �(�) is solution of Problem (1)  with initial condition  
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 �(�)(1) = \(�)(1),    �(�)(1), \(�)(1) ∈ ℝ�, � = 0,1, ⋯ , � − 1. 
 Lastly, from inequality (14) with series (15), it follows that Problem (1) is Ulam-Hyers 
stable with  

 ||\(�) − �(�)|| ≤ (mn(o(pqrs)n)8�
o )f,    � ∈ �.                         (19) 

 
To prove uniqueness of solution �(�), assume that �̅(�) is another solution of 

Problem (1) with initial condition �̅(�)(1) = \(�)(1), �(�)(1), \(�)(1) ∈ ℝ� , � =0,1, ⋯ , � − 1. Then  

 �̅(�) = ∑  %8��./ x(1)(�)
2(�3�) (log�)� + �

2(�) 7  
&� (log &

B)�8�[̅(C) DB
B ,    � ∈ �, 

 where [̅ ∈ # satisfies [̅(�) = 
(�, �̅(�), [̅(�)). Therefore  

 ||�(�) − �̅(�)|| ≤ �
2(�) 7  

&� (log &
B)�8�||[(C) − [̅(C)|| DB

B ,    � ∈ �. 
 By hypothesis (H1),  

 ||[(�) − [̅(�)|| ≤ b||�(�) − �̅(�)||. 
 Hence  

 ||�(�) − �̅(�)|| ≤ o
2(�) 7  

&� (log &
B)�8�||�(C) − �̅(C)|| DB

B ,    � ∈ �. 
 Applying Lemma 4 to above inequality with V(�) = ||�(�) − �̅(�)|| and W(�) = 0, we 
obtain ||�(�) − �̅(�)|| = 0, for all � ∈ �. The proof is completed.  
 
Corollary 1. Suppose that all the assumptions of Theorem 1 are satisfied. Then Problem 
(1) is generalized Ulam-Hyers stable.  

Proof: Let i(f) = (mn(o(pqrs)n)8�
o )f  in (19) then i(0) = 0.  Thus, Problem (1)  is 

generalized Ulam-Hyers stable.  
 
Theorem 2. Suppose that (H1) and (H2) hold. Then for every f > 0 and \: � → ℝ� in # 
satisfying inequality (9), there exists a unique solution �: � → ℝ� in # of Problem (1) 
with �(�)(1) = \(�)(1), � = 0,1, ⋯ , � − 1, that satisfies  

 ||\(�) − �(�)|| ≤ f( �
�8�o)Φ(�),    � ∈ �. 

Proof: For every f > 0, let \: � → ℝ� in # satisfies inequality (9). Then there exists a 
function wx ∈ # (depending on \) such that  

 ||wx(�)|| ≤ fΦ(�),    and    ���\(�) = 
(�, \(�), ���\(�)) + wx(�),    � ∈ �. 
 By Lemma 5, \ satisfies the fractional integral equation  

 \(�) = ∑  %8��./ x(1)(�)
2(�3�) (log�)� + ℑ��[/(�) + ℑ��wx(�), � ∈ �, 

 where [/ ∈ # satisfies functional equation [(�) = 
(�, \(�), [/(�)), � ∈ �. 
Consider the sequence {�y} ⊆ # defined by (10)  with �/(�) = \(�), � ∈ �. By 

the principle of mathematical induction, we prove that  
 ||�y(�) − �y8�(�)|| ≤ |

o (ab)yΦ(�),    { ∈ ℕ, � ∈ �.                  (20) 

 First we show the inequality (21) is true for { = 1. For any � ∈ �, using definition of 
successive approximations and assumption (H2), we have  

 ||��(�) − �/(�)|| = ||��(�) − \(�)|| 
 = ||ℑ��wx(�)|| 



Ulam Stability for System of Nonlinear Implicit Fractional Differential Equations 

35 
 

 ≤ �
2(�) 7  

&� (log &
B)�8�||wx(C)|| DB

B  

 ≤ |
2(�) 7  

&� (log &
B)�8�Φ(C) DB

B  

 = f ∥ �
2(�) 7  

&� (log &
B)�8�Φ(C) DB

B ∥ 

 ≤ |
o (ab)Φ(�),    � ∈ �. 

 Thus, inequality (21)  holds for { = 1. Assume that inequality (21) is true for { = T, T ∈ℕ and using similar arguments as we presented in Theorem 1, we have  

 ||�~3�(�) − �~(�)|| ≤ o
2(�) 7  

&� (log &
B)�8�||�~(C) − �~8�(C)|| DB

B  

 ≤ |
2(�) (ab)~ 7  

&� (log &
B)�8�Φ(C) DB

B  

 = f(ab)~ ∥ �
2(�) 7  

&� (log &
B)�8�Φ(C) DB

B ∥ 

 ≤ f(ab)~aΦ(�). 
Therefore  

 ||�~3�(�) − �~(�)|| ≤ |
o (ab)~3�Φ(�),    � ∈ �, 

which is inequality (21) for { = T + 1.  By the principle of mathematical induction, 
inequality  (21)  is true for all { and the proof of inequality (21) is completed. Now using 
inequality (21) and assumption 0 < ab < 1, we have  

 ∑  -y.� ||�y(�) − �y8�(�)|| ≤ |
o (∑  -y.� (ba)y)Φ(�) = |

o (∑  -y./ (ba)y − 1)Φ(�). 
 Therefore  

 ∑  -y.� ||�y(�) − �y8�(�)|| ≤ |
o ( �

�8�o − 1)Φ(�) = f( �
�8�o)Φ(�).      (21) 

 Since Φ(�) is continuous on compact set �, it is bounded. Clearly, from above inequality  
(22), it follows that the series �/(�) + ∑  -y.� [�y(�) − �y8�(�)] converges absolutely and 
uniformly on �, with respect to the norm || ⋅ ||. Define  

 �(�) = �/(�) + ∑  -y.� [�y(�) − �y8�(�)],    � ∈ �,                   (22) 
 and following the proof of Theorem 1, finally we obtain  

 ||\(�) − �(�)|| ≤ f( �
�8�o)Φ(�),    � ∈ �. 

 
Corollary 2. Under hypothesis of Theorem 1, Problem (1) is generalized Ulam-Hyers 
-Rassias stable with respect to j ∈ $(�, ℝ3).   

Proof: Set f = 1 and ag,l = �
�8�o, it directly follows that Problem (1) is generalized 

Ulam-Hyers-Rassias stable.  
 
4. An example 
Let ℝ� be the normed space with the norm  

 ||�|| = |��| + |��|,    � = (��, ��) ∈ ℝ�. 
 Consider the following nonlinear implicit fractional initial value problem  

 O ��
���(�) = 
(�, �(�), ��

�� �(�)),    � ∈ [1, 5],
�(�)(1) = �� ,    �� ∈ ℝ�, � = 0,1,2, �                        (23) 

 where �: [1, 5] → ℝ� and a nonlinear function 
: [1, 5] × ℝ� × ℝ� → ℝ� as  
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(�, �(�), ��
���(�)) = 
(�, (��(�), ��(�)), (��

����(�), ��
����(�))) 

 = ( pqr(�3&)
�3|9�(&)|3|9�(&)| , |��

��9�(&)|3|��
��9�(&)|

�����(�3|��
��9�(&)|3|��

��9�(&)|)
), � ∈ [1, 5]. 

 For any � = (��, ��), \ = (\�, \�), �̅ = (�̅�, �̅�), \� = (\��, \��) ∈ ℝ�, we have  
 ||
(�, �, \) − 
(�, �̅, \�)|| ≤ ||
(�, (��, ��), (\�, \�), (\��, \��))|| 
 =∥ ( pqr(�3&)

�3|9�|3|9�| , |x�|3|x�|
�����(�3|x�|3|x�|)) 

     −( pqr(�3&)
�3|9̅�|3|9̅�| , |x��|3|x��|

�����(�3|x��|3|x��|)) ∥ 

 =∥ (log(2 + �)[ �
�3|9�|3|9�| − �

�3|9̅�|3|9̅�|], 
     �

����� [ |x�|3|x�|
�3|x�|3|x�| − |x��|3|x��|

�3|x��|3|x��|]) ∥ 

 =∥ (log(2 + �)[ |9̅�|8|9�|3|9̅�|8|9�|
(�3|9�|3|9�|)(�3|9̅�|3|9̅�|)], 

     �
����� [ |x�|8|x��|3|x�|8|x��|

(�3|x�|3|x�|)(�3|x��|3|x��|)]) ∥ 

 = log(2 + �)| |9̅�|8|9�|3|9̅�|8|9�|
(�3|9�|3|9�|)(�3|9̅�|3|9̅�|) | 

     + �
����� | |x�|8|x��|3|x�|8|x��|

(�3|x�|3|x�|)(�3|x��|3|x��|) |. 
 For any W, X ≥ 0, we have 1 ≤ (1 + W + X). Therefore  

 ||
(�, �, \) − 
(�, �̅, \�)|| ≤ log(2 + �)|(|�̅�| − |��| + |�̅�| − |��|)| 
     + �

����� |(|\�| − |\��| + |\�| − |\��|)| 
 ≤ log(2 + �)||(||�̅|| − ||�||)|| + �

����� ||(||\|| − ||\�||)|| 
 ≤ log(2 + 5)||�̅ − �|| + �

�� ||\ − \�||. 
 Thus, function 
 satisfies condition (H1) with ̂ = log(2 + 5) > 0 and 0 < _ = �

�� <1. By Theorem 1 [11], Problem (24) has a unique solution on [1, 5]. 
Moreover, as shown in Theorem 1, for every f > 0 if \: [1, 5] → ℝ� satisfies  

 ||��
���(�) − 
(�, �(�), ��

�� �(�))|| ≤ f,    � ∈ [1, 5],                       (24) 
 there exists a unique solution �: [1, 5] → ℝ� such that  

 ||\(�) − �(�)|| ≤ (m��(o(pqr�)��)8�
o )f,    for  all  � ∈ [1, 5], 

 where b = d
�8e = ��pqr(�3�)

(��8�) . Hence problem (24) is Ulam-Hyers stable. 

Next, by corollary 2, i(f) = m��(o)8�
o f  then i(0) = 0 which means Problem  

(24)  is generalized Ulam-Hyers stable. 
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