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Abstract. In this paper, we have generalized the idea ofioestiof scalar field by define
odd-dimensional vector valued matrices. Variougtgpvector valued matrices such that
row (column), null, identity, diagonal, upper amaver triangular vector valued matrices
are also defined. Various type of operations suchdalition, subtraction, multiplication,
etc. are also discussed. To implement multiplicattm odd-dimensional vector valued
matrices, we have defined two type of multiplicatidot and cross-multiplication.
Specially, for cross-multiplication of two vectoalued matrices we first have used the
generalized definition of vector cross product (Y@Rdd-dimensional space by extended
the definition of VCP defined by Eckmann to an edinensional space by introducing
cross term which was proposed by Xiu-Lao Tian, CHang, Yang Ho & Chao Tian in
their papers. This proposed generalized definitimm be reduced to Eckmann’s definition
in three and seven dimensional vector space. Bas#liese algorithms we defined cross-
multiplication between two odd-dimensional vectalued matrices.

Keywords: Product of n-dimensional vectors, vector valuedringbroduct of vector
valued matrices
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1. Introduction

A matrix is a very important mathematical toolh#ts various application in the field of
Mathematics, Physics etc. We already have usedaasinf scalar field of different order
and their various properties. In this article, atieesion on conventional matrix is
investigated called vector values matrices. In thérix, each element of the matrix is a
vector instead of a scalar.

In this paper, the idea of matrices with scalddfie generalised by defining ‘odd-
multi dimensional vector valued matrices’ i.e. riw#s with each element is a vector of
odd multi-dimensional. Here various propertiesto$ ttype of matrices, such as matrix
addition, subtraction, multiplication, determinatt, are also discussed.

Specially for the case of matrix multiplication, Wwave used generalised concept
of odd multi-dimensional vector cross product bgeyalizing Eckmann [2] axioms which
was given by Tian et al. [12]. Here, vector crossdpct in n-dimensional vector space is
defined. Multi-dimensional vector product is defingy Silagadze [14]. For other works
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on vector product see [1,2,3,4,7,9,10,13] and rdlittiensional vector product are used in
[5,6,8].

Several other types of matrices are available azyfisetup. There are some
limitations in dealing with uncertainties by fuzggt. Pal et al. defined intuitionistic fuzzy
determinant in 2001 [29] and intuitionistic fuzzyatmces (IFMs) in 2002 [30]. Bhowmik
and Pal [19] introduced some results on IFMs, titnistic circulant fuzzy matrix and
generalized intuitionistic fuzzy matrix [19-25]. y@imal and Pal [36-38] defined the
distances between IFMs and hence defined a metri¢FMs. They also cited few
applications of IFMs. In [28], the similarity relabs, invertibility conditions and
eigenvalues of IFMs are studied. Idempotent, regylgpermutation matrix and spectral
radius of IFMs are also discussed. The parameteniatool of IFM enhances the
flexibility of its applications. For other works dRMs see [16-18,27,33,34,37,38]. The
concept of interval-valued fuzzy matrices (IVFMs)aageneralization of fuzzy matrix was
introduced and developed in 2006 by Shaymal and34lby extending the max-min
operation in fuzzy algebra. For more works on IVF8& [32]. Combining IFMs and
IVFMs, a new fuzzy matrix called interval-valuedudiitionistic fuzzy matrices (IVIFMs)
is defined [26]. For other works on IVIFMs, see 5. For more recent works on fuzzy
matrices see [40-43].

1.1. Definition of odd multi-dimensional vector valued matrix
A rectangular array ahn elements4u into m rows andn columns, where the elements

A;j’s are the vectors i.e. of the f0|(m1 ,a2 e ,a,"cj) whereaf{; € F(scalar field), belong

to a vector spac¥Xof k dimension is called an odd multi-dimensional veatalued
matrix fork > 2.
Am x n orderk-dimensional vector valued matrix is exhibitedhe form

[(al a3l ..a 11) (ai?% a3 ,___a11{2) - (at™ a3, .. a,lcn)]
|(a1 ,a2 . 1) (a1 ,az . a,%z) . (a1 ,a2 . alzcn)i
|_(a1 ,azt, .. 1) (a1 a3, .. 2) - (ag™,a} t"'alrcm)J

1.3. Varioustype of vector valued matrices
Row and column vector valued matrix
Inam X n VVM (vector valued matrix (VVM) ifn = 1,then the VVM is calledaw VWM.

eg.[123) (001 (10D etc.
Whenn = 1, then the VVM is called column VVM.

@45)
e.gl (201 | etc.
(0,04)

Null vector valued matrix
If each element of a VVM be zero vector then thaWig calledNull VVM. A m X n order
k-dimensional Null VVM is denoted &%, ,,-
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[ (00.0) (0,0,0)}
e.g, etc.
000) (000

Squar e vector valued matrix
A VVM is said to be aquare VVM if the number of rows of it is equal to the numbér
column of it.

159) (000)
®% w08 (043’

100) (390) (201
300) (500) (010) | etc.
049 (001 (004)

Diagonal vector valued matrix
A Square VVM is calledDiagonal matrix,if all of its non-diagonal elements are zero
vector.

(10000) (00000) (00000)
egl (00000) (01000) (00000) | etc.
(00000) (00000) (00002

Identity or unit vector valued matrix

A Square VVM is said to bidentity or Unit VVM, if all diagonal elements of it are equal
to unit vector and non-diagonal elements are afl zectors. An X n orderk-dimensional
VVM is denoted agk.

o g[ (UNND (0,0,0)}
Lo @y |

11111  (00000) (00,000)
(00000) (11111  (00000)| etc.
(00000) (00000)  (L1111)

Upper and lower triangular vector valued matrix

A Square VVM is said to bdpper Triangular VWM if all elements of it below the leading
diagonal are zero vectors and it is said td_bwer Triangular VVM if all elements of it
above the leading diagonal are zero vectors.

e.g. of upper &lower triangular vector valued matri
@34) (445 (199) 11234) (00000) (00000
000) (00 (©70],] (00L0YH (@1O001LY) (00000 |etc.
000) (000 @Oy 05401) (50507) 09871

1.3. Varioustype of algebraic operations on vector valued matrices

We consider Vector Valued Matrices of same dimensio

Addition

Two vector valued matricesandB are said be Conformal for Addition if they havenga
order.
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If A= (a1 ,ak . af(j)m,n andB = (bij, b,i(j, ...b,ij)m_n be twok dimensional vector valued
matrices of ordek n . Then their sum is & dimensional vector valued matiixof order
m X n and it is defined as

—(cl,cz,.. ’)mn—(a”+b” ”+b§’,. . ,‘j+b”)mn
Example 1.1.
@01 (O3 (210 (221) @123 (00)
LetA=| 94) @00 (@11 |andB=| (463 (201 (010) | then
@10 (@12) (049) 001 (009) (020)

(322) (136) (310)
C=A+B=|(374) (30) @21
@) @y (065)

If A andB two vector valued matrices of different order afiffierent dimensions then
Addition is not defined.

Lemma 1. The Addition of two VVM of same order is commutati

Lemma 2. Addition of VVM is associative.
Proof of the above two lemmas are obvious.

Subtraction

Two vector valued matrice$ andB are said be Conformal for Subtraction if they have
same order.

IfA=(a’,a7,..a))mn andB = (bY,b7,...b), » be twok(odd) dimensional vector
valued matrices of ordern . Then their difference is afodd) dimensional vector valued
matrix C of ordelm xn and it is defined as

= (Y, N = @ = b7, a) —bY,..,a — by n
Example 1.2.
1(1,23,1,0) (2.0,0,1,9) 11,0121 (21,17,7)
Let‘4‘[(4,5,7,1,3) 00121 9B =|(45713) (1.0,01.1)

0,2,2,-1,-1) (0,—1,—1,—6,2)] tc

Thent =A-B = [ 2541,-2)  (-1,01,1,0)

Scalar multiplication

The product of an x n orderk-dimensional VVM A = (a1 ,ak o afj)m_nby a scalar
wherec € F , the field of scalars, is m X n order k(odd)-dimensional VVM,B =
b7, b7, ... b ) defined by
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(b7, b7, .. b)) = (c-al,c-a,..c-al),i=12,-,m;j =12,,n; and it can be
written asB = cA.

Example 1.3.

L) (1) (20
LetA=| 632 (020) @L2) | be a 3-dimensiond x 3 order VVM then scalar
(456) @193 (056)
(202) (022 (402
multiplication ofA by 2 is given by24 and24 =| 10,64) (04,0) (224) |, etc.
(81012 (2186) (01012

Letd be am x n order odd-dimensional VVM and, d are scalars.Then the
following results are obvious.
a) c(dA) = (cd)A,
b) 0A = 0p,, ; 0 being the zero elementrof
¢) Omn = Ompn,
d) 14 = A,1 being the identity element &f.

Multiplication

Here the matrices are of vector valued. Hence viiealwvo type of multiplication for such
matrices. These are scalar multiplication (dot potdand vector multiplication ( cross
product).

Dot product between two VVM

Two VVM, A andB are said to be conformal for the dot product étlhave the same
dimensions and the number of columnsiaé equal to the number of rows Bf If A =
(@, a),..al)mnand B = (b, b/, ...b)),, then the dot product betweeh and B
(denoted ad - B) is a scalar matrlﬁ of orderm x p defined as,

AB=C=(c,c],...c ’)mpwhere(cl,cz,.. ’) Zt (@Y, dY, .., a7y x
(bl,b;],..., ”)—(ait by, alt - tj o alf, “) i = om; j=12,,p.
Example 1.4.

Let us consider two 3-dimensional VVMs each of o2l 2 with each element are of
the Euclidean spad@ such that
_[(1,2,3) (1,0,1)] {(4,2,3) (9,1,1)]
A‘[(o,1,2) 5.29)] 29BY(128) (6,7.9)
(1,2,3) (1,0,1) [(4,2,3) 9,11

Then A-B=[(O’1,2) G299l 1(1.28) (67,9

[(1-4+2-2+3-3+1-1+0-2+1-8) (1-941-24+1-3+6-1+0-7+9-1)
(0-4+1-2+42-3+5-1+2-2+4+9-8) (9:-0+1-1+2-1+5-6+2-7+9-9)
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_ [26 29
89 136
Here A-Bis a 2 x 2 order scalar matrix.

Before define the cross product between two odd-dimensional VVMs, we have to
discuss about generalised multi-dimensional cross product. So first we will Introduce
Generalised multi-dimensional cross product for odd dimensions briefly in the next
section.

2. Vector crossproduct in odd n-dimensional vectors

Let V denote the n-dimensional vector space over the real numbers afd
Denote the ordinary (positive definite) vector inpeoduct . TheVCP (Vector Cross

Product)/T x B of any two vectors on V has been defined by B.niakn satisfying the
following axioms

(A x B,AorB)=0 1)

- -2 Sn2 =2 -
14 < B[ = [lA[l"|B]|" — (4.B)* 2

Considering arbitrary two vectors= a'e; ands = bfé]- in n-dimensional vector space ,
é; andé; are basis vectors from the given orthogonal coaréi system q'andb* are
vector components correspondingéftand B,

The VCPA x B can be expressed as,

A X B = aiéi X b]é] = aibjéixéj (3)

Obviously, the magnitude of the cross product temteined by these vector components
a', b* and the direction is determined by basis vealprsz;.

In the following a generalized definition of VCP wesented based on the
orthogonal completeness, magnitude of VCP andradikof combinations of basis vector.

Firstly, orthogonal completeness of VCP requiresMEP only exist in an odd n-
dimensional space.

As (A x B,Aor B) = 0, the cross product of any two vector is alwaypeedicular to
both of the vectors being multiplied and a planetaiming them(orthogonality of VCP)
and ¢; x ¢; of any two basis vectors must be equal to andihsis vectog, i.e.é; x &=

+é, ( completeness of the VCP).

Based on the definition &; x é;= é;, a cross produd; x &; of any two basis
vector is Is equivalent to a 2-conbination of tvasis vectog; andé;. There are n basis
vectors in n-dimensional vector space, the numb&rammbination is that the number of
combinations of n basis vectors taken 2 vectoestathe without repetitions. The number
of 2-combinations of arbitary two basis vectoramn-dimensional vector spaceCi$ =

%n(n— 1).
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Taking the equality of each basis vector into aotosoC} should be averagely

distributed to each one basis vector. The numhsrdénoted by
_c

K=Z=>(n-1) (4)

n

Then n=2K+1. (5)

So the VCP of two vectors there only exist in ad nelimensional space.
Secondly, the definition of magnitude of the VCHEm. (2) can be generalized to

- - 2 > 2 — 2 - = 2
14 BI|" = [|A[l"|B]]" = (4, B)* +Xyp (6)
whereX,p is called cross item and it is expressed as _
X = a;bja'b™y;) = a;bja'b™(T, + 65,8 — 65,61 7)
Tiljm =((& x &) - éu)(& x ép) - &) (8)

where T/™ is a sign function and(é; x é;) - é,)denote the vector inner product of
(é; x &) andéy.

Subsequently, the generalised definition and catmnr formula of the VCP in an odd n-
dimensional space will be presented.

Proposition 1. The VCPA x B of any two vectors on an odd-dimensional spadsfgat
the following generalized axioms:

(jxﬁ,jor§)=0 9)
5 o2 a2 =2 N
|4 x B[ = ||| |BIl" = (4 B)*+Xap (10)

2.1. Algorithm of VCP in an odd n-dimensional space

As we know, there is only an algorithm of VCP irdigaensional space. Although the
definition of VCP has been extended to an odd nedsional space (n>3), the algorithm
of the VCP is not unique. Owing to the diversitytled combination of basis vector, there
are many kind of algorithm of the VCP in odd n-dimsi®nal space.

So -called an algorithm depend on the calculatide. rin the following section various
type of algorithms are discussed.

2.1.1. Algorithm for the VCP in 3-dimensional space
Obviously, there are 3 basis vectdi, é,, é;) in 3-dimensional vector space, one of the
basis vector can be expressed by the cross proflotiter two basis vectors. From Eq. (4),
one can find k=1, so one of the basis vector caxpeessed by one 2-combination of basis
vector uniquely, which is demonstrate in Table 1.

é; é, é,

ézXég é3Xé1 61X62

Table 1: One kind of distributive combination form &fin 3-dimensional vector space
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Here right handed rotation rule is adopted in aoiesing algorithm.So for any two
3-dimensional vector(xq,x,,x3) and (yq,y2,y3)the cross product is another 3-
dimensional vector defined &8,y; — x3Y2, X3V1 — X1V3, X1Y2 — X2¥1)-

2.1.2. Algorithm for the VCP in 5-dimensional space

There are 5 basis vecto(é,, é,, é;, €4, €s) in 5-dimensional vector space, one of the basis
vector can be expressed by the cross product ef btio basis vectors. From Eq. (4), one
can find k=2, so one of the basis vector can beessed by two 2-combination of basis
vector, which is demonstrate in Table 2.

Kind P &, é5 &, és
1. 23,4¢ 15,3 12,4 13,2 14,2:
2. 24,3¢ 14,3 14,2¢ 12,3 12,3
3. 25,3¢ 13,4 15,2 15,2: 13,2+

Table 2: Three kinds of distributive combination formé&fin 5-dimensional vector space

From the above Table 2, e.g. the basis vegtaran be expressed b§, x é; (23) and
é, X éz (45). Here, a double-digit is used to denote tlosproduct of two basis vector
for simplicity. The (23,45) of two 2-combination bgsis vector is called one kind of
distributive combination form,

There are three kinds of different distributive dmdnation forms under each basis
vectoré;. For example, there are 3 kinds of distributivenbation forms (23,45) , (24,35)
, (25,34) undeg, in the Table 2.

Furthermore, a pair of double-digit from each caluof Table 2 is taken to
constitute a kind of calculation rule, and the gkdtion rule demands all double-digit of
five paif of double-digit which be extracted isfdifent. Then, let these different double-
digit arrange a row to represents a calculatior.rccordingly, six kinds of different
calculation of basis vector obtain in the TableeBtw.

algorithm é, é, é3 é4 és
1. 23,45 14,3t 15,2« 13,2t 12,3¢
2. 2345 15,3¢ 14,2¢ 12,3t 13,2¢
3. 24,35 1345 14,25 15,23 12,34
4. 24,3t 15,3¢ 12,4¢ 13,2t 14,2
5. 25,34 13,4¢ 15,2« 12,3t 14,2
6. 25,34 14,3t 12,4¢ 15,2t 13,2¢

Table 3: Six kinds of algorithms of cross product in 5-dima@nal space

That is to say, the VCP in 5-dimensional spaceshasorts of different algorithms. Thus,
one can find a kind of cross product algorithm as$ib vector by selecting combination
form form a row double-digit from Table 3. For exalm the relation of cross product of
basis vector from'3row in Table 3 can be expressed as

8y X 6,7 81 83X 65= 81 B3 X 617 6, 84 X 65= &, , 8, % 6,= &5
85 X 6,= 85 85 X 617 84 By X E3= 84,81 X 6,= 85,85 X &,= 5.
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The above relation of cross product of basis vestiomvs a kind of algorithm of the VCP
. Under right-handed orthogonal coordinate frare ¢ross product of basis vector has to
satisfy right-handed rotation rule. The relationcobss product of basis vector can be
expressed as

éi X éjz LU kék , I13
where L;;  is the generalized Levi-Civita symbol.
1 when (ij k) is even permutation

Lijie = {—1 when (ij k) is odd permutation

In terms of the relation of basis vectors from @) , the VCPA x B can be computed
by the following

A X B=aibjél~><éj

oy nallo sellenllay ool +lo bellee [l ol +log billea+
oy bl +1ne all]e4+[| el o a4
a, ag S
Let Xqp = b, bﬁ| ,thend x B can be expressed as
A X B =[Xgq + Xs518; + [Xa1 + Xu518; + [X41 + Xs2]é5
+[Xp3 + Xs1]84 + [X12 + X3485 (15)
Moreover, we can provfl4 x 1_§||2 = ||j||2||§||2 — (4, B)*> + X, . Where
Xap = a;bja'b™y,]) is as follows
Xap = aibjalbm)(zir];l = 2([X24X35] + [X31X45] + [X41X52] + [X23Xs51] + [X12X34])
#0

2.1.3. Algorithm for the VCP in 7-dimensional space

Similarly, we can find K=3 in 7-dimensional spasing Eq. (4). So one of the basis vector
can be expressed by three 2-combination of basterge In 7-dimension there are 15 kinds
of different different distributive combination fos and there are 6240 kinds of non-
repeating algorithms. Out of them three kinds sfributive combinational forms of basis
vector é; and three different kinds of algorithms for thess product in 7-dimension is
illustrated by Table 4 and Table 5 respectivelyohel

Kind & &, &5 2, é 86 é

1. 23,47,5€ | 13,56,4 | 16,27,4 | 13,27,5(| 17,26,3 | 17,25,3: | 14,26,3!
2, 24,37,5(| 14,35,6'| 17,2541 12,36,5 | 16,23,4 | 15,27,3 | 13,264
3. 25,34,6' | 15,36,4 | 15,26,4" | 15,23,67| 14,23,6 | 14,235 | 15,23 4

Table 4: Three kinds of distributive combination formé&fin 7-dimensional vector

space
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algorith é1 é, és3 é, és e é;

m

1. 23,47,5| 13,45,6| 12,46,5| 17,25,3| 16,24,3| 15,27,3| 14,26,3
6 7 7 6 7 4 5

2. 24,375 | 14,356 | 17,254 | 12,36,5 | 16,234 | 15,27,3 | 13,26,4
6 7 6 7 7 4 5

3. 25,34,6| 15,36,4| 14,26,5| 13,27,5| 12,37,4| 17,23,4| 16,24,3
7 7 7 6 6 5 5

Table5: Three kinds of algorithms of cross product in iheinsional space

Now using the ®algorithm of Table 5 and using Eqg. (13) we canrdefhe VCP for any
two vectorsA = a'¢; and B = b/¢; in 7-dimensional space. Thé x B
Can be expressed as

A X B = [Xp4 + X37 + X568y + [Xaq + X35 + Xe7165 + [X71 + X5z + Xy6]é3
+ [X12 + X3 + X57184 + [Xe1 + X3 + X74]85 + [X15 + X75 + X34]é6
+ [X13 + X6 + Xus]é;

Certainly, one can verify

Xap = a;bja'b™y,),
= 2{[X24X37 + X24Xs56 + X37Xs56] + [X41 X35 + X41X67 + X35X67]
+ [X71X52 + X71X46 + X52Xa6] + [X12X63 + X12X57 + X63X57]
+ [X61X23 + X61X74 + X23X74] + [X72X15 + X34 X715 + X72X34]
+ [X13X26 + X13X45 + X26X45]} = 0

Remark 1. For other odd-dimensions, aforesaid algorithms lvareasily applied after
generalizing those into higher dimensions.

Now we are able to define cross multiplication kestw two odd- dimensional VVMs by
using algorithms of VCP for odd multi-dimensionaktor spaces which are illustrated by
examples below:

3. Cross product between two odd-dimensional VVM

Definition 3.1. Two odd-dimensional VVM, A and B are said to be foomal for the
cross product if they have the same dimensiongt@dumber of columns & is equal

to the number of rows @. If , A = (aij,a;g, ...a,"cj)m,n and B = (bij,b,ij, ...b,i(j)n,pthen
the dot product betweehandB (denoted ad X B) is a k-dimensional VVM matri of
order m x p defined as

=C = (cHJ U i
AXB=C=(c,¢5, ) )mp
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ij ij ij ij o ij ij ij o,ij ij
where (¢, c), . cl) =2k a),...a)) x by, b, ..., b))

Example 3.1. (cross multiplication of two 3-dimensional VVMs)
Let us consider two 2x2 order 3-dimensional reaMsy
(1,2,3) (1,1,0) (1,0,1) (2,3,1)
A= [(3,2,0) (4,0,0)]""”0'3 = [(2,3,6) (0,0,1)]
thenA X B =
(1,2,3) x (1,0,1) + (1,1,0) x (2,3,6) (1,2,3) x (2,3,1) + (1,1,0) x (0,0,1)
(3,2,0) x (1,0,1) + (4,0,0) x (2,3,6) (3,2,0) x (2,3,1) + (4,0,0) x (0,0,1)

Now elementary cross products are calculated \wigthelp of (*) as follows:

(1,23)%(1,01)=(2-1-0-3,3-1-1-1,1-0-2-1) = (2,2,—-2)
(1,1,0)x (23,6) =(6-1—-3-0,0-2—1-6,1-3—1-2) = (6,—6,1)
(1,23)x(231)=(2-1-3-3,3-2—-1-1,1-3-2-2) =(=7,5,—-1)
(1,1,0) x (0,01) =(1-1-0-0,0-0—1-1,1-0—1-0) = (1,—1,0)
(3,20)%(1,01)=(2-1-0-0,0-1-3-1,3-0—2-1) = (2,—3,-2)
(4,0,0) % (2,36)=(0-6—0-3,0-2—4-6,4-3—0-2) = (0,—24,12)
(32,0)x(231)=(2-1-3-0,0-2—-3-1,3-3—-2-2) = (2,-3,5)
(4,0,0) % (0,01) =(0-1—0-0,0-0—4-1,4-0—0-0) = (0,—4,0)

HenceA x B = [(8’_4’_1) 64, _1)]

(2,—-27,10) (2,—7.5)

Example 3.2. (cross multiplication of two 5-dimensional VVMs)
Let us consider two real VVMs, one of which is ofler 2x2 and another of order 2x1
with each element are belongs to the sgRicsuch that
_ (1,0,0,1,1) (1,0,1,1,0)] dB = [(1,3,2,1,0)]then
(2,1,0,1,3) (2,3,4,1,2) (2,0,2,0,1)
AxB = [(1,0,0,1,1) %x(1,3,2,1,0) + (1,0,1,1,0) x (2,0,2,0,1)
(2,1,0,1,3) x (1,3,2,1,0) + (2,3,4,1,2) x (2,0,2,0,1)

Now elementary cross products in 5-dimension, ateutated with the help of (14) as
follows:

(1,0,0,1,1) x (1,3,2,1,0)
0 1) .10 110 1;,(1 1|1 1.1 O] |0 O
:{1[311|+1|2oo]'(!|211|+|1 0”'”1 1|+|o 3””3 2|
+|0 1]'”1 3|+|2 1”}2(_5'_3'3'1'1)

(1,0,1,1,0) X (2,0,2,0,1)
0 1) (1 oyl 1.1 O fl 1 (0 ofqo 1
={[|0 1|+|2 1]'”2 2|+|o 1”'”0 2|+|1 o”'”o 2|

[0 SlLE o+l ol =arz-1-2

57



Argha Dubey
(211)01113) X (1’31211’0)

=1+l ol [l 51+l oI5 5+l 5[5 2

+|3 i][i §|+|2 1|]}=(—8,—7,8,5,3)

(2,3,4,1,2) x (2,0,2,0,1)

I g 00 28 20 3 G
2 ]”2 0| 12 0”} =(05-18-8)
Henced x B = [((—_84—_2275103_—15))] which is a 2x1 order 5-dimensional VVM.

4. Conclusion

In this paper, vector valued fuzzy matrices aréngef and several types of such matrices
are defined. The basic arithmetic operations afinet: Two types of products, viz. dot
and cross products are defined. The cross progudefined for the odd dimensional
vectors only. And it is very difficult to find oatoss product for even dimensional vectors.

Acknolegement. The author is thankful to the revierews for theifuable comments for
improvement of the paper.
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