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Abstract. This concerns with the blow-up solution to a general quasilinear degenerate 

parabolic equation ( )2 1 ( )
0 1 2 3div ( ) ( ) ( ) ( )

p p p x
tu u u u x u u x x u x uσ σ γα α α α− −= ∇ ∇ + ∇ + + + under Robin 

boundary condition. By constructing some appropriate auxiliary functions and using first 

order differential inequalities technique, we derive conditions which guarantee the 

blow-up of solution. Moreover, Lower bound and upper bound for blow-up time are 

determined if the solution blows up. 
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1. Introduction 
The phenomena of blow-up for parabolic problem received much attention in the last few 

decades (see, for instance, [1-6]). In the above-mentioned works, many different 

approaches have been developed in dealing with various nonlinear parabolic problems, 

such as the existence of global solution, blow-up solution, upper bound on blow-up time, 

blow-up rate and asymptotic behavior of solutions. For example, Pinasco in [7] 

considered an initial-boundary value problem for parabolic equation of the form 
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where ( 3)dO d⊂ >ℝ  is a bounded domain with appropriately smooth boundary O∂ , the 

function (1, )O → +∞  satisfies 

1 : inf ( ) ( ) : sup ( )
x O x O

p p x p x p p x− +

∈ ∈
< = ≤ ≤ = .                (2) 

He proved that solutions to problem (1) blows up when 1p− > , and later the relative 

theory was extended in [8] in which the authors concluded that blow-up phenomenon 

occurs in finite time if and only if 1p+ > . Moreover, they showed that there are functions 

( )p x  and domains O  such that all solutions to problem (1) blow up in finite time. The 

authors in [9] obtained that the solution to problem (1) blows up in finite time when the 

initial energy is positive. Finally, Mohammad, Ghaemi and Hesaaraki in [10] obtained 

the lower bound of blow-up time if the solution blows up. 

In this paper, we are concerned with the more complicated case: 

  2 1 ( )
0 1 2 3div( ) ( ) ( ) ( ) ( )

p p p x
tu u u u x u u x x u x uσ σ γα α α α− −= ∇ ∇ + ∇ + + +        (3) 

In (0, )O O∞ = × ∞  with the Robin boundary condition 

0
u

ku
n

∂ + =
∂

 on (0, )O∂ × ∞                    (4) 

and the initial condition 

0( ,0) ( ) 0u x u x= ≥  in O                     (5) 

where 
u

n

∂
∂

 is the outward normal derivative of u  on the boundary O∂  and ( )p x  

still satisfies (2). As indicated in [11], we make the following assumptions: 
(a) The parameters of problem (3)-(5) satisfy [1,2)σ ∈ , 2p >  and 0k ≥ . 

(b) isα  are integrable function satisfying 0 i icα≤ ≤ , 1,2,3i = . 

In this paper, by constructing some appropriate auxiliary functions and using first 

order differential inequalities technique we investigate the more general problem (3)-(5). 

In section 2, we develop a sufficient condition on the initial data, which guarantees that 

blow-up of solution dose occur. Moreover, an upper bound of blow-up time is derived. In 

section 3, a lower bound of blow-up time is obtained when blow-up occurs. 

Unfortunately, although we extend the conclusion in [7,8,10] to the more complicated 
model, we must replace 3d ≥  by d p> ( 2)p > . For this we do not know how sharp the 

condition is. 

 

2. The blow-up solution 
In this section, we mainly seek the sufficient conditions for the blow-up. To this end, our 
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investigate will make use of the following auxiliary function 

( ) d
O

E t u x= ∫                          (6) 

where u  is the solution to problem (3)-(5). 

 
Theorem 2.1. If 0α σ> , the solution to the problem (3)-(5) will blow-up at finite time 

*T  and 

* 1 1
0 (0) pvT C E− −≤  

where 
1

1v
p

σ −= + , 0 1
2( 1) 2

p

p

α σµ = − +
−

, 0C  is a positive constant to be determined later. 

Proof: Assume that the problem (3)-(5) does not blow-up at finite time, that is to say, 
problem (3)-(5) admits a weak solution in TO  with 0T > . It follows from (b) in 

Definition 1 that for any ( ) ( )1,
1 2 1 2 00 ( , ) , ; ( )p p

TL O t t L t t W Oϕ ∞≤ ∈ × ∩  with  

( )2
1 2( , )TL O t t

t
ϕ∂ ∈ ×

∂
 2 1( 0)T t t≥ > >  
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∫ ∫ ∫

∫ ∫

∫ ∫

∫ ∫ ∫

            (7) 

Choosing 1ϕ =  as test function in (7), we have 

   
( )2 2

1 1

2 1

1 1 ( )0
1 2 2

( )d ( )d

d d d d

O O

t tp p p p x

p t O O t O

u t x u t x

u x t k u u u x t
v

υ σ γσ α ϕ α α α− + −

∂

−

−
= ∇ + + + +

∫ ∫

∫ ∫ ∫ ∫ ∫
     (8) 

Further, by letting 1 0t +→ , (6) and (8) lead to 

  0d ( )
d

d

p

p O

E t
u x

t v
υα σ−

≥ ∇∫                       (9) 

where we have used the assumption (b). 

Next, we pay our attention to the term d
p

O
u xυ∇∫ . Using the Sobolev inequality 
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with d p>  derived in [12], we have 

( )
( )

( ) d ( ( , )) ( ( , )) ddp p
d p

d p
d d

p p ppv v p v p vd p
s sL OO O

L O

u x u C d p u C d p u x
−

−

−
 

= ≤ ∇ = ∇  
 
∫ ∫     (10) 

where ( , )sC d p  is the best constant of Sobolev inequality. Further, using Holder 

inequality, we obtain 

d d

d p
dpv dpvdpv d p

d pdpv
O O

u x O u x

−
− +

−
 

≤   
 

∫ ∫ .                  (11) 

Therefore, d
pv

O
u x∇∫  can be estimated by 

d ( ( , )) ( )
d p dpvpv p pvd

sO
u x O C d p E tε

− −
−∇ ≥∫ .               (12) 

Next, using (12) and the assumption that 0α σ>  to (9), we arrive at 

0( )
( ( , ))

( )

d p dpv
pd

spv p

E t
O C d p

E t v

α σ − −
−′ −

≥ .                 (13) 

Integration of (13) from 0 to t  leads to 

1 1
0( ) (0)pv pvE t E C t− −≤ −                      (14) 

were 

0
0 ( ( , )) ( 1)

d p dpv
pd

sp
C O C d p pv

v

α σ − −
−−

= − . 

Since inequality (14) does not hold if 1
0(0) 0pvE C t− − ≤ , that is, for 1 1

0 (0) pvt C E− −≥ , we 

thus conclude that the solution u  blows up at some finite time *T  and *T  is bounded 

above by 

* 1 1
0 (0) pvT C E− −≤ . 

The proof is complete. 

 
Remark 2.1. From [11] and the Theorem 2.1 we see that if 00 1α< <  and 

0iα ≤ ( 1,2,3)i = , the problem (3)-(5) admits a weak solution, and that if 0α σ>  and 

0iα ≥ ( 1,2,3)i = , the problem (3)-(5) has no weak solutions. However, our proof does 

not work if 0 [1, ]α σ∈  and the claim in [11] can not hold when 0iα > ( 1,2,3)i = , we 

can not obtain the longtime behavior of solution to problem (3)-(5) in the cases 

0 [1, ]α σ∈  or 0iα > ( 1,2,3)i = . 

 

3. Lower bound for the blow-up time 
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In this section we seek the lower bound for the blow-up time *T  by some appropriate 

measures. To this end, we define another auxiliary function of the form 

1( ) ( ) dm

O
M t u t xµ+= ∫  with 

2

( 1)

p d p dpv
m

pµ

+ − −≥
+

.            (15) 

 
Theorem 3.1. Let ( , )u x t  be the nonnegative classical solution to problem (3)-(5). Then, 

if 0 1γ< < , *T  is bounded from below by 

(0)
21 1

1 2 3 4

d
m mM

m mk k k k
µ µ γ

µ µ

ξ

ξ ξ ξ

∞

+
+ ++ + +

∫ , 

where 1k , 2k , 3k  and 4k  are positive constants to be determined later. 

Proof: It follows from (3) that 
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∫

∫

∫

∫ ∫

∫
)d .x

O
x∫

     (16) 

Noting that0 1γ< < , and applying the Holder inequalities, we have 

1
11

1 1( ) d ( )
m

m mm
O

x u x c O M t
µ

µ µµα ++≤∫                   (17) 

and 

1
11

2 2( ) d ( )
m

m mm
O

x u x c O M t
µ γγ

γ µ µµα
+−

+ ++≤∫ .                (18) 

Next, we pay attention to the term ( )
3( ) dm p x

O
x u xµα +

∫  in (16). For each 0t > , we divide 

O  into two sets, 

0 { | ( , ) 1}O x O u x t= ∈ < , 1 { | ( , ) 1}O x O u x t= ∈ ≥ . 

It follows that 
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0 1 0 1
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∫
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        (19) 

By the Holder and Young inequalities to the terms on the right of (19), we have 
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and 
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         (21) 

where the condition 
2

( 1)

p d p dpv
m

pµ

+ − −≥
+

 in (15) has been used. Again by Holder inequality, 

we have 
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          (23) 

where χ  is a positive constant to be determined later. Then, we connect (21) and (22) 

by using the Sobolev inequality with d p>  derived in [12], namely 

( ) ( )

( ) d ( ( , )) ( ( , )) d
dp

pd p

d p p p pm m md p d v v v
pv m p pp p pd

s sO O
L O L O
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µ µ µ
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−

−
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+ 
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∫ ∫ (24) 

to obtain 
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∫

∫
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       (25) 

Choosing 

0

3

( ) [ ( ) 2 (1 )]

( ) ( )

p

p p

c p d mpv m p m

mdv pv m p p

σ µ µ µχ
α µ µ − +

− − + + +
=

+ + +
             (26) 

and inserting (17), (18) and (25) into (16), we have 

21 1
1 2 3 4

d
( ) ( ) ( ) ( )

d

m m

m mM t k k M t k M t k M t
t

µ µ γ
µ µ

+
+ +≤ + + +             (27) 

where 

1 3

( )( )
2 (1 ) 2

( ) 2 (1 )

m p p d p
k c m O

d pv m p m

µµ
µ µ

− + + + += + − + + + 
, 

1
1v

p

σ −= + , 

1

1
2 1(1 ) mk c m O µµ += + , 

1

1
3 2(1 ) mk c m O µµ += + , 

4 3

( )
(1 ) [ ( , )]

( ) 2 (1 )

d d

p p
s

p m p p
k c m C d p

d pv m p m

µµ χ
µ µ

− + −+ += +
+ + +

. 

Finally, an integration of the differential inequality (26) from 0 to t  leads to 

(0)
21 1

1 2 3 4

d
m mM

m m

t

k k k k
µ µ γ

µ µ

ξ
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∞

+
+ +

≤
+ + +

∫  

from which we derive a lower bound for *T  

*

(0)
21 1

1 2 3 4

d
m mM

m m

T

k k k k
µ µ γ

µ µ

ξ

ξ ξ ξ

∞

+
+ +

≥
+ + +

∫ . 

Thus, the proof is complete. 

Remark 3.1. Theorem 3.1 remains valid if the condition 0 1γ< <  is replaced by 0γ > . 

In fact, if 1γ ≥ , 2( ) dm

O
x u xγ µα +

∫  can be bounded from above in terms of ( )M t , 
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d

pm
v

p

O
u x

µ+
∇∫  and the undetermined constant χ . Further, we end the proof by choosing 

a suitable χ  instead of the one in (27). 
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