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Abstract. In this paper, we have generalized the idea of matrices of scalar field by define 
odd-dimensional vector valued matrices. Various type of vector valued matrices such that 
row (column), null, identity, diagonal, upper and lower triangular vector valued matrices 
are also defined. Various type of operations such as addition, subtraction, multiplication, 
etc. are also discussed. To implement multiplication on odd-dimensional vector valued 
matrices, we have defined two type of multiplication dot and cross-multiplication.  
Specially, for cross-multiplication of two vector valued matrices we first have used the 
generalized definition of vector cross product (VCP) in odd-dimensional space by extended 
the definition of VCP defined by Eckmann to an odd -dimensional space by introducing 
cross term which was proposed by Xiu-Lao Tian, Chao Yang, Yang Ho & Chao Tian in 
their papers. This proposed generalized definition can be reduced to Eckmann’s definition 
in three and seven dimensional vector space. Based on these algorithms we defined cross-
multiplication between two odd-dimensional vector valued matrices.  

Keywords: Product of n-dimensional vectors, vector valued matrix, product of vector 
valued matrices 

AMS Mathematics Subject Classification (2010): 15A60, 20H20 

1. Introduction 
A matrix is a very important mathematical tool. It has various application in the field of 
Mathematics, Physics etc. We already have used matrices of scalar field of different order 
and their various properties. In this article, an extension on conventional matrix is 
investigated called vector values matrices. In this matrix, each element of the matrix is a 
vector instead of a scalar.  

In this paper, the idea of matrices with scalar field is generalised by defining ‘odd-
multi dimensional vector valued matrices’ i.e. matrices with each element is a vector of 
odd multi-dimensional. Here various properties of this type of matrices, such as matrix 
addition, subtraction, multiplication, determinant etc, are also discussed. 

Specially for the case of matrix multiplication, we have used generalised concept 
of odd multi-dimensional vector cross product by generalizing Eckmann [2] axioms which 
was given by Tian et al. [12]. Here, vector cross product in n-dimensional vector space is 
defined. Multi-dimensional vector product is defined by Silagadze [14]. For other works 
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on vector product see [1,2,3,4,7,9,10,13] and multi-dimensional vector product are used in 
[5,6,8]. 

 
Several other types of matrices are available on fuzzy setup.  There are some 

limitations in dealing with uncertainties by fuzzy set. Pal et al. defined intuitionistic fuzzy 
determinant in 2001 [29] and intuitionistic fuzzy matrices (IFMs) in 2002 [30]. Bhowmik 
and Pal [19] introduced some results on IFMs, intuitionistic circulant fuzzy matrix and 
generalized intuitionistic fuzzy matrix [19-25]. Shyamal and Pal [36-38] defined the 
distances between IFMs and hence defined a metric on IFMs. They also cited few 
applications of IFMs. In [28], the similarity relations, invertibility conditions and 
eigenvalues of IFMs are studied. Idempotent, regularity, permutation matrix and spectral 
radius of IFMs are also discussed. The parameterizations tool of IFM enhances the 
flexibility of its applications. For other works on IFMs see [16-18,27,33,34,37,38]. The 
concept of interval-valued fuzzy matrices (IVFMs) as a generalization of fuzzy matrix was 
introduced and developed in 2006 by Shaymal and Pal [39] by extending the max-min 
operation in fuzzy algebra. For more works on IVFMs see [32]. Combining IFMs and 
IVFMs, a new fuzzy matrix called interval-valued intuitionistic fuzzy matrices (IVIFMs) 
is defined [26]. For other works on IVIFMs, see [23,25]. For more recent works on fuzzy 
matrices see [40-43]. 
 
1.1. Definition of odd multi-dimensional vector valued matrix 
A rectangular array of �� elements ��� into � rows and � columns, where the elements 

��� ’s are the  vectors i.e. of the form (��
�� , �


�� , … , ��
��) where ��

�� ∈ �(scalar field), belong 
to a vector space ��of � dimension is called an odd multi-dimensional vector valued 
matrix for � ≥ 2. 
             A � × � order �-dimensional vector valued matrix is exhibited in the form 
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⎢
⎢
⎡�����, �
��, … ����� ����
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�
, … ���
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�
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1.3. Various type of vector valued matrices 
Row and column vector valued matrix 
In a � × � VVM (vector valued matrix (VVM) if � = 1,then the VVM is called row VVM. 
e.g. [ ])1,0,1()1,0,0()3,2,1(  etc. 

When � = 1, then the VVM is called column VVM. 

e.g.

















)4,0,0(

)1,0,2(

)5,4,1(

 etc. 

 
Null vector valued matrix 
If each element of a VVM be zero vector then the VVM is called Null VVM. A � × � order 
�-dimensional Null VVM is denoted as %�,�· 
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e.g. 








)0,0,0()0,0,0(

)0,0,0()0.0,0(
 etc. 

 
Square vector valued matrix 
A VVM is said to be a square VVM if the number of rows of it is equal to the number of 
column of it. 

                e.g. 








)3,4,0()8,0,1(

)0,0,0()9,5,1(
, 

















)4,0,0()1,0,0()9,4,0(

)0,1,0()0,0,5()0,0,3(

)1,0,2()0,9,3()0,0,1(

 etc. 

 
Diagonal vector valued matrix 
A Square VVM is called Diagonal matrix,if all of its non-diagonal elements are zero 
vector. 

e.g.

















)1,0,0,0,0()0,0,0,0,0()0,0,0,0,0(

)0,0,0,0,0()0,0,0,1,0()0,0,0,0,0(

)0,0,0,0,0()0,0,0,0,0()0,0,0,0,1(

 etc. 

 
Identity or unit vector valued matrix 
A Square VVM is said to be Identity or Unit VVM, if all diagonal elements of it are equal 
to unit vector and non-diagonal elements are all zero vectors. A � × � order �-dimensional 
VVM is denoted as &��. 

e.g. 








)1,1,1()0,0,0(

)0,0,0()1,1,1(
  , 

















)1,1,1,1,1()0,0,0,0,0()0,0,0,0,0(

)0,0,0,0,0()1,1,1,1,1()0,0,0,0,0(

)0,0,0,0,0()0,0,0,0,0()1,1,1,1,1(

 etc. 

 
Upper  and lower triangular vector valued matrix 
A Square VVM is said to be Upper Triangular VVM if all elements of it below the leading 
diagonal are zero vectors and it is said to be Lower Triangular VVM if all elements of it 
above the leading diagonal are zero vectors. 
 
e.g. of upper &lower triangular vector valued matrix 

















)1,0,1()0,0,0()0,0,0(

)0,7,0()0,0,9()0,0,0(

)8,9,1()5,4,4()4,3,1(

,

















)1,7,8,9,0()7,0,5,0,5()1,0,4,5,0(

)0,0,0,0,0())1,1,0,0,0,1()1,0,1,0,0(

)0,0,0,0,0()0,0,0,0,0()4,3,2,1,1(

etc. 

 
1.3. Various type of algebraic operations on vector valued matrices 
We consider Vector Valued Matrices of same dimension. 
Addition 
Two vector valued matrices � and ' are said be Conformal for Addition if they have same 
order. 
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If � = (��
�� , ��

�� , … ��
��)�,� and ' = ((�

��, (�
��, … (�

��)�,� be two � dimensional vector valued 
matrices of order × � . Then their sum is a � dimensional vector valued matrix ) of order 
� × � and it is defined as  

) = (*�
��, *


�� , … , *�
��)�,� = (��

�� + (�
��, �


�� + (

��, … , ��

�� + (�
��)�,�  

 

Example 1.1. 

Let � =
















)5,4,0()2,1,1()0,1,1(

)1,1,1()0,0,1()1,1,9(

)0,1,2()3,1,0()1,0,1(

 and ' =
















)0,2,0()9,0,0()1,0,0(

)0,1,0()1,0,2()3,6,4(

)0,0,1()3,2,1()1,2,2(

 then 

 

) = � + ' =
















)5,6,0()11,1,1()1,1,1(

)1,2,1()1,0,3()4,7,13(

)0,1,3()6,3,1()2,2,3(

. 

If � and ' two vector valued matrices of different order and different dimensions then 
Addition is not defined. 
 
Lemma 1. The Addition of two VVM of same order is commutative. 
 
Lemma 2.  Addition of VVM is associative. 
Proof of the above two lemmas are obvious. 
 
Subtraction 
Two vector valued matrices � and ' are said be Conformal for Subtraction if they have 
same order. 
If � = (��

�� , ��
�� , … ��

��)�,�  and ' = ((�
�� , (�

��, … (�
��)�,� be two �(odd) dimensional vector 

valued matrices of order × � . Then their difference is an �(odd) dimensional vector valued 
matrix C of order � × � and it is defined as  

) = (*�
��, *


�� , … , *�
��)�,� = (��

�� − (�
��, �


�� − (

��, … , ��

�� − (�
��)�,�  

 
Example 1.2. 
 

Let � = -(1,2,3,1,0) (2,0,0,1,9)
(4,5,7,1,3) (0,0,1,2,1)4 and ' = -(1,0,1,2,1) (2,1,1,7,7)

(4,5,7,1,3) (1,0,0,1,1)4 
Then ) = � − ' = -(0,2,2, −1, −1) (0, −1, −1, −6,2)

(2,5,4,1, −2) (−1,0,1,1,0) 4  etc. 

 
Scalar multiplication 
The product of a � × � order �-dimensional VVM , � = (��

�� , ��
�� , … ��

��)�,�by  a scalar * 
where * ∈ � , the field of scalars, is a � × � order �(odd)-dimensional VVM, ' =
((�

��, (�
��, … (�

��)�,� defined by  
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�(�
��, (�

��, … (�
��� = �* ∙ ��

�� , * ∙ ��
�� , … * ∙ ��

���, 7 = 1,2, ⋯ , �; 9 = 1,2, ⋯ , �; and it can be 
written as ' = *�. 
 
Example  1.3. 
 

Let � =
















)6,5,0()3,9,1()6,5,4(

)2,1,1()0,2,0()2,3,5(

)1,0,2()1,1,0()1,0,1(

 be a 3-dimensional 3 × 3 order VVM then scalar 

multiplication of � by 2 is given by 2� and 2� =
















)12,10,0()6,18,2()12,10,8(

)4,2,2()0,4,0()4,6,10(

)2,0,4()2,2,0()2,0,2(

, etc. 

 
             Let � be a � × � order odd-dimensional VVM and *, : are scalars.Then the 
following results are obvious. 
a) *(:�) = (*:)�, 
b) 0� = %�,� ; 0 being the zero element of�, 
c) *%�,� = %�,� , 
d) 1� = �, 1 being the identity element of �. 
 
Multiplication 
Here the matrices are of vector valued. Hence we define two type of multiplication for such 
matrices. These are scalar multiplication (dot product) and vector multiplication ( cross 
product). 
 
Dot  product between two VVM 
Two VVM, � and ' are said to be conformal for the dot product if they have the same 
dimensions and the number of columns of � is equal to the number of rows of '. If � =
(��

�� , ��
�� , … ��

��)�,�and ' = ((�
��, (�

�� , … (�
��)�,; then the dot product between � and ' 

(denoted as � ∙ ') is a scalar matrix ) of order � × < defined as, 
� ∙ ' = ) = (*�

��, *

��, … , *�

��)�,; where �*�
��, *


��, … , *�
��� = ∑ (��

�� , �

�� , … , ��

��) ×�>?�
((�

��, (

��, … , (�

��) = ����> ∙ (�
>�, �
�> ∙ (


>�, … , ���> . (�
>��, 7 = 1,2, ⋯ , �;  9 = 1,2, ⋯ , <. 

 
Example  1.4. 
Let us consider two 3-dimensional VVMs each of order 2 × 2 with each element are of 
the Euclidean space R3 such that  

A=-(1,2,3) (1,0,1)
(0,1,2) (5,2,9)4 and B=-(4,2,3) (9,1,1)

(1,2,8) (6,7,9)4  
Then A·B = -(1,2,3) (1,0,1)

(0,1,2) (5,2,9)4 · -(4,2,3) (9,1,1)
(1,2,8) (6,7,9)4 

=

-(1 · 4 + 2 · 2 + 3 · 3 + 1 · 1 + 0 · 2 + 1 · 8) (1 · 9 + 1 · 2 + 1 · 3 + 6 · 1 + 0 · 7 + 9 · 1)
(0 · 4 + 1 · 2 + 2 · 3 + 5 · 1 + 2 · 2 + 9 · 8) (9 · 0 + 1 · 1 + 2 · 1 + 5 · 6 + 2 · 7 + 9 · 9)4 
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= B26 29
89 136C 

Here A·B is a 2 × 2 order scalar matrix. 
 
Before define the cross product between two odd-dimensional VVMs, we have to 
discuss about generalised multi-dimensional cross product. So first we will Introduce 
Generalised multi-dimensional cross product for odd dimensions briefly in the next 
section. 
 
2. Vector cross product  in odd n-dimensional vectors 
 
Let V denote the n-dimensional  vector space over over the real numbers and 〈, 〉 
Denote the ordinary (positive definite) vector inner product . The VCP (Vector Cross 
Product) �⃗  ×  'G⃗  of any two vectors on V has been defined by B. Eckmann satisfying the 
following axioms 
 

〈�⃗  ×  'G⃗  , �⃗ HI 'G⃗ 〉 = 0                                                                (1)  

J�⃗  ×  'G⃗ J
 =  J�⃗J
J'G⃗ J
 − 〈�⃗, 'G⃗ 〉
                               (2) 
 
Considering arbitrary two vectors �⃗ = ��K̂�  and'G⃗ = (�K̂�  in n-dimensional vector space , 
K̂� and K̂� are basis vectors from the given orthogonal coordinate system , ��and (� are 

vector components corresponding to �⃗ ��: 'G⃗  , 
The VCP �⃗  ×  'G⃗  can be expressed as, 

 
�⃗  × 'G⃗ =  �� K̂� × (�K̂� = ��(�K̂� × K̂�                                      (3) 

 
Obviously, the magnitude of the cross product is determined by these vector components   
��, (� and the direction is determined by basis vectors K̂� × K̂�. 

In the following a generalized definition of VCP is presented based on the 
orthogonal completeness, magnitude of VCP and all kinds of combinations of basis vector. 

Firstly, orthogonal completeness of VCP requires the VCP only exist in an odd n-
dimensional space. 
As   〈�⃗  ×  'G⃗  , �⃗ HI 'G⃗ 〉 = 0, the cross product of any two vector is always perpendicular to 
both of the vectors being multiplied and a plane containing them(orthogonality of VCP) 
and  K̂� × K̂� of any two basis vectors must be equal to another basis vector K̂�,i.e. K̂� × K̂�= 
±K̂� ( completeness of the VCP). 
 

Based on the definition of K̂� × K̂�= K̂� , a cross product K̂� × K̂� of any two basis 
vector is Is equivalent to a 2-conbination of two basis vector K̂� and K̂�. There are n basis 
vectors in n-dimensional vector space, the number of 2-combination is that the number of 
combinations of n basis vectors taken 2 vectors at a time without repetitions. The number 
of 2-combinations of arbitary two basis vectors in an n-dimensional vector space is )
� =
�

 �(� − 1). 
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Taking the equality of each basis vector into account, so )
� should be averagely 
distributed to each one basis vector. The number K is denoted by 

N = OPQ
� = �


 (� − 1)                                                          (4) 

 
Then                                              � = 2N + 1.                                                             (5) 

 
So the VCP of two vectors there only exist in an odd n-dimensional space. 
Secondly, the definition of magnitude of the VCP in Eq. (2) can be generalized to  

 

J�⃗  ×  'G⃗ J
 =  J�⃗J
J'G⃗ J
 − 〈�⃗, 'G⃗ 〉
 +RST                                       (6) 
 
where RST is called cross item and it is expressed as  

RST = ��(��U(�VU�
�� = ��(��U(�[XU�

�� + Y�� YU
� − Y�

� YU�]                           (7) 
X��U� = 〈�K̂� ×  K̂�� · K̂�〉〈(K̂U ×  K̂�) · K̂�〉                                  (8) 

 
where  X��U� is a sign function and 〈�K̂� ×  K̂�� · K̂�〉denote the vector inner product of 

�K̂� ×  K̂�� and K̂�. 
Subsequently, the generalised definition and calculation formula of the VCP in an odd n-
dimensional space will be presented.  
 
Proposition 1.  The VCP �⃗  ×  'G⃗  of any two vectors on an odd-dimensional space satisfy 
the following generalized axioms: 

〈�⃗  ×  'G⃗  , �⃗ HI 'G⃗ 〉 = 0                                                                             (9) 

J�⃗  ×  'G⃗ J
 =  J�⃗J
J'G⃗ J
 − 〈�⃗, 'G⃗ 〉
+RST                                 (10) 
 
2.1. Algorithm of VCP in an odd n-dimensional space 
As we know, there is only an algorithm of VCP in 3-dimensional space. Although the 
definition of VCP has been extended to an odd n-dimensional space (n>3), the algorithm 
of the VCP is not unique. Owing to the diversity of the combination of basis vector, there 
are many kind of algorithm of the VCP in odd n-dimensional space.  
So -called an algorithm depend on the calculation rule. In the following section various 
type of algorithms are discussed. 
 
2.1.1. Algorithm for the VCP in 3-dimensional space 
Obviously, there are 3 basis vectors  (K̂�, K̂
, K̂[) in 3-dimensional vector space, one of the 
basis vector can be expressed by the cross product of other two basis vectors. From Eq. (4), 
one can find k=1, so one of the basis vector can be expressed by one 2-combination of basis 
vector uniquely, which is demonstrate in Table 1. 

K̂� K̂
 K̂[ 
 

K̂
 × K̂[ 
 

K̂[ × K̂� 
 

K̂� × K̂
 
 

Table 1: One kind of distributive combination form of K̂� in 3-dimensional vector space 
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Here right handed rotation rule is adopted in constructing algorithm.So for any two 

3-dimensional vector (\�, \
, \[)  and (]�, ]
, ][)the cross product is another 3-
dimensional vector defined as (\
][ − \[]
, \[]� − \�][, \�]
 − \
]�).    
 
2.1.2. Algorithm for the VCP in 5-dimensional space 
There are 5 basis vectors  (K̂�, K̂
, K̂[, K̂^, K̂_) in 5-dimensional vector space, one of the basis 
vector can be expressed by the cross product of other two basis vectors. From Eq. (4), one 
can find k=2, so one of the basis vector can be expressed by two 2-combination of basis 
vector, which is demonstrate in Table 2. 
 

Kind K̂� K̂
 K̂[ K̂^ K̂_ 
1.       23,45        15,34         12,45     13,25       14,23 
2.       24,35        14,35         14,25     12,35       12,34 
3.       25,34        13,45         15,24     15,23       13,24 

Table 2: Three kinds of distributive combination form of K̂� in 5-dimensional vector space 
 
From the above Table 2, e.g.  the basis vector K̂� can be expressed by  K̂
 × K̂[ (23) and                  
K̂^ × K̂_ (45). Here, a double-digit is used to denote the cross product of two basis vector 
for simplicity. The (23,45) of two 2-combination of basis vector is called one kind of 
distributive combination form, 

There are three kinds of different distributive combination forms under each basis 
vector K̂�. For example, there are 3 kinds of distributive combination forms (23,45) , (24,35) 
, (25,34) under K̂� in the Table 2. 

Furthermore, a pair of double-digit from each column of Table 2 is taken to 
constitute a kind of calculation rule, and the calculation rule demands all double-digit of 
five paif of double-digit which be extracted is different. Then, let these different double-
digit arrange a row to represents a calculation rule. Accordingly, six kinds of different 
calculation of basis vector obtain in the Table 3 below. 
 

algorithm K̂� K̂
 K̂[ K̂^ K̂_ 
1. 23,45  14,35 15,24 13,25 12,34 
2. 23,45 15,34 14,25 12,35 13,24 
3. 24,35 13 45 14,25 15,23 12,34 
4. 24,35 15,34 12,45 13,25 14,23 
5. 25,34 13,45 15,24 12,35 14,23 
6. 25,34 14,35 12,45 15,23 13,24 

Table 3: Six kinds of algorithms of cross product in 5-dimensional space 
 
That is to say, the VCP in 5-dimensional space has six sorts of different algorithms. Thus, 
one can find a kind of cross product algorithm of basis vector by selecting combination 
form form a row double-digit from Table 3. For example, the relation of cross product of 
basis vector from 3rd row in Table 3 can be expressed as 
 

K̂
 × K̂^= K̂� ,K̂[ × K̂_= K̂� ,K̂[ × K̂�= K̂
 ,K̂^ × K̂_= K̂
 , K̂^ × K̂�= K̂[  K̂_ × K̂
= K̂[ ,K̂_ × K̂�= K̂^ ,K̂
 × K̂[= K̂^ ,K̂� × K̂
= K̂_ ,K̂[ × K̂^= K̂_.  
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The above relation of cross product of basis vector shows a kind of algorithm of the VCP 
. Under right-handed orthogonal coordinate frame ,the cross product of basis vector has to 
satisfy right-handed rotation rule. The relation of cross product of basis vector can be 
expressed as 

K̂� × K̂�= ̀ �� �K̂� ,                                               (13)                                      
 
where  ̀ �� � is the generalized Levi-Civita symbol.  

`�� � = a 1
−1

bℎK� (79 �) 7d KeK� <KI�fg�g7H�
bℎK� (79 �) 7d H:: <KI�fg�g7H�  

 
In terms of the relation of basis vectors from Eq. (13) , the VCP �⃗  ×  'G⃗  can be computed 
by the following  
 

�⃗  ×  'G⃗ = ��(�K̂� × K̂� 
= 

Bh�
 �^
(
 (^h + h�[ �_

([ (_hC K̂� + Bh�[ ��
([ (�h + h�^ �_

(^ (_hC K̂
 + Bh�^ ��
(^ (�h + h�_ �


(_ (
hC K̂[ +
Bh�
 �[

(
 ([h + h�_ ��
(_ (�hC K̂^ + Bh�� �


(� (
h + h�[ �^
([ (^hC K̂_                 (14) 

 

Let Rij = k�i �j
(i (jk , then �⃗  × 'G⃗  can be expressed as 

�⃗  × 'G⃗ = [R
^ + R[_]K̂� + [R[� + R^_]K̂
 + [R^� + R_
]K̂[ 
+[R
[ + R_�]K̂^ + [R�
 + R[^]K̂_                            (15) 

 

Moreover, we can prove  J�⃗  × 'G⃗ J
 =  J�⃗J
J'G⃗ J
 −  〈�⃗, 'G⃗ 〉
 + RST . Where   

RST = ��(��U(�VU�
��   is as follows 

RST = ��(��U(�VU�
�� = 2([R
^R[_] + [R[�R^_] + [R^�R_
] + [R
[R_�] + [R�
R[^]) 

≠ 0 
2.1.3. Algorithm for the VCP in 7-dimensional space 
Similarly, we can find K=3 in 7-dimensional space using Eq. (4). So one of the basis vector 
can be expressed by three 2-combination of basis vectors. In 7-dimension there are 15 kinds 
of different different distributive combination forms and there are 6240 kinds of non-
repeating algorithms. Out of them three kinds of distributive combinational forms of basis 
vector  K̂�  and three different kinds of algorithms for the cross product in 7-dimension is 
illustrated by Table 4 and Table 5 respectively below: 
 
Kind K̂� K̂
 K̂[ K̂^ K̂_ K̂m K̂n 
1. 23,47,56 13,56,47 16,27,45 13,27,56 17,26,34 17,25,34 14,26,35 
2. 24,37,56 14,35,67 17,25,46 12,36,57 16,23,47 15,27,34 13,26,45 
3. 25,34,67 15,36,47 15,26,47 15,23,67  14,23,67 14,23,57 15,23,46 

Table 4: Three kinds of distributive combination form of K̂� in 7-dimensional vector 
space 
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algorith
m 

K̂� K̂
 K̂[ K̂^ K̂_ K̂m K̂n 

1. 23,47,5
6 

13,45,6
7 

12,46,5
7 

17,25,3
6 

16,24,3
7 

15,27,3
4 

14,26,3
5 

2. 24,37,5
6 

14,35,6
7 

17,25,4
6 

12,36,5
7 

16,23,4
7 

15,27,3
4 

13,26,4
5 

3. 25,34,6
7 

15,36,4
7 

14,26,5
7 

13,27,5
6 

12,37,4
6 

17,23,4
5 

16,24,3
5 

Table 5: Three kinds of algorithms of cross product in 7-dimensional space 
 

Now using the 2nd algorithm of Table 5 and using Eq. (13) we can define the VCP for any 
two vectors  �⃗ = �� K̂�  and  'G⃗ = (�K̂�  in 7-dimensional space. The  �⃗  ×  'G⃗  
Can be expressed as  

 
 

�⃗  ×  'G⃗ = [R
^ + R[n + R_m]K̂� + [R^� + R[_ + Rmn]K̂
 + [Rn� + R_
 + R^m]K̂[+ [R�
 + Rm[ + R_n]K̂^ + [Rm� + R
[ + Rn^]K̂_ + [R�_ + Rn
 + R[^]K̂m+ [R�[ + R
m + R^_]K̂n 
 
Certainly, one can verify  

 
RST = ��(��U(�VU�

��
= 2o[R
^R[n + R
^R_m + R[nR_m] + [R^�R[_ + R^�Rmn + R[_Rmn]
+ [Rn�R_
 + Rn�R^m + R_
R^m] + [R�
Rm[ + R�
R_n + Rm[R_n]
+ [Rm�R
[ + Rm�Rn^ + R
[Rn^] + [Rn
R�_ + R[^R�_ + Rn
R[^]
+ [R�[R
m + R�[R^_ + R
mR^_]p = 0 

 
Remark 1. For other odd-dimensions, aforesaid algorithms can be easily applied after 
generalizing those into higher dimensions. 
 
Now we are able to define cross multiplication between two odd- dimensional VVMs by 
using algorithms of VCP for odd multi-dimensional vector spaces which are illustrated by 
examples below: 
 
3. Cross product between two odd-dimensional VVM 
 
Definition 3.1.  Two odd-dimensional VVM, A and B are said to be conformal for the 
cross product if they have the same dimensions and the number of columns of A is equal 
to the number of rows of B. If , � = (��

�� , ��
�� , … ��

��)�,� and  ' = ((�
��, (�

��, … (�
��)�,;then 

the dot product between A and B (denoted as � × ') is a k-dimensional VVM matrix C of 
order m × p defined as 
 
 

� × ' = ) = (*�
��, *


��, … , *�
��)�,; 
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where                            �*�
��, *


�� , … , *�
��� = ∑ (��

�� , �

�� , … , ��

��) × ((�
��, (


��, … , (�
��)�>?�  

 
Example 3.1. (cross multiplication of two 3-dimensional VVMs) 
Let us consider two 2×2 order 3-dimensional real VVMs, 

� = -(1,2,3) (1,1,0)
(3,2,0) (4,0,0)4and ' = -(1,0,1) (2,3,1)

(2,3,6) (0,0,1)4   
then � × ' =
-(1,2,3) × (1,0,1) + (1,1,0) × (2,3,6) (1,2,3) × (2,3,1) + (1,1,0) × (0,0,1)
(3,2,0) × (1,0,1) + (4,0,0) × (2,3,6) (3,2,0) × (2,3,1) + (4,0,0) × (0,0,1)4 

 
Now elementary cross products are calculated with the help of (*) as follows: 
 
(1,2,3) × (1,0,1) = (2 · 1 − 0 · 3 , 3 · 1 − 1 · 1 , 1 · 0 − 2 · 1) = (2,2, −2) 
(1,1,0) × (2,3,6) = (6 · 1 − 3 · 0 , 0 · 2 − 1 · 6 , 1 · 3 − 1 · 2) = (6, −6,1) 
(1,2,3) × (2,3,1) = (2 · 1 − 3 · 3 , 3 · 2 − 1 · 1 , 1 · 3 − 2 · 2) = (−7,5, −1) 
(1,1,0) × (0,0,1) = (1 · 1 − 0 · 0 , 0 · 0 − 1 · 1 , 1 · 0 − 1 · 0) = (1, −1,0) 
(3,2,0) × (1,0,1) = (2 · 1 − 0 · 0 , 0 · 1 − 3 · 1 , 3 · 0 − 2 · 1) = (2, −3, −2) 
(4,0,0) × (2,3,6) = (0 · 6 − 0 · 3 , 0 · 2 − 4 · 6 , 4 · 3 − 0 · 2) = (0, −24,12) 
(3,2,0) × (2,3,1) = (2 · 1 − 3 · 0 , 0 · 2 − 3 · 1 , 3 · 3 − 2 · 2) = (2, −3,5) 
(4,0,0) × (0,0,1) = (0 · 1 − 0 · 0 , 0 · 0 − 4 · 1 , 4 · 0 − 0 · 0) = (0, −4,0) 
 

Hence � × ' = -(8, −4, −1) (−6,4, −1)
(2, −27,10) (2, −7,5) 4 

 
Example 3.2. (cross multiplication of two 5-dimensional VVMs)  
Let us consider two real VVMs, one of which is of order 2×2 and another of order 2×1 
with each element are belongs to the space q_ such that  

� = -(1,0,0,1,1) (1,0,1,1,0)
(2,1,0,1,3) (2,3,4,1,2)4 and ' = -(1,3,2,1,0)

(2,0,2,0,1)4then  

� × ' = -(1,0,0,1,1) × (1,3,2,1,0) + (1,0,1,1,0) × (2,0,2,0,1)
(2,1,0,1,3) × (1,3,2,1,0) + (2,3,4,1,2) × (2,0,2,0,1)4 

 
Now elementary cross products in 5-dimension, are calculated with the help of (14) as 
follows: 
 
(1,0,0,1,1) × (1,3,2,1,0)

= aBh0 1
3 1h + h0 1

2 0hC , Bh0 1
2 1h + h1 1

1 0hC , Bh1 1
1 1h + h1 0

0 3hC , Bh0 0
3 2h

+ h1 1
0 1hC , Bh1 0

1 3h + h0 1
2 1hCr = (−5, −3,3,1,1) 

 
(1,0,1,1,0) × (2,0,2,0,1)

= aBh0 1
0 1h + h1 0

2 1hC , Bh1 1
2 2h + h1 0

0 1hC , Bh1 1
0 2h + h0 0

1 0hC , Bh0 1
0 2h

+ h0 1
1 2hC , Bh1 0

2 0h + h1 1
2 0hCr = (1,1,2, −1, −2) 
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(2,1,0,1,3) × (1,3,2,1,0)
= aBh1 1

3 1h + h0 3
2 0hC , Bh0 2

2 1h + h1 3
1 0hC , Bh1 2

1 1h + h3 1
0 3hC , Bh1 0

3 2h
+ h3 2

0 1hC , Bh2 1
1 3h + h0 1

2 1hCr = (−8, −7,8,5,3) 
 
(2,3,4,1,2) × (2,0,2,0,1)

= aBh3 1
0 0h + h4 2

2 1hC , Bh4 2
2 2h + h1 2

0 1hC , Bh1 2
0 2h + h2 3

1 0hC , Bh3 4
0 2h

+ h2 2
1 2hC , Bh2 3

2 0h + h4 1
2 0hCr = (0,5, −1,8, −8) 

 

Hence � × ' = - (−4, −2,5,0, −1)
(−8, −2,7,13, −5)4  which is a 2×1 order 5-dimensional VVM. 

 
 
4. Conclusion 
In this paper, vector valued fuzzy matrices are defined and several types of such matrices 
are defined. The basic arithmetic operations are defined. Two types of products, viz. dot 
and cross products are defined. The cross product is defined for the odd dimensional 
vectors only. And it is very difficult to find out cross product for even dimensional vectors. 
 
Acknolegement. The author is thankful to the revierews for their valuable comments for 
improvement of the paper. 
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