Progress in Nonlinear Dynamics and Chaos

Vol. 7, No. 1 \& 2, 2019, 43-45
ISSN: 2321-9238 (online)
Published on 21 September 2019

Progress in
 Nonlinear

www.researchmathsci.org
DOI: http://dx.doi.org/10.22457/pindac.80v7n1a3

The Abelian Subgroup : $\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p^{n}}$, p is Prime and $n \geq 1$

S. A. Adebisi $i^{1^{*}}$ and M. EniOluwafe ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science University of Lagos, Nigeria.
${ }^{2}$ Department of mathematics, Faculty of Science, University of Ibadan, Nigiria
*Corresponding author. Email: adesinasunday@yahoo.com

Received 12 August 2020; accepted 19 September 2020
Abstract. In this paper, the classification of finite p-groups is extended by computing an explicit formular for the number of distinct fuzzy subgroups for the abelian group of the form: $\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p^{n}}, p$ is a prime and $n \geq 1$.

Keywords: Finite p-groups, nilpotent group, fuzzy subgroups, dihedral group, inclusionexclusion principle, maximal subgroups, explicit formulae, non-cyclic subgroup, prime.
AMS Mathematics Subject Classification (2010): 20D15, 20E28, 20F18, 20N25, 20K27

1. Introduction

From [1] (See also [2] as well) equation (1) is applied for our computation:

$$
\begin{equation*}
h(G)=2\left(\sum_{r=1}^{t} h\left(M_{r}\right)-\sum_{1 \leq r_{1}<r_{2} \leq t} h\left(M_{r_{1}} \cap M_{r_{2}}\right)+\cdots+(-1)^{t-1} h\left(\bigcap_{r=1}^{t} M_{r}\right)\right) \tag{1}
\end{equation*}
$$

Theorem 1. [3] The number of distinct fuzzy subgroups of a finite p-group of order p^{n} which have a cyclic maximal subgroup is:

$$
\text { 1. } h\left(\mathbb{Z}_{p^{n}}\right)=2^{n} \text { (ii) } h\left(D_{2^{n}}\right)=2^{2 n-1} \text { (iii) } h\left(\varphi_{2^{n}}\right)=2^{2 n-2} \text { (iv) } h\left(S_{2^{n}}\right)=
$$ 3. $2^{2 n-3}(\mathrm{v}) h\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{n-1}}\right)=h\left(M_{p^{n}}\right)=2^{n-1}[2+(n-1) p]$

Theorem 2. [1] Let $G=D_{2^{n}} \times C_{2}$, the nilpotent group formed by the cartesian product of the dihedral group of order 2^{n} and a cyclic group of order 2 . Then, the number of distinct fuzzy subgroups of G is given by : $h(G)=2^{2 n}(2 n+1)-2^{n+1}$.

Recall that the case for $p=2$ We have that $h\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} n\right)=2\left[6 h\left(\mathbb{Z}_{2} \times\right.\right.$ $\left.\left.\mathbb{Z}_{2^{n}}\right)+h\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-1}}\right)+8 h\left(\mathbb{Z}_{2^{n-1}}\right)-6 h\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-1}}\right)-8 h\left(\mathbb{Z}_{2^{n}}\right)\right]$.
The case for $p>2$ is treated as follows. Let $p=3$ and $n=1$. Then, we have $G=$ $\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$.

S. A. Adebisi and M. EniOluwafe

Theorem 3. (Berkovich) (i) Let G be a group of order p^{n}. If A is a subgroup of G of order p^{k} and $k<m<n$, then, the number of subgroups of G of order p^{m} containing $A \equiv 1(\bmod p)$. (ii) If G is a noncyclic group of order $p^{n}, 1<m<n-1$, then, $S_{m}(G) \in$ $\left\{1+p, 1+p+p^{2}\right\}$, where $S_{m}(G)$ is the number of subgroups of order p^{m} in G.

By the theorem above, let \mathcal{M} be the collection of all the maximal subgroups of G. Then set $|\mathcal{M}|=1+p+p^{2}$. This was true for

$$
p=2 \Rightarrow|\mathcal{M}|=1+2+2^{2}=7
$$

For $p=3$, we have $|\mathcal{M}|=1+3+3^{2}=13$. Therefore, by equation (1), we have:
$\frac{1}{2} h\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)=13 h\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)-39 h\left(\mathbb{Z}_{3}\right)+27 h\left(\mathbb{Z}_{1}\right)=79$

$$
\therefore \quad h\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)=2 \times 79=158
$$

2. Determination of the number of fuzzy subgroups for $\left(\mathbb{Z}_{3}, \times \mathbb{Z}_{3} \times \mathbb{Z}_{3^{2}}\right)$

More advanced analysis shows that one of the 13 maximal subgroups is isomorphic to $\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$, while each of the other 12 are isomorphic to $\mathbb{Z}_{3} \times \mathbb{Z}_{3^{2}}$. By this analysis, we have, by equation (\#), we have that:

$$
\begin{aligned}
\frac{1}{2} h\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3^{2}}\right)= & 12 h\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3^{2}}\right)+158-27 h\left(\mathbb{Z}_{3^{2}}\right)-12 h\left(\mathbb{Z}_{3}\right)+27=437 \\
& \therefore \quad h\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3^{n}}\right)=2 \times 437=874
\end{aligned}
$$

2.1. Determination of $h\left(\mathbb{Z}_{3}, \times \mathbb{Z}_{3} \times \mathbb{Z}_{3^{n}}\right)$, \boldsymbol{n} is positive integer

Following a similar trend as given above, we have

$$
\therefore \quad h\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3^{n}}\right)=2^{n+1}\left[18 n^{2}+9 n+26\right]-54
$$

Similarly, for $p=5$, using equation (c), we have

$$
\begin{aligned}
h\left(\mathbb{Z}_{5} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5^{n}}\right)= & 2\left[30 h\left(\mathbb{Z}_{5} \times \mathbb{Z}_{5^{n}}\right)+h\left(\mathbb{Z}_{5} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5^{n-1}}\right)\right. \\
& \left.-p^{3} h\left(\mathbb{Z}_{5^{n}}\right)-30 h\left(\mathbb{Z}_{5^{n-1}}\right)+125\right]
\end{aligned}
$$

And for $p=7$,
$h\left(\mathbb{Z}_{7} \times \mathbb{Z}_{7} \times \mathbb{Z}_{7} n\right)=2\left[56 h\left(\mathbb{Z}_{7} \times \mathbb{Z}_{7} n\right)+h\left(\mathbb{Z}_{7} \times \mathbb{Z}_{7} \times \mathbb{Z}_{7} n-1\right)-343 h\left(\mathbb{Z}_{7} n\right)-\right.$ $\left.56 h\left(\mathbb{Z}_{7} n-1\right)+343\right]$.

We have, in general,
$h\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p^{n-2}}\right)=2^{n-2}\left[4+(3 n-5) p+\left(n^{2}-5\right) p^{2}+\left(n^{2}-5 n+8\right) p^{3}\right]-2 p^{2}$
Lemma 1. Let G be an abelian p-group of type $\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p^{n}}$, where p is a prime and $n \geq 1$. The number of distinct fuzzy subgroups of G is

$$
h\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p^{n}}\right)=2^{n} p(p+1)(n-1)(3+n p+2 p)+\left(2^{n}-2\right) p^{3}-
$$

$2^{n+1}(n-1) p^{3}+2^{n}\left[p^{3}+4\left(1+p+p^{2}\right)\right]$.
Proof: There exist exactly $1+p+p^{2}$ maximal subgroups for the abelian type $\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p^{n}}$, [Berkovich(2008)]. One of them is isomorphic to
$\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p^{n-1}}$, while each of the remaining $p+p^{2}$ is isomorphic to $\mathbb{Z}_{p} \times$ $\mathbb{Z}_{p^{n}}$. Thus, by the application of the Inclusion-Exclusion Principle, we have as follows: $h\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p^{n}}\right)=2^{n} p(p+1)(n-1)(3+n p+2 p)+\left(2^{n}-2\right) p^{3}-2^{n+1}(n-$ 1) $p^{3}+2^{n}\left[p^{3}+4\left(1+p+p^{2}\right)\right]$.

Thus, $h\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p^{n-2}}\right)=2^{n-2}\left[4+(3 n-5) p+\left(n^{2}-5\right) p^{2}+\left(n^{2}-5 n+\right.\right.$

The Abelian Subgroup : $\mathbb{Z}_{\boldsymbol{p}} \times \mathbb{Z}_{\boldsymbol{p}} \times \mathbb{Z}_{\boldsymbol{p}^{\boldsymbol{n}}}, \quad p$ is Prime and $\boldsymbol{n} \geq \mathbf{1}$
8) $\left.p^{3}\right]-2 p^{2}$.

Theorem 4. (see[2]) Suppose that $G=D_{2^{n}} \times C_{4}$. Then, the number of distinct fuzzy subgroups of G is given by :

$$
2^{2(n-2)}(64 n+173)+3 \sum_{j=1}^{n-3} 2^{(n-1+j)}(2 n+1-2 j)
$$

Acknolegement. The authors are greatful to the revierews for their valuable critisim on the paper.

REFERENCES

1. S.A.Adebisi and M. EniOluwafe, An explicit formula for number of distinct fuzzy subgroups of cartesian product of dihedral group of order 2^{n} with a cyclic group of order 2, Universal Journal of Mathematics and Mathematical Sciences, 13(1) (2020) 1-7 http://dx.doi.org /10.17654/UM013010001
2. S.A.Adebisi, M.Ogiugo and M.EniOluwafe, Computing the Number of Distinct Fuzzy Subgroups for the Nilpotent p-Group of $D_{2^{n}} \times \mathbf{Z}_{4}$, International J. Math. Combin., 1 (2020) 86-89.
3. M.Tarnauceanu, Classifying fuzzy subgroups for a class of finite p-groups. ALL CUZa" Univ. Iasi, Romania, (2011).
4. M.Tarnauceanu, The number of fuzzy subgroups of finite cyclic groups and Delannoy numbers, European J. Combin. 30 (2009) 283-287.
5. S.A.Adebisi, M.Ogiugo and M.EniOluwafe, The explicit formula for the number of the distinct fuzzy subgroups of the cartesian product of the dihedral group 2 n with a cyclic group of order eight, where $n>3$, Intern. J. Fuzzy Mathematical Archive, 18(1) (2020) 4143. DOI: http://dx.doi.org/10.22457/ijfma.v18n1a05213
6. T.Senapati, C.Jana, M.Bhowmik and M.Pal, L-fuzzy G-subalgebras of G-algebras, Journal of the Egyptian Mathematical Society, 23 (2) (2015) 219-223.
7. T.Senapati, M.Bhowmik and M.Pal, Fuzzy dot subalgebras and fuzzy dot ideals of Balgebras, Journal of Uncertain Systems, 8 (1) (2014) 22-30.
8. S.Dogra and M.Pal, Picture fuzzy subring of a crisp ring, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. (2020). https://doi.org/10.1007/s40010-020-00668-y
9. T.Senapati, C.S.Kim, M.Bhowmik and M.Pal, Cubic subalgebras and cubic closed ideals of B-algebras, Fuzzy Information and Engineering, 7 (2) (2015) 129-149.
10. C.Jana, T.Senapati, M.Bhowmik and M.Pal, On intuitionistic fuzzy G-subalgebras of G algebras, Fuzzy Information and Engineering, 7 (2) (2015) 195-209.
