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Exponential model using the transmutation technigné analyze the influence of the
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1. Introduction
The one parameter exponential distribution is cwomtus analogue of the geometric
distribution. This distribution gives us the deption of the time between the events in a
Poisson process. This model is widely applicabliféntesting and is well-known for its
memory less property. Due to its constant failuater this probability model is
inappropriate for the analysis of the data withhhat failure rates and inverted bathtub
failure rates. In order to overcome such shortcgmiand improve the flexibility and
competence of the model, the one parameter invergonential distribution was studied
by Keller and Kamath [1]. Because of its inverteathbub failure rate, it is widely
competent model for the exponential distribution.

The probability density function (pdf) and the cdative density function (cdf)

of inverse exponential distribution are respectiyglen as:
-A

g(x):izeX :x>0,4>0. Ly
X
A
G(x)=eX ;x>0,A>0. L2
The cumulative distribution function of the Weibirlerse exponential distribution is
given by:
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2 -B
—a[ex—lJ
F(x)=1-e , w3
wheredis a scale parameterandfare shape parameters. The corresponding
probability density function is given by

2 -B
A A -B-1 -a eX—lJ
£() :ax—’é;)lex[ex —1] e x>0, (L4)

2. Transmuted Weibull inver se exponential distribution
There arise certain situations in the real lifebpems where the classical distributions fail
to model the lifetime data. As such, many distiimg in the statistical distributional
theory have been generalized to model lifetime stataand have found widespread
applications in reliability theory. These probalilimodels have become much more
applicable to analyze different failure rates inlhg unimodal, monotonic pattern and
bathtub shaped behavior. Various techniques ipais¢ have been devised to improve the
flexibility and the competence of the models byiagdn extra parameter to the existing
distributions. The different generalization methddsthe statistical literature include
Marshall Olkin [2], Kumaraswamy G [3], Mc Donald[&], Lomax G [5] and Weibull G
[6] and transmutation technique proposed by ShahBarckley [7].

According to the Quadratic Rank Transmutation M@RTM), approach a random
variable X is said to have transmuted distribution if its cleive distribution function
cdf is given by

Fr(x)= @+ 8)F(x)-8[F(x)], |8 <1, 2.1)

where F(X) is the cdf of the base distribution. It must beedothat whed =0, the

proposed model reduces to base distribution.
Differentiating equation (2.1) with respect to  egvthe pdf of the transmuted
model as

fr(x) = f(x)[@+8) - 26F (x)]. 2.2)
Here f (X) is the probability density function of the base miod

Faton Merovci [8] obtained the transmuted Rayledjbtribution and discussed its
important properties. Further, Afaq et. al. [9]ditd the transmuted inverse Rayleigh
distribution and derived its different charactécigiroperties. Uzma et al. [10] compared
the transmuted Exponentiated inverse Weibull distidn with its different sub models.

A random variableX is said to have a TransmuteibWelnverse Exponential

distribution with parametersr, 5,4 and @ if the cumulative density function is given
by:
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1 A 1 A
Fr(x)={1-e 1+ 68e . (2-3)

The corresponding pdf of the proposed distributsogiven by:
A

-B A -8
A7 A -p-1 —a[ex —1} —a[ex —1}
£.(%) :@e{ex —1} e 1-6+26 . 2.4)
X

for x>0a,8,4>0and|f<1, where A,aandg are the scale and shape parameters
representing the different patterns of the transchutWeibull inverse exponential
distribution and@is the transmuted parameter.

By selecting different values for parameigr8, A andd, the various possible

shapes for the pdf and cdf of the TWIE distributéme given in Figure 1 and Figure 2 as
below:

For alpha=0.5 beta=0.8lambda=0.5 For alpha=0.5 beta=0.8 lambda=0,3

freda=

mety=0 5 |

hata=0 5 «
Ihatas1 0 .

|omEm |

Figure 1. graph of density function  Figure 2: Graph of distribution function

3.1. Reliability analysis
The reliability (survival) function of TWIE distriltion is given by
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1 B

ex-1

A
eX =

B
1J
x>0;a,84,6>0. (3.1)

-a

R(x)=1-F(x)=1-|{1-e

1+ &

The hazard function (failure rate) is given by

2 N\ B 2 N\ B
Al A A1 —a[ex—lJ —a[ex—lJ
eXEex —1J e 1-6+26

_f(x) _api
h(x) = R0 = . (3.2)

A

2\ B 12\ B
—a[ex —1] —a{ex—l]
1-(<1-e 1+6

The Reverse Hazard function of the TWIE distribati® obtained by
A

-8 PR
A A -B-1 —a{ex—lJ —z{ex—lJ
ex[ex—l] e 1-6+26
_f(x) _api . (3.3)

N F(x) - X2 i -B A -8
—a{ex—l] —a{ex—l]
1-e 1+ 6

The graphical representation of the reliabilitpdtion and hazard function for the
TWIE distribution is shown in figure 3 and 4 resipesly.

4. Mixture representation
The TWIE density function given in (2.4) can be riéten as

(x)

o P SOR

L1 -a L1 -2a
fﬂx):(l—&)aﬁg(x)%e [ke(x)j +aﬁ6g(x)%e [1—G(x)j (4.1)

By using the power series for the exponential fiemgtwe obtain

0V . i 0 P o .
S _peud { ) }"&e‘z"(fé&ﬂ _ 3.9 (2a) [ 0 }”’
2 it |1-6(%) o ' |1-6(%
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(_1)i ai [G(X)]ﬁ(iﬂ)_l
|| [1_G(X)],8(i+1)+1

(3 = A-O)apa(y.

_ ) o (4.2)
apayy 02a) el
= LI (T eT6%) (e
For alpha=0.5beta=0.8 lambda=0.5 For alpha=0.5 beta=0.8 lambda=0.5
W thota=1 - W Fetas
: |

| ~

] 1 2 | 4 ! o 1 2 3 4 3
Figure 3: Graph of reliability function Figure 4: Graph of hazard function

Also from generalized binomial theorem, we have
—gpo) A - 5 TBI+D +K+D) (e
1-6() T argieny o) (4.3)
Substituting Equatiofd.3) in (4.2),we find that we have
g S (DA (BED+K) Bli+1) k-1
fr(0=0-6) 3 = e ey (BG+1) +K)g(x)(G(x) +a6
o (D) ABUY+K) B+
P 7 re e GO RIS )

igi* i : —A(Bi+1)+k)
e (D (B D) k) AGBG D) + k) A
=4 g)i,éo iKIr (B3 +1) +1 X2 € +a6b
.S (-1 (2a)) A (B(J +D) + k) AB( +1) +k) AL
j k=0 KT (B> +1) +1) 2 ©

e (D™ A (B +1) +K)

= e)ikzzo iTKIT (B(i +1) +1)

aox 3 ' 20) A(BG+D +k)
j.k=0 KB+ +1)

g(xA(B(i +D +k)) +

(4.4)

g(xA(B(j +1) +K))

53



Kawsar Fatima, Uzma Jan and S.P.Ahmad

5. Statistical properties of the TWIE distribution
This section provides some basic statistical pitognf the transmuted Weibull Inverse
exponential distribution.

5.1. Moments of the TWIE distribution
Theorem 5.1. If X ~TWE (a,8,4,6), then " moment of a continuous random variable

X is given as follow:
4 =0-0 S AUED T +a0 Saq AAET+) k) Ta=n), O <1
i, 1K=
Proof: Let X is an absolutely continuous non-negative randoriabke with PDFf; (x) ,
then the™ moment ofX can be obtained by:
M = E(X) = [0 f () dx.
a2 D' AMABAY KT ¢
=( H)i,kz::o KT (3G +1) +1) ix a(xA(B(i +1) + k))dx + ab
= (D) ABG+D+KT o o
I T e T A AR A
e =141, . (5.1)
o (=) gl* i o : “ABli+1)+k)
where, 1, = 1-8) 3 (9@ 1/3r_(,/3(|+1)+k) o ABA+D +k)
iico IKM(BGI+)+1) x?

Suppose:M then after some simplifications, we have
X

dx

a2 (D' ™M A(BG+D +K) , —_—
L=a e)i,éo T (A 2D 0 {ABa+y+}ra-r). (5.2)

Similarly, 1, =6 5 (DA} ABG+D T T, ABG+D+K) J

j k=0 PKIF(B(j+1) +]) 0 x2

_ o2 (Da) ABG+Y+K) e S
|2_aej’kz:0 T (B0 +D +D (AB(+D) +K)} T@A-T) (5.3)

Substituting Equatio(b.3) andEquation(5.2) inEquation(5.1), then the ' moment of
TWIE distribution is given by

4=0-6 ;iow,km(ﬂ(i +)+RYTE-) +a0§g%,kﬂ{w<j #)+K)TE-r), r<1  (5.4)
i,k= ], k=t

_\i i+l : i j ;

wherea, = VOB 1K) o ) (D! (20) B +D +h)
’ ik (B3 +1) +2) ' KB+ +1)

Note that the above series does not exist far. Therefore, the"fmoment of TWIE

distribution does not exist since the expressidadnation (5.4) only exist for<1.

5.2. Harmonic mean
The harmonic mearHj is given by:
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1 1) 71
— =H = fr(X)dx
= e T
Using (4.4) we obtain

1 _ () oA (BG+1) +k)
'l ).kzo KT (B +1) +1) {) 9O A +1) +k)dx +ad

o (D (20) ABG+D+K) T
D T Es Fe e PLAL G AL

Suppose:M then after some simplifications, we have
X

—< -0 wy a8 Yy, 5.5

g, B
o (AR} o PGB+ +K)
(-D'a™rBI+Y+K) o (D' (20)'T(B(j+D+K)

whereq, = i (B +1) +1) HEIKT (B> +D) +0)

5.3. Moment generating function (MGF)
In this sub section, we derive the moment genegdtinction of TWIE distribution.

Theorem 5.2. Let X have a TWIE distribution. Then moment generatingcfion of X
denoted byM , (t) is given by:

|- > @ dxsi R ra-n
My (t) = Zﬁ e (5.6)
+a6y w, AAB(+D+K} Ta-r)

j,k=0
Proof: By definition

My (t) = E(e‘x) = Ie‘x fr (x)dx.

Using Taylor series

=] r

= i%zxr fr (x)dx. ZZt—' E(Xr)

i=o I

aez w LB+ +K} TL-T)

j,k=0
This completes the proof.
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5.4. Characteristic function
In this sub section, we derive the Characteristicfion of TWIE distribution.

Theorem 5.3. Let X have a TWIE distribution. Then characteristic fimetof X denoted
by @, (t) is given by:

= (it) (1_692‘4,k,5{/1(,3(i +)+K)} T@-r) +
@(t)ZZT - o (5.7)
o a0y @, ARG +)+K) T A1)

j.k=0
Proof: By definition

o (t)= E(ei tX) = Ze”x f1(x)dx.

Using Taylor series

=)

a(t)= f{l+itx+%+ ] fr (%)

0

- io(u:)I T 1, (x)ax = é%axr)

> (it) - H).i@,kﬁ{)' (Bi+)+K} ra-r) +
Og()=>+1 " ]
' a6 @, BABG +D +K)} T L-r)

j.k=0
This completes the proof.

6. Quantilefunction, median and random number generation
This section deals with obtaining the quantile fimt; median and generating random
numbers of TWIE distribution.

6.1. Quantile function and median
Theorem 5.5. Let the random variable X follow TWIE distributioMhen, theqth
guantile Q(u)of the TWIE distribution is given by:

QM) = / _
e 2 _ B
log 1+ {;:Llog[ G-+ (;'; o) ~ 4 }

Proof: The Quantile function is denoted ®{u)and can be mathematically calculated as
follows:
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Qu)=FYu), O<u<l. (6.1)
L1 The corresponding quantile function for the prambmodel is given by:
. A
Q) = —. 6.2)
“1. [e-n+Ja+e?-4a || ?
log 1+ ?Iog Y

where U has the uniform U (0,1) distribution. Wetab the median of the TWIE
distribution by substituting u=0.5 in equation (6.RBlence, the median of the proposed
model is calculated as:

Median =F; *(05) = A

(6.3)

-1

log 1+ {_]'Iog[ (6-1)+V1+6° J}ﬁ
a

20

6.2. Random number generation
In order to generate the random numbers from th@stmuted Weibull inverted
exponential distribution, the method of inversisrused as follows:

A \F A \F
—a[ex—lJ —a[ex—lJ
u=4{1l-e 1+08e ,

where u ~ U (0, 1). After simplification this yiald

X = A . (6.4)
_ [ 2_ V]
log 1+{;1I0{(9 D+ (;;r 9 46“}}

One can use equation (6.4) to generate random mamlben the parameters are known.

7. Order statistics
Order statistics finds many applications in statttheory and modeling. It can be

applied in studying the reliability of a system alifé testing. If Xy X)reeees Xn)
denote the order statistics obtained from the reandample X, X,,.....,.X,, drawn from
TWIE distribution(a, 8,4,7) with cumulative density function and probabilitgrcsity

function given in the equations (2.3) and (2.4pessively, then the probability density
function of the order statistics is given as below:
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f()( )'( )I[F ) - F ()" f.(x)  for 1<r<n.(7.1)

Using the equations (2.3) and (2.4), the pdf of tfiest order statistic
X =min(X,, X,,...X,)is given by

LA
ex- -ajex-1
fy (x) najiA 1-{il-e 1+6e
X
. (72)
2\ B 2\ B
TRRSHIRS
e {e" —1] e 1-6+26
Similarly, the pdf of the nth order statist}c(n) = max(Xl, XZ,...Xn)is given as
follows:
2\ B 2\ B mi
ol 1t
an(x)=—’ZB 1-e 1+6e
X
. (7.3)

2\ B 2\ B
12T et
ex (ex —1] e 1-6+26

8. Joint distribution function of i and j™ order statistics
The joint density function o(x X ) for 1<i < j <nis given by

fiim (%%, )= CF (x ]'1[F() o) -l ) e (x) £(x). 8D
G-

Then the joint distribution function of the ith ajid order statistics of TWIE distribution
is as follows:

whereC =
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BCE. e E e

ﬁ_[l_e‘”(m))_ﬁ}{14_&‘”(*11))_‘;})”_] alnge: (hi))—ﬁ—le—f’(m))_ﬁ 1_64_2&‘”(%))_;? ]
X
A S [ Vo) )
C;jﬁze j (h])) B e ”(h(l)) ﬁLL—H‘l‘Z& ”(m)) ﬂ]
where h = exik -1 for k=i, j. (8.2)

For the special caselandj=n, we get the joint distribution of minimum and
maximum order statistics as follows:

f1n () = n(n = 3F (x,) - FOa ]| £ ()1 (x,)
£, (X)=n(n- D({l— gl }{1+ gha)” } _ ({1_ gelno)” }{1+ o) }))

A

a/i/‘ o (h<1) | g lha)” {l- 6+ 267hal } (8.3)
X

n-2

A
aﬂA exil (h( ))_ﬂ_le_a(h(n))_'g{l_ 0+ 2&_G(Wn))_ﬂ}
2 n
*n
A A
wherehg,) =e -1 andny =e -1.

9. Parameter estimation

In this section maximum likelihood estimators anteience for TWIE distribution are
discussed. In order to estimate the unknown paemnef the TWIE distribution we use
the technique of maximum likelihood estimation. Timaximum likelihood estimates
(MLE’s) of the parameters that are inherent witkive Transmuted Weibull Inverse
Exponential distribution function are obtained alfofvs:

Let x,X,,....x,be a random sample of size n from TWIE distributibhen the
likelihood function is given by

i -B i -B
P 1 -B-1 —a{exi —1} —a{exi —1}
B {exi _1] . o2 . ©.1)
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Taking log on both sides of (9.1), we get

logL =nloga +nlog B +nlogA -2 logx +Zi—
i=1

i=1 /N

A e’ -

A A N a N -a g 1 '
ai[e* —1] —(,8+1)Zlog[ex —1]+Zlog (1-6) + 26 [ J

On differentiating log likelihood function with rpsct toa, 8,4andé and equating them
to zero, we get the system of nonlinear equatisns a

2\ A
A -F —a{ex'—l]
Y ) (ex —1} xe
[exi -1] -260) ——=0
i=1

0 n

—logL=—-%"

n
Jda a o

A

-8
et
RN ., ; a{e‘ —l} e
ilogL=£+az e* -1| logle* -1|-> log e* -1|+26)" —— =0
0B B = = =

2 B
—a{ex‘ —l]
1-6+26

(B+1)Y — X—+2ez i — =0
=1 o 1| =1 0{37 1}
1-6+26e
i -B
—a{exi —1}
u e -1
—log L =2 =0
06 g El 2 -B
—aleXi -1
1-6+26e

It can be clearly seen that the above equationsnatein explicit form as such the
estimates of the unknown parameters are obtainedobying the normal equations
simultaneously using the Newton Raphson algorithm.
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10. Fisher information matrix
For the three parameters of TV\(lEa,,B,A,H)aII the second order derivatives of the log-

likelihood function exist. Thus, the inverse digpen matrix is given by:

Cf a Vaa Vaﬁ Va/l Vm?
/1@ ~ N f\g Voo Vos Vg Vs (10.1)
9 P2 Vie'w Vig Vo Ve
VHa Vﬁﬂ Vﬁ/] Vﬁﬁ
Vzm Vaﬁ Va/l Vag
v V., V v
viz_g| e Yee Ver Voo (10.2)
V/la V/w V/M V/IB
VBa Vgﬂ VB/I VBB
92L . °L - %L - 4L 4L
where v, =——, Vg =——, V;=——, Vygy=——, V, = =V,,,
9" 300a B oppp’ M T anrT T * 06406 A" 9a04 @
9L - %L -~ . %L .~ . %L -
V.,=—=V,, V = = , Vs =———=V,; 5, Vopp=—=V, ,
@ 9g00 P 9pa P Y Y I P o T #

2

A0 =330

0406

By deriving the inverse dispersion matrix, the agiotic variances and covariances of
the ML estimators far, 5,4 and @ are obtained.

=Vg and so on.

11. Data analysis
In this section three real data sets are analyaethé purpose of illustration.

Data set I: Consider a data set corresponding to remissioestifim months) of a random
sample of 124 bladder cancer patients given indrebWang [11]. The data set is given
as follows : 0.08, 2.09, 2.73, 3.48, 4.87, 6.966813.11, 23.63, 0.20, 2.22, 3.52, 4.98,
6.99, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.082,913.80, 25.74, 0.50, 2.46, 3.64, 5.09,
7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.128,.74, 14.76, 26.31, 0.81, 2.62, 3.82,
5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 57329, 10.34, 14.83, 34.26, 0.90, 2.69,
4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 24623, 5.41, 7.62, 10.75, 15.62, 43.01,
1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.288,24.33, 5.49, 7.66, 11.25, 17.14, 79.05,
1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.04,4.71, 7.93, 11.79, 18.10, 1.46, 4.40,
5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25%7,812.02, 2.02, 3.31, 4.51, 6.54, 8.53,
12.03, 20.28, 2.02, 3.36, 6.93, 8.65, 12.63 an®RA.he summary of the data is given in
Table 1.

Data set IlI: The second data set is the failure times of 84rAft Windshield. The
windshield on a large aircraft is a complex pie€eguipment, comprised basically of
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several layers of material, including a very stranger skin with a heated layer just
beneath it, all laminated under high temperatue@assure. Failures of these items are
not structural failures. Instead, they typicallwdlve damage or delamination of the
nonstructural outer ply or failure of the heatingtem. These failures do not result in
damage to the aircraft but do result in replacenténthe windshield. These data on
failure times are reported in the book “Weibull Mdsl by Murthy et al. [12] .The failure
times of 84 Aircraft Windshield is: 0.040, 1.868385, 3.443, 0.301, 1.876, 2.481,
3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.982%.3.578, 0.943, 1.912, 2.632, 3.595,
1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.6617981.248, 2.010, 2.688, 3.924, 1.281,
2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.1203] 2.089, 2.902, 4.167, 1.432, 2.097,
2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.5084£.2.964, 4.278, 1.506, 2.190, 3.000,
4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223143.4.449, 1.619, 2.224, 3.117, 4.485,
1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.34802}.1.757, 2.324, 3.376, 4.663. The
summary of the data is given in Table 2.

Data set 111: The third data set which is discussed in Smithidagdor [13].The data are
about the strengths of 1.5 cm glass fibres, medsatréhe National Physical Laboratory,
England. The observed data are as follows: 1222524, 24, 32, 32, 33, 34, 38, 38, 43,
44, 48, 52, 53, 54, 54, 55, 56,57, 58, 58, 5966060, 60, 61, 62, 63, 65, 65, 67, 68, 70,
70, 72, 73, 75,76, 76, 81, 83, 84, 85, 87, 91,985,98, 99, 109, 110, 121, 127, 129,
131,143, 146, 146, 175, 175, 211, 233, 258, 258, 297, 341, 34land 37@he
summary of the data is given in Table 3.

Table 1. Data summary for the data set first

Minimum | 1st Mediar | Mear | 3rd Max. | Variance | Skewnes!| Kurtosis

Qu. Qu.

0.08( 3.295 | 6.05(C |9.317] 11.68(| 79.05( | 112.17¢ | 3.318¢ 18.54¢

Table 2: Data summary for the data set second

Minimum | 1st Mediar | Mear | 3rd Max. | Variance | Skewnes:| Kurtosis
Qu. Qu.

0.04( 1.86¢ | 2.38¢ 2.56% | 3.37¢ | 4.66% | 1.23¢ 0.086¢ 2.36¢

Table 3: Data summary for the data set third

Minimum | 1st Medic | Mee | 3rd Max. | Variance | Skewne | Kurtosi
Qu. |n n Qu. S S

12.0(C 54.7% | 70.0( 99.82 | 112.¢ | 376.C | 6580.1: | 1.79¢ 5.61¢

0 0 2

Table 4: MLEs of the model parameters using real data getg,esulting SEs
parentheses and criteria for comparison
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Data | Distribu . & o Log-
sets tions d & likelihood A B
0.76412 0.10394 -0.94792 0.05189 -
. 5
S TWIED | (0.06947) | (0.21553) | (0.13604) | (0.07750) BN BISS | S1e0361
1.01279 0.20481 0.02108
7 - R 59772 4 4335
set 1 WIED (0.06689) | (0.15639) (0.01859) 399 9863 | 8059726 | 814.4335
1.68453 0.10771 -0.81003 0.00627 i Z
e TWIED | (0.14287) | (0.03387) | (0.13481) | (0.00236) -132.3814 | 273.1629 | 282.9335
1.97620 0.15803 0.00369 -
2 W - . 7 278 547 285875
set 2 WIED (0.14045) | (0.03524) (0.00097) 136.2736 85471 858751
0.97406 83.73871 0.50686 0.95409
- 47 5 457y | 300 7 5
Data TWIED | (0.22977) (—L_Sl)(}g,l (0.39088) | (0.79457) | -390.7368 | 789.4736 | 798.5502
set 3 131289 1.61969 0.00413
- = 397.05 47
_ WIED 010322 | 0.65571) (0.00134) 3970588 | B00.1176 | B06.9476
fitted density curves fitted density curves fitted density curves
g *,\ . —
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Figure5: Graphs of the fitted Transmuted Weibull-Inversea&nential (TWIE) and
Weibull-Inverse Exponential (WIE) distributions fdata sets 1, 2 and 3.

12. Conclusion

In this paper, several structural properties ofttaasmuted Weibull Inverse Exponential
model have been studied which is obtained by additrgnsmuted parameter to the base
model. The parameters have been estimated by maxilkelihood estimation. Three
real data sets have been considered for the cosopanf the base model with the
proposed model. Further, the lesser values of Ai@ BIC conclude that the newly
proposed distribution fits better to the real liflata sets and can receive wider
applications in life testing.
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