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1. Introduction 
The one parameter exponential distribution is continuous analogue of the geometric 
distribution. This distribution gives us the description of the time between the events in a 
Poisson process. This model is widely applicable in life testing and is well-known for its 
memory less property. Due to its constant failure rate, this probability model is 
inappropriate for the analysis of the data with bathtub failure rates and inverted bathtub 
failure rates. In order to overcome such shortcomings and improve the flexibility and 
competence of the model, the one parameter inverted exponential distribution was studied 
by Keller and Kamath [1]. Because of its inverted bathtub failure rate, it is widely 
competent model for the exponential distribution.   

The probability density function (pdf) and the cumulative density function (cdf) 
of inverse exponential distribution are respectively given as: 
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The cumulative distribution function of the Weibull inverse exponential distribution is 
given by: 
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whereλ is a scale parameter,α andβ are shape parameters. The corresponding 
probability density function is given by  
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2. Transmuted Weibull inverse exponential distribution 
There arise certain situations in the real life problems where the classical distributions fail 
to model the lifetime data. As such, many distributions in the statistical distributional 
theory have been generalized to model lifetime datasets and have found widespread 
applications in reliability theory. These probability models have become much more 
applicable to analyze different failure rates including unimodal, monotonic pattern and 
bathtub shaped behavior. Various techniques in the past have been devised to improve the 
flexibility and the competence of the models by adding an extra parameter to the existing 
distributions. The different generalization methods in the statistical literature include 
Marshall Olkin [2], Kumaraswamy G [3], Mc Donald G [4], Lomax G [5] and Weibull G 
[6] and transmutation technique proposed by Shaw and Buckley [7]. 

According to the Quadratic Rank Transmutation Map, (QRTM), approach a random 
variable X is said to have transmuted distribution if its cumulative distribution function 
cdf is given by   

[ ] 1,)()()1()( 2 ≤−+= θθθ xFxFxFT ,                         (2.1) 

where )(xF  is the cdf of the base distribution. It must be noted that when 0=θ , the 
proposed model reduces to base distribution. 

Differentiating equation (2.1) with respect to  gives the pdf of the transmuted 
model as 

[ ])(2)1()()( xFxfxfT θθ −+= .                                

Here )(xf is the probability density function of the base model. 
Faton Merovci [8] obtained the transmuted Rayleigh distribution and discussed its 
important properties. Further, Afaq et. al. [9] studied the transmuted inverse Rayleigh 
distribution and derived its different characteristic properties. Uzma et al. [10] compared 
the transmuted Exponentiated inverse Weibull distribution with its different sub models.  
 A random variable  is said to have a Transmuted Weibull Inverse Exponential 
distribution with parameters λβα ,,  and θ  if the cumulative density function is given 
by: 
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The corresponding pdf of the proposed distribution is given by: 

 

.211)(

111

2



























+−













−=

−

















−−

−

















−−−−

βλ
α

βλ
αβλλ

θθαβλ
xexe

xx
T eeee

x
xf                           )4.2(   

for 1and0,,,0 ≤>> θλβαx , where λ ,α andβ  are the scale and shape parameters 

representing the different patterns of the transmuted Weibull inverse exponential 
distribution and θ is the transmuted parameter. 

By selecting different values for parametersβα, , λ andθ , the various possible 
shapes for the pdf and cdf of the TWIE distribution are given in Figure 1 and Figure 2 as 
below: 

 
 
         Figure 1: graph of density function      Figure 2: Graph of distribution function 
 
3.1. Reliability analysis 
The reliability (survival) function of TWIE distribution is given by 
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The hazard function (failure rate) is given by 
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The Reverse Hazard function of the TWIE distribution is obtained by  
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 The graphical representation of the reliability function and hazard function for the 
TWIE distribution is shown in figure 3 and 4 respectively. 

4. Mixture representation  
The TWIE density function given in (2.4) can be rewritten as 
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By using the power series for the exponential function, we obtain 
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Figure 3: Graph of reliability function                  Figure 4: Graph of hazard function  
 
Also from generalized binomial theorem, we have 
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Substituting Equation (4.3) in (4.2), we find that we have 
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5. Statistical properties of the TWIE distribution 
This section provides some basic statistical properties of the transmuted Weibull Inverse 
exponential distribution. 
 
 
5.1. Moments of the TWIE distribution 
Theorem 5.1. If ),,,(~ θλβαTWIEX , then rth moment of a continuous random variable 

X  is given as follow: 
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Proof: Let X is an absolutely continuous non-negative random variable with PDF )(xfT , 
then the rth moment of X can be obtained by: 
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Substituting Equation (5.3) and Equation (5.2) in Equation (5.1), then the rth moment of 
TWIE distribution is given by 
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Note that the above series does not exist for1>r . Therefore, the rth moment of TWIE 
distribution does not exist since the expression in Equation (5.4) only exist for 1<r . 
 
5.2. Harmonic mean 
The harmonic mean (H) is given by: 
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5.3. Moment generating function (MGF) 
In this sub section, we derive the moment generating function of TWIE distribution. 
 
Theorem 5.2. Let X have a TWIE distribution. Then moment generating function of X 

denoted by )(tM X is given by: 
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Proof: By definition 
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This completes the proof. 
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5.4. Characteristic function 
In this sub section, we derive the Characteristic function of TWIE distribution. 
 
Theorem 5.3. Let X have a TWIE distribution. Then characteristic function of X denoted 
by ( )tXφ is given by: 
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Proof: By definition  
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This completes the proof. 
 
6. Quantile function, median and random number generation  
This section deals with obtaining the quantile function, median and generating random 
numbers of TWIE distribution. 
 
6.1. Quantile function and median 

Theorem 5.5. Let the random variable X follow TWIE distribution. Then, the thq
quantile ( )uQ of the TWIE distribution is given by: 
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Proof: The Quantile function is denoted by( )uQ and can be mathematically calculated as 
follows: 
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∴ The corresponding quantile function for the proposed model is given by: 
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where U has the uniform U (0,1) distribution. We obtain the median of the TWIE 
distribution by substituting u=0.5 in equation (6.2). Hence, the median of the proposed 
model is calculated as: 
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6.2. Random number generation  
In order to generate the random numbers from the transmuted Weibull inverted 
exponential distribution, the method of inversion is used as follows: 
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where u ~ U (0, 1). After simplification this yields 
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One can use equation (6.4) to generate random numbers when the parameters are known. 
 
7. Order statistics 
Order statistics finds many applications in statistical theory and modeling. It can be 
applied in studying the reliability of a system and life testing. If ( ) ( ) ( )nXXX ,.....,, 21

denote the order statistics obtained from the random sample nXXX ,.....,, 21  drawn from 

TWIE distribution( )τλβα ,,,  with cumulative density function and probability density 
function given in the equations (2.3) and (2.4) respectively, then the probability density 
function of the order statistics is given as below: 
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Using the equations (2.3) and (2.4), the pdf of the first order statistic 
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Similarly, the pdf of the nth order statistic ( ) ( )nn XXXX ,...,max 21= is given as  

follows: 
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8. Joint distribution function of ith and jth order statistics 
The joint density function of ( )ji xx ,  for nji ≤≤≤1 is given by 

( ) ( )[ ] ( ) ( )[ ] ( )[ ] ( ) ( )ji
jn

j
ij

ij
i

ijinji xfxfxFxFxFxFCxxf −−−− −−= 1, 11
:: ,         (8.1) 

where ( ) ( ) ( )!!1!1

!

jniji

n
C

−−−−
= . 

Then the joint distribution function of the ith and jth order statistics of TWIE distribution 
is as follows: 
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 For the special case nji == and1 , we get the joint distribution of minimum and 
maximum order statistics as follows: 
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 and ( ) 11
1 −= xeh
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9. Parameter estimation 
In this section maximum likelihood estimators and inference for TWIE distribution are 
discussed. In order to estimate the unknown parameters of the TWIE distribution we use 
the technique of maximum likelihood estimation. The maximum likelihood estimates 
(MLE’s) of the parameters that are inherent within the Transmuted Weibull Inverse 
Exponential distribution function are obtained as follows: 

Let nxxx ,....., 21 be a random sample of size n from TWIE distribution. Then the 
likelihood function is given by 
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Taking log on both sides of (9.1), we get
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On differentiating log likelihood function with respect to λβα ,, andθ  and equating them 
to zero, we get the system of nonlinear equations as 
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It can be clearly seen that the above equations are not in explicit form as such the 
estimates of the unknown parameters are obtained by solving the normal equations 
simultaneously using the Newton Raphson algorithm. 
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10. Fisher information matrix  
For the three parameters of TWIE( )θλβα ,,,;x all the second order derivatives of the log- 
likelihood function exist. Thus, the inverse dispersion matrix is given by: 
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By deriving the inverse dispersion matrix, the asymptotic variances and covariances of 
the ML estimators for λβα ,,   and θ  are obtained. 
 
11. Data analysis 
In this section three real data sets are analyzed for the purpose of illustration. 
 
Data set I: Consider a data set corresponding to remission times (in months) of a random 
sample of 124 bladder cancer patients given in Lee and Wang [11]. The data set is given 
as follows : 0.08, 2.09, 2.73, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.22, 3.52, 4.98, 
6.99, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 
7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 
5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 
4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 15.62, 43.01, 
1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 
1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 
5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 
12.03, 20.28, 2.02, 3.36, 6.93, 8.65, 12.63 and 22.69. The summary of the data is given in 
Table 1. 
 
Data set II: The second data set is the failure times of 84 Aircraft Windshield. The 
windshield on a large aircraft is a complex piece of equipment, comprised basically of 



Kawsar Fatima, Uzma Jan and S.P.Ahmad  

62 
 

several layers of material, including a very strong outer skin with a heated layer just 
beneath it, all laminated under high temperature and pressure. Failures of these items are 
not structural failures. Instead, they typically involve damage or delamination of the 
nonstructural outer ply or failure of the heating system. These failures do not result in 
damage to the aircraft but do result in replacement of the windshield. These data on 
failure times are reported in the book “Weibull Models” by Murthy et al. [12] .The failure 
times of 84 Aircraft Windshield is:  0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 
3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 
1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779,1.248, 2.010, 2.688, 3.924, 1.281, 
2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 
2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 
4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 
1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757, 2.324, 3.376, 4.663. The 
summary of the data is given in Table 2. 
 
Data set III: The third data set which is discussed in Smith and Naylor [13].The data are 
about the strengths of 1.5 cm glass fibres, measured at the National Physical Laboratory, 
England. The observed data are as follows: 12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 
44, 48, 52, 53, 54, 54, 55, 56,57, 58, 58, 59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 
70, 72, 73, 75,76, 76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 
131,143, 146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 341, 341and 376. The 
summary of the data is given in Table 3. 
 

Table 1: Data summary for the data set first 
Minimum 1st 

Qu. 
Median Mean 3rd 

Qu. 
Max. Variance Skewness  Kurtosis 

0.080 3.295 6.050 9.311 11.680 79.050 112.178 3.3184 18.548 
  

Table 2: Data summary for the data set second 
Minimum 1st 

Qu. 
Median Mean 3rd 

Qu. 
Max. Variance Skewness  Kurtosis 

0.040 1.866 2.385 2.563 3.376 4.663 1.239 0.0865 
 

2.365 

 
Table 3: Data summary for the data set third 

Minimum 1st 
Qu. 

Media
n 

Mea
n 

3rd 
Qu. 

Max. Variance Skewnes
s  

Kurtosi
s 

12.00 54.75 70.00 99.82 112.8
0 

376.0
0 

6580.12
2 

1.796 5.614 

 
Table 4: MLEs of the model parameters using real data sets, the resulting SEs 

parentheses and criteria for comparison 
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Figure 5: Graphs of the fitted Transmuted Weibull-Inverse Exponential (TWIE) and 
Weibull-Inverse Exponential (WIE) distributions for data sets 1, 2 and 3. 
 
12. Conclusion  
In this paper, several structural properties of the transmuted Weibull Inverse Exponential 
model have been studied which is obtained by adding a transmuted parameter to the base 
model. The parameters have been estimated by maximum likelihood estimation. Three 
real data sets have been considered for the comparison of the base model with the 
proposed model. Further, the lesser values of AIC and BIC conclude that the newly 
proposed distribution fits better to the real life data sets and can receive wider 
applications in life testing. 
 
Acknowledgement. The authors are very grateful for the reviewers and the editors for the 
worthy comments and suggestions which helped us to improve our research article. 

REFERENCES 



Kawsar Fatima, Uzma Jan and S.P.Ahmad  

64 
 

2 A.Z.Keller, A.R.R.Kamath and U.D.Perera, Reliability analysis of CNC machine 
tools, Reliability Engineering, 3 (1982) 449–473.  

3 A.M.Marshall and I.Olkin, A new method for adding a parameter to a family of 
distributions with applications to the exponential and Weibull families, Biometrika, 
84 (1997) 641–652. 

4 G.M.Cordeiro and M.de Castro, A new family of generalized distributions, Journal 
of Statistical Computation and Simulation, 81(2011) 883–893. 

5 C.Alexander, G.M.Cordeiro, E.M.M.Ortega and J.M.Sarabia, Generalized beta 
generated distributions, Computational Statistics and Data Analysis, 56 (2012) 1880–
1897. 

6 G.M.Cordeiro, E.M.M.Ortega, B.V.Popovi´c and R.R.Pescim, The Lomax generator 
of distributions: Properties, minification process and regression model, Applied 
Mathematics and Computation, 247 (2014) 465–486. 

7 M.Bourguignon, R.B.Silva, G.M.Cordeiro, The Weibull-G family of probability 
distributions, Journal of Data Science, 12 (2014) 53–68. 

8 W.Shaw and I.Buckley, The alchemy of probability distributions: beyond gram-
charlier expansions, and a skew-kurtotic-normal distribution from a rank 
transmutation map, Research Report. 2009 

9 F.Merovci, Transmuted Rayleigh distribution, Austrian Journal of Statistics,  42 
(2013) 21-31. 

10 I.Ahmad, S.P.Ahmad and A.Ahmed, Transmuted inverse Rayleigh distribution: A 
generalization of the inverse Rayleigh distribution. Mathematical Theory and 
Modeling, 4 (2014) 90-98. 

11 U.Jan, K.Fatima, S.P.Ahmad, Transmuted exponentiated inverse weibull distribution 
with applications in medical sciences, International Journal of Mathematics Trends 
and Technology, 50 (2017) 160-167. 

12 E.T.Lee and J.W.Wang, Statistical methods for survival data analysis, 3rd edition, 
John Wiley and Sons, New York, USA. 2003 

13 DNP.Murthy, M.Xi, and R.Jiangs, Weibull models, Wiley, Hoboken, 2004, 297. 
14 R.L.Smith and J.C.Naylor, A comparison of maximum likelihood and Bayesian 

estimators for the three-parameter Weibull distribution, Applied Statistics, 36 (1987) 
358–369.

 

 


