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Abstract. In this paper, we study the blow-up solution tooalinear degenerate parabolic
equation

u = udiv(|Du| P2 Du) +a,|0u” - a, |0y +azjou5dx+a3up(x) —a
under nonlinear boundary condition. By constructisgme appropriate auxiliary

functions and using first-order differential inetityatechnique, an explicit formula of
lower bound for blow-up time is derived.
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1. Introduction

Lower bounds for blow-up time of solution to degexte parabolic problem have been
extensively studied in the last 10 years [1-6]. igaynd Song in [1] considered an
initial-boundary value problem for parabolic eqoat of the form

%:Au+up—|mu|"° in 0x(0,T") (1)
where
u=0 on d0x(0,T"), u(x,0)=u,(Xx)=0 in O.

Here O is a bounded domain iR®, A is the Laplace operator] is the gradient
operator, 00 is the boundary ofo, and T* is the possible blow-up time. A lower
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bound for the blow-up timer™ was determined under the conditignsq,, and the

relative result in [7] was extended to the casé& winlinear boundary condition.
In [8] the authors studied the question of blowfapthe solution to the problem

U =Au+[ udx-au® in Ox(0T"), (2)

u(x,0)=u,(x)=0 in O.
with both homogeneous Dirichlet boundary conditiand homogeneous Neumann
boundary condition. They obtained the lower boufatsthe blow-up time under the
above two boundary conditions. Later, others gdize this result to the case of
nonlinear boundary condition [9] or Robin conditi@h
In this paper, we consider the following nonlinparabolic equation generalized
from (1) and (2)

u = udiv(||]u|p'2 Du) +a,(x)|Ou]” - a,(x)|0u* +c12(x)'|.o usdx+a,(XuP® —a,(xu®  (3)

with the following nonlinear boundary condition

Y- in 0x(OT) (4)
on

and the initial condition
u(x,0)=u,(x)=0 in O. 5)
Here p>2, i is the unit outer normal vector afo, and g—lf is outward normal
n
derivative of u on the boundarydgO which is assumed to be sufficiently smooth.
Moreover, we assume that

1<q =infq(x)<q(x)<q" :=supg )<+ ,0<a,(X)<c, =supa, k)< +o,
x0o e X000
O<g = ug(f) a,(X) S a,(X) <+ ,0<a,(x)scC, =supa, )< +o,
X xdO

O<a,(x)sc, =supx, k)<+wo,0<c, = |rD\(1; a,(X)<a,(X) <+,
x0O X

As indicated in [1,7,8,9], we also neefl>1, qg,>1. Reference [7] assumed that
s>q, >1, here we release this restriction sy 0.
Since the initial datau,(x) in (5) is nonnegative, we have by the parabolic

maximum principles [10,11] thati is nonnegative inOx(0,T"). In the next section, we

will find a lower bound for the blow-up time wheflotv-up occurs.
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2. A lower bound for the blow-up time
In this section we seek the lower bound for thevblp time T°. To this end, we define
an auxiliary function of the form

E(t) = Iou"m*ldx with n>1, p = n;cl)n|x| . Py = rgci)n|xﬁﬁ| (6)
and make an assumption ay(z)
9(2) <k, (7)
where k is a positive constant. Our assumption is weakan tthe one in [10], it
requires 0< g(z)<kz’, and o depends on the choice d@(t). Here we allowo to be

any positive constant. Furthermore, reference [hicated that if ¢, -1-nps< 0, the
solution will not blow-up in finite time. So we csider the casec, -1-nps> 0.

The main result of this article is formulated ie fiollowing theorem:
Theorem 1 Let u(x,t) be the nonnegative classical solution to probl8j«(§), and g

satisfies (7). Then for any
c -1
<n<
(p-2)s ps
the blow-up timeT" is bounded from below by

S dr
_[ E(0) pns+1 3 !

A+ AT PN+ (A AN+ (At AN (At AT

where A/, A, A, A, A, A, A, and A, are positive constants to be determined
later.
Proof: First we compute

SEW® = (psn+ D] U=y ok
=(psn +1)'[Oupsn (udiv(|l]u| P2 Du) +a0|Du|p)dx

—(psn+1)_[oal(x)ups"|Du|q1 ax+ (psn+ 1)joa2 (xppsnd(jous &

+(psn+ 1) a; (U™ Pk~ (psn+ 1) @, (U ok ®)
P nps)(psn+1)J- |Du1+r1s P dx+ (psn+1)f upS”u|Du|p'2%dx
(sn+1)° ° a0 on

—(psn +1)joo/1 OuP | Oul™ dx + (psn+ 1)|o|joof2 0 U™ ok
+(psn+D)f_a, (U™ "k~ (psn+ 1)@, (U™ ok

As long as g, >1, we apply the holder inequality to get
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psn+a,

1-q
(psn+1)_[oa'4 ()UP™® dx = ¢, (psn + 1)joupﬂ‘*% k=, (psn+ 1jo|pm*q+1 E (). (9)

psn+qy
For convenience, lev=u * . It follows that

G
(psn+1)_[oal(x)u"s“|Du|ql dx = (psn+ 1)[%#} Ioal )| Ov* k. (10)

Using the Sobolev inequality derived in [14] (se®02 or [15] (see (4.10)), we have
)(1_[O|D\/|°‘l dx > _[o|v|q1 dx, (11)

where y, is a positive constant to be determined later.rfoee, combining (11) and
Holder inequality we get

psn+qy

~4h _
(psn+1)[_ar, (u™[Ou[* a2 e, (psn+ 1)( ps';:“ﬂj |o|$sT°il E¢)™" . (12)

Further, using (9) and (12), we replace (8) by

d E(h) < - (a,—1-nps)(psn+1)
dt (sn+1)°

? dx

J'O||:|u1+ns

psn+qy

psn+0u_ " a +1
—c X (psn+1) o |Ofpst E(t) ™

(13)
+(psn+2)|0] [, ()u*ax+ (psn+ 1 _a (™"

psn+d,

O EO ™ + e af i P

Now, we focus on the terrmpsn+1)|o|j00/2 (xu™™**dx in (13). Using Holder and Young

inequalities twice, we have

1 psn+s
-[ uPSdx < |O|m (-[ u psn+s+1dx) psn+s+1
(o) (o)

< 1 o] + psn+s J' uPs*dx

psn+s+1 psn+s+10

2 (14)
3 - psn+l psn+1-2s

< 1 |O|+ psn+s qu(p 1)dX (I upm+1dx) pn+L

psn+s+1 psn+s+1| /o o

3 et _

< 1 |O|+ psn+s  2s _[uz(p 1)dx+ psn+s psn+1 ZSI UP

psn+s+1 psn+s+1psn+1/0 psn+s+1 psn+l ‘0

and
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p-2

+1)° " o2y | T
o 1o o [

I ‘D 2(psn‘fl)

psn+1

(p5n+1) J‘| V|p p—2(psn+1)2J- (ns+1)

2p(ns+1) p 4@s+ 1} as)
-2, 205D pn+1-2(ns+)
S(psn—-|-:l-)2_[ ||]u1ans de+p_2| | MEG) pon+1
2p(ns+1) p 4(ns+ 1f

where v=u""™. Then, we connect (14) and (16) by using the nateipequality derived
in [6] (see (2.16)), namely

3 3
3 psnt: / 2 3
° oY o el

2p2 3

2
l(psr|+1)

Ou?

ck} (16)

to obtain

(psn+1]0] ], 2, (0u™"acs % Pl + AECY + AEY +AEQ) )

psn+1-2(ns+1)
1+ns
A [ou

Pdx+ ALER) P
where y, is another positive constant to be determined,late

3
—psn+s S ,A2 :£3_§SCZX_3|O|—psn+S &+1 ’
psn+s+1psn+1’ 2 2 psn+s+1l p, ’

s s
A =3%C,p,2 (psn+1)[0]

o of (P +S)s s)s[plﬂ]z (psn+1)°

A= psn+s+1( o, p(ns+1)* "
3
A =L gic, P22 ofm (D S A g1y ooy (P S)(psn+1- 25)
42 p (ns+17 psn+s+ilp, ) ? psn+s+l

Next we give a bound for the terrrpm+1)joa3 ()u™*PXdx in (13). For eacht >0, we

divide O into two sets,
O, ={xO0Ju(xt) <1}, O, ={xOO0|u(xt)=1.
It follows that
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(psn+D)]_a, ()u™""dix
<c,(psn +1)IOD uP™P dx+c, (psn+ 1)J um P ok
S( c(psn+1) | cg(psn+1)j

0] +¢,(psn+1)—PIEP_ [ yemragy

psn+p +1 psn+p"+1 psn+p +1/°
psn+p*+1
”‘3“’5”+1)—sn+p +1j u
B B * * 3(psn+

<c,(psn+1) psn+_p 2p + psn+P 2p qu(p l)dx

psn+p +1lpsn+l psn+p +1psn+l|/° (18)
+¢,(psn+1) psn+_p psn+1-2p + psn++p psn+1-2p E(t).

psn+p +1 psn+l psn+p"+1 psn+l

Here we have used the Holder and Young inequalifieghermore, using (15) and (16)

3
to IOUE(W Ydx, then (psn +1)Ioa3 (x)uPP¥dx can be estimated by

C;(psn+1) : 3
sanr g+ 10T AEW? HAEQ 9)

psn+1-2(ns+1)

Pdx+ ALER) P +AE()

psn+p(x) g(psn+1)
(pn+3)f s (u ek s <= o]+

“Ad] [0

where

3 - - + +
As %4 3po (p5n+1) psn* p 2p + psntp 2p 1:|

| psn+p +1psn+l psn+p"+1psn+

3 [ - _ - + _ +
NA a2 p1+1 (psn + 1) psn+_p psn+1-2p + psn++p psn+1-2p
L psn+p +1 psn+l psn+p +1 psn+l

:
Piq) (psn+ny(POFY | psn+p 207 | psn+p’  2pf
p(ns+1)2 psn+p +1psn+l psn+p +1lpsn+1l|’

3
2(ns+1) 2
3c —(psn+l)|O| v st 1) 1)2[;)1 +1J

A= 2& 4(ns+1¥  p,

EE psn+p. 2p |, psn+p’ 2P+}
1

psn+p +1psn+l psn+p’+1psn+

sn+p- 2p° sn+p"  2p°
Ao=c3(psn+1){'° b8, P p}

psn+p +1lpsn+l psn+p" +1psn+l|
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Next, we pay our attention to the terppsn +1)Lou”5”u|Du|p ? au dx in (13). Making use

of the nonlinear boundary condition, it follows inq4) that

pZaU

(psn+1)f uPu|Oul dx

-2

ax.

ns+l

<k (psn+1)'[ y2sto
- 90

p-2 (psn 1)J' 2ns+o
(ns+1)P?

Duns+l _
(ns+1 P2

Since p=2, we can apply Holder and Young inequalities to get
p-2 ou
(psn+l)Lou"‘°’"u|Du| —ndx
2
(psn+1) ns+1|P
SkW(J = ) [! u zde 00

kP2 (psn+1) g+ 2 (psn+ ) ¢ oy
“sr 1 ? Jol e Jol
p (ns+1)°” p (ns+1)°*"

(op/2)-1
<kP= 2—(psn+1)2J- |D u™?|® dx + k—= |O|pns+<op/2> —(psn+1_)2
p (ns+1)"” (ns+1)°

dx+k—=

pns+1
(t) pns+(op/2) .

By taking (17), (19) and (20) into (13), we have

EE(t)S %(psnj-l) |O|+ Cs(psnj'l) |O|+C2(psn+l)|o|
dt psn+p +1 psn+p"+1 psn+s+1
p-2 {p+1) (6 ~1=Mp)(pS1+ D) ¢ | o
K sy M AT Ou™™|” dx
{ p (nsrnpz AT AN e IR
(op/2)-1 pns+1
+ k—|o|m ((psn ’; D pyerion) o
psn PTG psn+q,
—ox( psn+1)[—] |O| = Et) ™" -c, (psn+1)|o| =) E¢)P

psn+1-2(ns+1)

+(A+A)E®? + (A + A)ER) +(A+ AJEW®) + (A + AJY E(t) P

Here we have used the conditions theat

-2) and p>2. In order to remove the
pPp—2)s

terms which contain the unknown constants and y, and the negative terms, we
present the following three inequalities obtaingdrbung inequality

psn+1-2(ns+1)

E) ™= < psn+1 E(t) + psn+1

psn+1-2(ns+ 1) 2fs+ 1)
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G

E(t)<ME(t)m‘”+ G*1 g PO
psn + psn

psn+a,
sn+1 E(t) pon+l Q2 -1

+q, psn+q, psn+aq,

and insert them into (21), we have

pns+1

dx+ AE )+ Ayt AE ()™

—E(t) < Ain. |Du1+ns

(22)
+H(A+ Aa)E(t)E +(A+ A)ER)’ +(As+ AYE(D)

where

(%(pmj'l) |O|+ C3(psn;|-l) |O|+C2(p5n+l)
psn+p +1 psn+p" +1 psn+s+1

A+ AN ps” 1) c(psn+ 1)"“ |o|(p5”q1+qu X.

-1, %
Ao = |O|+04(p5n+1)'q2 +1|O|psn+1

(opl2)-1
&|O| pns+(op/2) (pm—-'-l_)z , A12 = k1
(ns+1)°

p-2 (psn+l)
p (ns+1)°2

C, —1-nps)(psn+1)
(sn+1)°

A= +(A3+A3)/Y2_(

psn+1
psn+1-2(ns+ 1)

psn+g, [ psn+q, )
[—1] Xo-

psn+q,

cdpn +1)|O| - psn+ 1

AB = (A4+'A9))(2

ol (e B 2

Now we show the proof that from (22) we can get
pns+1

— E(t) < A+ AE[D) T+ (A + AG)E('E)2 +(A+ AJEM)’ +(A+ AYEQD).  (23)

Indeed, When
(Co—1—n|os)(psn+1)sk1 p-2 (psn+1)
(sn+1)° p (ns+1)P2’
we choosey, >0 such thatA,<0 and A,<0. Then a direct calculation tells us that
(23) holds by removing all the negative terms. When
(G ~1-nps)(psn+1) | K p-2 (psn+1)
(sn+1)° p (ns+1)?’
we can fix y, >0 to make A, =0. For this case, if

(24)

+
(A +A)x, e (p+Djofma Bt (25)

then we choosey, =0 such that A, <0. We can remove the negative termAsg(t) to
obtain (23); If not, we choose a suitabje >0 to make A, =0.This indicates that (23)
always holds whether (24) or (25) holds or not.

From (22), we obtain
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pns+1 3

% E() < A+ ALE®) ™D +(A+ AJE()? +(A+ AJEWR) +(Ag+ AE().

An integration leads to

(> dr
T2 IE(O) pns+1 3 )
A+ ATCPD 4 (A AT + (A AYT + (A AT

The proof of Theorem 1 is achieved]
3. Discussion
This work can be extended to the more general tiaskis

u = udiv(|Du|p_2 Du) +a,(x)|0uf’ +a'2(x)J'o usdx+a, (x)u"™® = f (x,u,0u) (26)

with the following nonlinear boundary condition@d the initial condition (5). Heref
is a positive function belonging ta(OxRxR,). Indeed, using (9), and removing the
negative term generated fromi(x,u,0u), we have

_(a, =1-nps)(psn+1)
(sn+1)
+(psn+1)[0) jo a, (X)uPSdx + (psn + 1)jO ar, (PP ok,

p-2 0U &
on (27)

SEWs T

P ax+ (psn+1)J.aoup5”u|Du|

For this, we can derive a lower bound of blow-upetiT" for problem (26) by inserting
(17), (19) and (20) into (27) and choosing a sugtajp, . But the lower bound of blow-up

time T  obtained here is smaller than the one in Theorem 1
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