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Abstract. In this paper, the classification of finite �-groups is extended by computing an 
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 ≥ 1. 
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1. Introduction 
From [1] (See also [2] as well) equation (1) is applied for our computation:  

ℎ(�) = 2 ���
��� ℎ(��) − ���������� ℎ(��� ∩ ���) + ⋯ + (−1)�!�ℎ "#�

��� ��$% 

(1) 
 

Theorem 1. [3] The number of distinct fuzzy subgroups of a finite �-group of order �& 
which have a cyclic maximal subgroup is:   

    1.  ℎ(ℤ�	) = 2& (ii) ℎ('(	) = 2(&!�(iii) ℎ()(	) = 2(&!((iv) ℎ(*(	) =3. 2(&!-(v) ℎ(ℤ� × ℤ�	.�) = ℎ(��	) = 2&!�[2 + (
 − 1)�]  
   

Theorem 2. [1] Let � = '(	 × 1(, the nilpotent group formed by the cartesian product of 
the dihedral group of order 2& and a cyclic group of order 2. Then,the number of distinct 
fuzzy subgroups of � is given by : ℎ(�) = 2(&(2
 + 1) − 2&3�.  
 
      Recall that the case for � = 2  We have that ℎ(ℤ( × ℤ( × ℤ(	) = 2[6ℎ(ℤ( ×ℤ(	) + ℎ(ℤ( × ℤ( × ℤ(	.�) + 8ℎ(ℤ(	.�) − 6ℎ(ℤ( × ℤ(	.�) − 8ℎ(ℤ(	)].  
The case for � > 2 is treated as follows. Let � = 3 and 
 = 1. Then, we have � =ℤ- × ℤ- × ℤ-.  
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Theorem 3. (Berkovich) (i) Let � be a group of order �&. If 7 is a subgroup of � of 
order �8 and 9 < ; < 
, then, the number of subgroups of � of order �< containing 7 ≡ 1(mod�). (ii) If � is a noncyclic group of order �&, 1 < ; < 
 − 1, then, *<(�) ∈{1 + �, 1 + � + �(}, where *<(�) is the number of subgroups of order �< in �.  

By the theorem above, let ℳ be the collection of all the maximal subgroups of �. Then set |ℳ| = 1 + � + �(. This was true for  � = 2 ⟹ |ℳ| = 1 + 2 + 2( = 7.  
 
For � = 3 , we have |ℳ| = 1 + 3 + 3( = 13 . Therefore, by equation (1), we have: �( ℎ(ℤ- × ℤ- × ℤ-) = 13ℎ(ℤ- × ℤ-) − 39ℎ(ℤ-) + 27ℎ(ℤ�) = 79 ∴     ℎ(ℤ- × ℤ- × ℤ-) = 2 × 79 = 158.  

   
2. Determination of the number of fuzzy subgroups for (ℤ-,×  ℤ- ×  ℤ-�) 
        More advanced analysis shows that one of the 13 maximal subgroups is isomorphic 
to ℤ- × ℤ- × ℤ-, while each of the other 12 are isomorphic to ℤ- × ℤ-�. By this analysis, 
we have, by equation (#), we have that: 

 
�( ℎ(ℤ- × ℤ- × ℤ-�) = 12ℎ(ℤ- × ℤ-�) + 158 − 27ℎ(ℤ-�) − 12ℎ(ℤ-) + 27 = 437 ∴     ℎ(ℤ- × ℤ- × ℤ-	) = 2 × 437 = 874. 

 
2.1. Determination of ℎ(ℤ-,× ℤ- ×  ℤ-	), n is positive integer 
Following a similar trend as given above, we have  

 ∴     ℎ(ℤ- × ℤ- × ℤ-	) = 2&3�[18
( + 9
 + 26] − 54 
Similarly, for � = 5, using equation (c), we have  ℎ(ℤM × ℤM × ℤM	) = 2[30ℎ(ℤM × ℤM	) + ℎ(ℤM × ℤM × ℤM	.�) 

                   −�-ℎ(ℤM	) − 30ℎ(ℤM	.�) + 125] 
 And for � = 7,  ℎ(ℤO × ℤO × ℤO	) = 2[56ℎ(ℤO × ℤO	) + ℎ(ℤO × ℤO × ℤO	.�) − 343ℎ(ℤO	) −56ℎ(ℤO	.�) + 343].  
 
We have, in general,  ℎ(ℤ� × ℤ� × ℤ�	.�) = 2&!([4 + (3
 − 5)� + (
( − 5)�( + (
( − 5
 + 8)�-] − 2�(  

  
Lemma 1. Let � be an abelian �-group of type ℤ� × ℤ� × ℤ�	 , where � is a prime and 
 ≥ 1. The number of distinct fuzzy subgroups of � is  ℎ(ℤ� × ℤ� × ℤ�	) = 2&�(� + 1)(
 − 1)(3 + 
� + 2�) + (2& − 2)�- −2&3�(
 − 1)�- + 2&[�- + 4(1 + � + �()].  
Proof: There exist exactly 1 + � + �(  maximal subgroups for the abelian type ℤ� × ℤ� × ℤ�	 , [Berkovich(2008)]. One of them is isomorphic to  ℤ� × ℤ� × ℤ�	.� , while each of the remaining � + �(  is isomorphic to ℤ� ×ℤ�	 . Thus, by the application of the Inclusion-Exclusion Principle,we have as follows: ℎPℤ� × ℤ� × ℤ�	Q = 2&�(� + 1)(
 − 1)(3 + 
� + 2�) + (2& − 2)�- − 2&3�(
 −1)�- + 2&[�- + 4(1 + � + �()]. 

Thus, ℎPℤ� × ℤ� × ℤ�	.�Q = 2&!([4 + (3
 − 5)� + (
( − 5)�( + (
( − 5
 +
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8)�-] − 2�( .  ◻  
  

Theorem 4. (see[2]) Suppose that � = '(	 × 1S. Then, the number of distinct fuzzy 
subgroups of � is given by :  
 

 2((&!()(64
 + 173) + 3 ∑&!-U�� 2(&!�3U)(2
 + 1 − 2V). 
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