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Abstract. This concerns with the blow-up solution to a geheguasilinear degenerate

parabolic equation ul:u”div(\Du\HElu)+ao(x)u”’1\Du\p+al(x)+az(x)uy+a3(x)u"‘*) under Robin

boundary condition. By constructing some appropraixiliary functions and using first
order differential inequalities technique, we derieconditions which guarantee the
blow-up of solution. Moreover, Lower bound and uppeund for blow-up time are

determined if the solution blows up.
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1. Introduction

The phenomena of blow-up for parabolic problem iksmemuch attention in the last few
decades (see, for instance, [1-6]). In the abowetimeed works, many fferent
approaches have been developed in dealing witlhwgmonlinear parabolic problems,
such as the existence of global solution, blow-aipt®n, upper bound on blow-up time,
blow-up rate and asymptotic behavior of solutioR@r example, Pinasco in [7]
considered an initial-boundary value problem faiapalic equation of the form

U =Au+uP®, xO0O,t>0
u(x,t)=0, x0d0,t >0 @
u(x,0)=u,(x)=0, xOO
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where OO RY(d >3) is a bounded domain with appropriately smooth damy 00, the
function O - (1,+) satisfies

1<p” =inf p(x)< p(X) < p" :=supp ). )
X Ke]

He proved that solutions to problem (1) blows upewhp™ >1, and later the relative

theory was extended in [8] in which the authorscheded that blow-up phenomenon
occurs in finite time if and only ifp* >1. Moreover, they showed that there are functions

p(x) and domainsO such that all solutions to problem (1) blow ugiimte time. The
authors in [9] obtained that the solution to prablEl) blows up in finite time when the
initial energy is positive. Finally, Mohammad, Ghaeand Hesaaraki in [10] obtained
the lower bound of blow-up time if the solution Wk up.

In this paper, we are concerned with the more cmajgld case:

u, = u’div(0u|” Ou) +a, () |Ou]” +a,(X) + a,()u” +a,(x)u® ©)

In O, =0x(0,») with the Robin boundary condition

%+ku:0 on 90 x(0,0) 4)
n
and the initial condition

u(x,0)=u,(x)=0 in O (5)

where g_u is the outward normal derivative ofi on the boundarypO and p(x)
n

still satisfies (2). As indicated in [11], we make tfollowing assumptions:
(a) The parameters of problem (3)-(5) satisfyd[1,2), p>2 and k=0.
(b) a;s are integrable function satisfying<a, <c, i=12,3.

In this paper, by constructing some appropriatelianx functions and using first
order differential inequalities technique we invgste the more general problem (3)-(5).
In section 2, we develop affigient condition on the initial data, which guarasdhat
blow-up of solution dose occur. Moreover, an ugpasnd of blow-up time is derived. In
section 3, a lower bound of blow-up time is obtdiméen blow-up occurs.

Unfortunately, although we extend the conclusiofvi®,10] to the more complicated
model, we must replacel =3 by d > p (p>2). For this we do not know how sharp the
condition is.

2. The blow-up solution
In this section, we mainly seek thefétient conditions for the blow-up. To this end, our
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investigate will make use of the following auxilegunction
E(t) = jo udx (6)
where u is the solution to problem (3)-(5).
Theorem 2.1. If a, >0, the solution to the problem (3)-(5) will blow-w finite time
T and
T <ClEQO)}™

where v:a—_1+1, u=—2"_ _Pgy —U+1, C, Is a positive constant to be determined later.
p

2(p-1) 2
Proof: Assume that the problem (3)-(5) does not blow-ufiirate time, that is to say,
problem (3)-(5) admits a weak solution @, with T>0. It follows from (b) in

Definition 1 that for any0< ¢ 0L” (O, x (t,.t,)) n LP (1,.t, WP (©)) with

%m (O x(t,.t,)) (T 2t,>t,>0)

there holds

J U8 -u(t)p(e )i Iua"’dxd

+ ZJ' UU p-2
. OVp_:l

t y p(x)
_L [ (@ +au +au )¢dxdt

Ou’ [I]]¢+

()

Y P
Choosing ¢ =1 as test function in (7), we have
[ utt)dx= [ utt,)ox

8
= . .[: .[o||]uu|p dxk + kp_l.[aoup+a_1¢ +J.: J.o(al +aZuy + aZup(X))dth ( )

Further, by lettingt, . 0", (6) and (8) lead to

dE(t) a0 ©

where we have used the assumptlon (b).
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with d > p derived in [12], we have

d-p

e
(Io(umvd-de] " -

where C,(d,p) is the best constant of Sobolev inequality. Furthesing Holder
inequality, we obtain

p

W <(C.dp)y[ov];
L'?(0)

v

u (20)

=(C.@d.p)y|,

LP(0)

d-p

dpv d
J' udx<|O| o U u?” deJ pv. (12)

>0 F (€., p))E, )P (12)

Jo

Next, using (12) and the assumptlon tlmt> o to (9), we arrive at

E'(t) )
Emwz T (C.d P (13)

Integration of (13) from O tot leads to

E(t)"™ < E(0)"™ -Cyt a4)

were

a,—-o0 —d

G =20 5™ (.. Py (v-1)

Since inequality (14) does not hold E(0)"™ -Ct< 0, that s, for t>=C;'E(0)" ", we

thus conclude that the solutiom blows up at some finite tim&" and T" is bounded
above by

T" < Cl'E(0)™.
The proof is complete.
Remark 21. From [11] and the Theorem 2.1 we see that Oika,<1 and
a, <0 (i =1,2,3), the problem (3)-(5) admits a weak solution, ahat tif a,>c and
a, 20 (i =1,2,3), the problem (3)-(5) has no weak solutions. Howewer proof does

not work if a,0[L0] and the claim in [11] can not hold whea, >0 (i =1,2,3), we

can not obtain the longtime behavior of solution piwblem (3)-(5) in the cases
a,0[L,0] or a,>0 (i =1,2,3).

3. Lower bound for the blow-up time
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In this section we seek the lower bound for thenblp time T° by some appropriate
measures. To this end, we define another auxiliargtfon of the form
p'd-2p-dpv

15
(u+1)p (1)

M (t) = Jou(t)1+“mdx with m>

Theorem 3.1. Let u(x,t) be the nonnegative classical solution to problgjy(§). Then,

if 0<y<1, T" is bounded from below by

Ju =
M (0) H“m um+y !
k1 + szymﬂ + k3<(/1m+1 + k4{2

where k, k,, k, and k, are positive constants to be determined later.
Proof: It follows from (3) that

d
dt
=+ pm)[_um (u”div(|Du|p_2 Du) +a,u’ Oyl p)dx

M (t) = (L+ ,um)fou‘”"utdx

+ (L )| ™ (o +au” + a ) o (16)

LHm
p

Ou

o A+ pm)a, -U-ﬂm)ppj

P
m o -2
(pv+ um)PvP dx—k(1+,um)faou” u |Du|p uc

+ (L )| U™ (@, () + @, 00U Yo+ (L pm)_a; Gaue™ P dx.

Noting thaD < y <1, and applying the Holder inequalities, we have

4m

.[oal(x)u’”"dxs C1|O|u%+1 M (t)~m a7

and

umty

1_
Joaz(x)uy+”mdx < CZ|O|/JTZ1 M ()~ . (18)

Next, we pay attention to the term _[Oas(x)u”’“*p(x)dx in (16). For each>0, we divide

O into two sets,
O, ={xOO0|u(xt) <1}, O ={xO0Ju(xt)=1.
It follows that
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J'O a,(x)u™ PN dx

= C3.[oo U™ PO gy + c3_[0 U™ P gy < c3_[0 U™ dk + c3_[0 U ok (19)
sq,)fou”m*""dx+ c3J'Ou”m*"+dx.
By the Holder and Young inequalities to the termghe right of (19), we have
[ uymdxs[l_ (um+ p")(d + p) J|O|
© d(pv+um)+2p(1+ um) (20)
+ (um+p7)(d+p) I ud%p(pvwm)ﬂlwm)d%ppdx
d(pv+pum)+2p(1+ pm)-o
and
| u,,m+p+dxs[1_ (um+ p)(d + p) J")'
° d(pv+um)+2p(1+ pm) 21)
(um+ p*)(d + p) | ud%p( P+ m)+(1+m) d2+p"dx
d(pv+um)+2p(1+ um)-e
where the conditionm> W in (15) has been used. Again by Holder inequality,
H*p
we have
9 pamy+ () 2P 2P o Yerp
[ s ;ouwmdx)dw( [ (umom)es okj 22)
and
J. ud%p(pwmwwm)d%ppdx
o
d
s . yetm|P o (dep
< (_[oul*”’"dx)d+p C€.@. PP X [ou 7| o (23)
d
g d it vk [P dve
s[)( 2°[C,(d, p)]ZJOul*”mdx] )(jo Ou | dx

where y is a positive constant to be determined laternThe connect (21) and (22)

by using the Sobolev inequality witld > p derived in [12], namely
p

& (24)

Hm

v
Ou °

d-p p

d

Hm

p
v+
Ou P

ya£m
u p

=C.@,p)[

LP(0)

< (C.d.p)y

P (0)

[L(u”“”m)tpdx]

to obtain
102



Blow-up Phenomena for a Class of General Quasilibegenerate Parabolic Problems
under Robin Boundary Condition

Hm+p(x)
fo a,(x)u dx

S[l_ (um+p” +p*)(d +p) J|O|
d(pv+um)+2p(1+ pm)

(um+p +p)d+p) p _21 Zi . 2 (25)
+d(F’V“‘#m)+2p(1+,um)d + p[)( "[C,(d, p)] pJ.Ou dx]

yitkm|P
Ou P| dx.

L X4 _(um+p +pT)(d+p) |
d+ p d(pv+um)+2p(l+ pm)-o

Choosing

_ (G =0~ p)p™[d(mpv + um) +2p(1+ ym)] (26)
a;mav® (pv+ )P (um+p~ +p°)

and inserting (17), (18) and (25) into (16), wedav

d 4m pum+y

MO KM A M (0 +k M (0? 27)

X

where

k=20, ) 2- UMD IPIED) oy =0 iy,
d(pv+um)+2p(L+ um) P

k, =c,(1+ ,um)|0|ﬁ , ks =c,(+ ,um)|o|ﬁ ,

p(um+p +p) -3
k, =c,d+ um P
= ot u )d(pv+/1m)+2p(1+/1m))(

d
P

[C.(d, p)]

Finally, an integration of the fferential inequality (26) from O ta leads to

N dé
J-M(O st

um UMty

)
K +K, &M+ K &AM 4K &2

from which we derive a lower bound for*

o[ dé
T 2 J-M (0) Hm Hmty
K, + K, &M 4K EAM 4 2

Thus, the proof is complete.

Remark 3.1. Theorem 3.1 remains valid if the conditicdx y<1 is replaced byy>0.

In fact, if y=1, joaz(x)uy*”mdx can be bounded from above in terms Mwft),
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ystm|P
Ou °| dx and the undetermined constagt. Further, we end the proof by choosing

Jo

a suitable y instead of the one in (27).
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