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Abstract. The products of odd-dimensional vectors are disaligs[40]. Based on
these definitions, the product of vector valuedriras investigated.in this paper,
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1. Introduction

A matrix is a very important mathematical toolh#ts various application in the field of
Mathematics, Physics etc. This paper is the coation of the previous published paper
[40]. In this present article, the determinant aujoint of vector valued matrices are
defined and investigated.

Specially for the case of matrix multiplication, Wwave used generalised concept
of odd multi-dimensional vector cross product bgeralizing Eckmann [2] axioms which
was given by Tian et al. [12]. Here, vector crossdpct in n-dimensional vector space is
defined. Multi-dimensional vector product is definey Silagadze [14]. For other works
on vector product see [1,2,3,4,7,9,10,13] and rdlitiensional vector product are used in
[5,6,8].

Several other types of matrices are available azyfisetup. There are some
limitations in dealing with uncertainties by fuzzgt. Pal et al. defined intuitionistic fuzzy
determinant in 2001 [29] and intuitionistic fuzzyatmces (IFMs) in 2002 [30]. Bhowmik
and Pal [19] introduced some results on IFMs, fittnistic circulant fuzzy matrix and
generalized intuitionistic fuzzy matrix [19-25]. y&mal and Pal [36-38] defined the
distances between IFMs and hence defined a metri¢FMs. They also cited few
applications of IFMs. In [28], the similarity relans, invertibility conditions and
eigenvalues of IFMs are studied. Idempotent, regylgpermutation matrix and spectral
radius of IFMs are also discussed. The parametenzatool of IFM enhances the
flexibility of its applications. For other works dfMs see [16-18,27,33,34,37,38]. The
concept of interval-valued fuzzy matrices (IVFMs)aageneralization of fuzzy matrix was
introduced and developed in 2006 by Shaymal and3%4lby extending the max-min
operation in fuzzy algebra. For more works on IVF8& [32]. Combining IFMs and
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IVFMs, a new fuzzy matrix called interval-valuedudiitionistic fuzzy matrices (IVIFMSs)
is defined [26]. For other works on IVIFMs, see 2. For recent works on uncertain
matrix theory see [41-44].

1.1. Definition of odd multi-dimensional vector valued matrix
A rectangular array ahn elements; ij into m rows andn columns, where the elements

A;j’s are the vectors i.e. of the f0|(m1 ,a2 e ,a,"cj) whereaf{; € F(scalar field), belong

to a vector spac&Xof k dimension is called an odd multi-dimensional veatalued
matrix fork > 2.
Am X n orderk-dimensional vector valued matrix is exhibitedhie form

[(ait, a3, ..akt)  (ai? a3 ,...a,lcz) = (af™ a3", .. ai")]
|(a1 ,a2 ,aft)  (a?? ,a2 @) e (a2 ,a2 . a,zcn)I
[(al ,az y s 1) (a1 1a2 ) aﬁz) e al ,az ,aﬁn)J

1.3. Varioustype of vector valued matrices

Row and column vector valued matrix

In am xn VVM (vector valued matrix (VVM) ifm = 1, then the VVM is calledaw
VVM.

eq.[123) (001 (@01 etc.
Whenn = 1, then the VVM is called column VVM.

@45)
(200 | etc.
(0,04)

Null vector valued matrix
If each element of a VVVM be zero vector then thaWig calledNull VVM. A m x n order
k-dimensional Null VVM is denoted &, ,,-

Squar e vector valued matrix
A VVM is said to be aquare VVM if the number of rows of it is equal to the numbér
column of it.

Diagonal vector valued matrix
A Square VVM is calledDiagonal matrix,if all of its non-diagonal elements are zero
vector.

Identity or unit vector valued matrix
A Square VVM is said to bedentity or Unit VVM, if all diagonal elements of it are equal
to unit vector and non-diagonal elements are adl zectors. An X n orderk-dimensional

VVM is denoted ag.
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Upper and lower triangular vector valued matrix

A Square VVM is said to b&pper Triangular VVM if all elements of it below the leading
diagonal are zero vectors and it is said td_bwer Triangular VVM if all elements of it
above the leading diagonal are zero vectors.

1.3. Varioustype of algebraic operations on vector valued matrices
We consider Vector Valued Matrices of same dimensio

Addition

Two vector valued matricesandB are said be Conformal for Addition if they havensa
order.

If A= (a’,a’,..a7),,,andB = (b7, b7, ...b7),, , be twok dimensional vector valued
matrices of ordels< n . Then their sum is la dimensional vector valued matiixof order
m X n and it is defined as

i boij o, ij o, i
_(C1'Cz,-- J)mn—(a]+bj ay +b, .. a) + b )mn

If A andB two vector valued matrices of different order afiffierent dimensions then
Addition is not defined.

Subtraction
Two vector valued matrice$ andB are said be Conformal for Subtraction if they have
same order.
If A=(a’,a7,..a)mn andB = (b7,b7,...b),, , be twok(odd) dimensional vector
valued matrices of ordern . Then their dn‘ference is arfodd) dimensional vector valued
matrix C of ordelm xn and it is defined as

ij

ij i ij ij ij
= (c1 ,c2 s s € )mm = (@7 — by ,a2 = by, ..,a; — b )mn

Scalar multiplication

The product of an x n orderk-dimensional VVM A = (a1 ,ak o a,i(j)m_nby a scalar
wherec € F , the field of scalars, is a x n order k(odd)-dimensional VVM,B =
b b7, . b ) mn defined by

(bl,b,lcj,... ”) (c- al,c ak,. c: ak) i=12,-,m;j=12,---,n; and it can be
written asB = cA.

Letd be am x n order odd-dimensional VVM and, d are scalars.Then the
following results are obvious.
a) c(dA) = (cd)A,
b) 0A = 0,,, ; 0 being the zero elementrof
¢) Omn = Omn,
d) 14 = A,1 being the identity element &f.

Multiplication
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Here the matrices are of vector valued. Hence viiealwvo type of multiplication for such
matrices. These are scalar multiplication (dot potdand vector multiplication ( cross
product).

Dot product between two VVM

Two VVM, A andB are said to be conformal for the dot product étlhave the same
dimensions and the number of columnsia$ equal to the number of rows Bf If A =
@7,a?,...a0),nand B = (b7, b7, ...b,ij)n,p then the dot product betweeh and B
(denoted ad - B) is a scalar matnE of orderm X p defined as,

A-B = C—(cl,cz,.. ])mpwhere(cl,cz,.j 1) Z? 1(al,az,..,a,lj)x
(bl,béj,---, ;l(]):(a1 b”, it . tJ N lt tj) i = m; j=1,2,-,p.

2. Transpose of a vector valued matrix

Let A be am X n order k(odd)-dimensional VVM . Then thex m VVM obtain by
interchanging rows and columns of A is said toheettanspose of A and it is denoted by
At(or AT).

Thus if = (a1 ,ak,. ”)m,n then A =B=(b,b7,..b7),n where
(b, b, .. ”)_ al',all, ..l ,i=1,2,...,n;j=1,2,...,

(1,0,0) (0,1,0)

121)) (0,0,1)] hen

Example2.1. Consider 2 x 2 order 3-dimensional VVMA = [

At — (1,0,00 (1,2,1)

~ 1(0,1,0) (0,0,1)]

Theorem 3.1. (AY)t = A

Theorem 3.2. If A and B two odd-dimensional VVMs such that+ B is defined then
(A+ B)t = A + B,

Theorem 3.3. If ¢ is a scalar(cA)t = cAt.

Theorem 3.4. If A and B two odd-dimensional VVMs such thaR is defined then
(AB)t = BtAL,

The proofs of the above theorems are obvious.

Symmetric and skew symmetric vector valued matrices
A square odd-dimensional VVM is said to beysnmetric VVM if A = At. Therefore

= (a’,a7, ..al )y is ymmetricit (a,ay,..a)) = (al',a}, ..al") .
(1,0,0) (1,23) (29,5)

Example2.2.((1,2,3) (0,1,0) (1,51)].
(29,5 (1,51) (0,0,1)
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A square odd- dimensiona.l VVM is said to bekew- symmetric VWMif 4 = At
ThereforeA = (ay,aj, ...a )mn is skew-symmetric if (a1 ,aj,..a))=

—(a1 ,a2 - ail)

(1,0,0) (1,2,1) (2,9,5)
Example2.3. |(-1,-2,-1) (0,1,0) (—1,—4,-1)|.
(-2,-9,-5) (141 (0,0,1)

Some importantesults hold for such type of VVMs given as

a) If A and B two symmetric VVM of same order thént+ B is symmetric.

b) If A and B two symmetric VVM of same order thd® is symmetric if and only if
AB = BA.

c) If Abeam xn VVM, then the VVMsAA! andAtA are both symmetric.

d) If A real square VVM can be uniquely expressedhassum of symmetric VVM and
skew symmetric VVM.

3. Determinant
Here we generalized the idea of determinant in oasector valued matrices which is
defined as follows:

Definition 3.1. A determinant functionf:S — V is a vector valued function on the Set
ofalln xn ordervector valued matrices of k(odd)-dimensioardie vector spadé such

that if A = (a1 ,ag, ... ,a,i(j) € S, thenf(A) , ordetA is a vectorbelonging t& and is
defined by

detd =Y, sgn @ (a}‘p(l),a;‘p(l), a’1(<p(1)) % (af<p(2)’a§<p(2)’ ai‘p(Z)) x

(a;up(n), a;up(n), a;up(n))

wherep is a permutation on{1,2,..,n} and sgn@ =1or —1 according as the
permutation

= ( 1 2 oo ) is even or odd
Y=o e e -
det A is said to be a determinant of order n and is ehby the symbol
i(al',ad’,..a 11) (ai?% a3 ,...a}(z) ~ (ai™ a3 . ai)
(a1 ,a2 . 1) (a1 ,az . a,%z) . (a1 ,a2 e a,zcn)
((11 zaz y o 1) (a1 ,az ) Ez) < (a™ az", .ap™)

Or shortly by(a”,a, . a,lj)|n
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The summation is said to be the expansiodeofd. It containsn! terms as there are
n! permutations on the sgt,2, ..., n}.As there are;—n! even an(%n! odd permutations on

the sefl1,2, ..., n}, contains%n! positive terms anéln! negative terms.

Each term is a cross product of n vector eleméntsach term the first suffices
(row suffices) of the elements appears in theinrgborder and the second suffices appears
in a permutation of 1,2,...,n. So each term contaims element from each row and one
element from each column df
We now illustrate determinant of vector valued ricat by following examples

Examples 3.1. Let us consider & x 3 order 3-dimensional real vector valued matrix give
by

(1,1,0) (2,1,3) (0,1,0)
A=((113) (1,0,1) (1,1,0)|then

(2,0,1) (234) (1,31

(1,1,0) (2,1,3) (0,1,0)
detA=|[(1,1,3) (1,0,1) (1,1,0)
(2,01 (234) (1,31)
= (1,1,0) x [(1,0,1) % (1,3,1) — (1,1,0) X (2,3,4)]
+(2,1,3) x [(1,1,0) x (2,0,1) — (1,1,3) x (1,3,1)]
+(0,1,0) x [(1,1,3) x (2,3,4) — (1,0,1) x (2,0,1)]
= (1,1,0) x [(=3,0,3) — (4,—4,1)]
+(2,1,3) x [(1,—-1,-2) — (=8,2,2)] + (0,1,0) X [(—5,2,1) — (0,1,0)]

=(1,1,0) x (=7,4,2) + (2,1,3) x (9,—3,—4) + (0,1,0) x (=5,1,1)
=(2,-2,11) + (5,35,—15) + (1,0,5) = (8,33,1)
HencedetA =(8,33,1).

Example 3.2. Let us consider 2 x 2 order 5-dimensional real vector valued matrix give

by
5= [(1,1,2,3,4) (2,3,1,1,2)

(1,0,1,0,3)) (4,1,0,0,1)] then

(1,1,234) (23,1,1,2)
(1,0,1,0,3)) (4,1,0,0,1)

detB =
=(1,1,2,3,4) x (4,1,0,0,1) — (2,3,1,1,2) x (1,0,1,0,3)
Now to compute the cross product we used (14) ahd g

(1,1,2,3,4) % (4,1,0,0,1)
173 12 4112 1, 13 4103 1. 14 15 i1 2
:{”1 o|+|o 1]'”0 4|+|0 1”'”0 4|+|1 1]'”1 0

+411 41}]”3} 1|+|3 (3)”}:(—1,11,15,13,—3)
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(2,3,1,1,2) x (1,0,1,0,3)

={llo_ol+[s sl sl+lo sl o 51+l oll0G s

EAME R ) =0aseoios

HencedetA = (—1,11,15,13,—3) — (1,2, -8, —1,—4) = (=2,9,23,14,1)

Example 3.3. Let us consider 2 x 2 order 7-dimensional real vector valued matrix give
by

C= [(1,2,1,0,0,1,2) (2,3,41,2,1,0)
~1(1,0,0,1,2,34) (2,1,0,1,0,2,0)f

1(1,21,0,0,1,2) (2.34,1,2,1,0)
Now,detC = |1 00,1,2,34) (21,0,1,02,0)
= (1,2,1,0,0,1,2) X (2,1,0,1,0,2,0) — (2,3,4,1,2,1,0) X (1,0,0,1,2,3,4)

Now elementary cross products in 7-dimension, aeutated with the help of "2
algorithm of Table 5 as follows:

(1,2,1,0,0,1,2) x (2,1,0,1,0,2,0)

=(3 T+l ol +o lllly 2+ o ol+fe ollllo ol+lo ¥
R S
—(2—53—50J;|1% Al o+ 1o A+ lo allllz ol #1521+ 15 oll

Similarly, (2,3,4,1,2,1,0) x (1,0,0,1,2,3,4)

gl L A M R e e R R B g
LR
o all L7 2+l o+ lo Al ol +fo s+l 2l
= (25,4,—10,—15,-9,—-6,5)

HencedetC = (2,-5,3,—5,0,3,1) — (25,4, —10,—15,—9, —6,5)
= (=23,-9,13,10,9,9, —4).
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Generally, the results hold for usual determindimatrices may or may not holds
for the determinant of VVM, for example, the resultet A = detA® holds for the
determinants of matrices but does not holds for didtensional vector valued matrices
since vector cross multiplication is not commutativ

We can easily illustrate this by considering & 2 order 3-dimensional matrix

A= (1,0,1) (1,2,3)
B [(2,1,0) 4,2,
(1,0,1) (1,2,3)

Thendetd = |07 655)| = (100 x (h2,1) = (12:3) x 2,10
L (2232)— (3,6, -3) = (1,—3,5).
Butdetat = [(BOL) LON _ g 51y a21) = (21,0) x (1,2.3)

(123) (421)
=(-2,32)— (3,-6,3) = (=5,9,—1).
Hence, clearlyet A # detA®.

4. Cofactor and minors
Letd = (a1 ,a2 . ,a;j) be an x n orderk-dimensional VVM.
Then( 1<P(1) ;w(l)’ allcqo(l)) x (afqo(Z)’agqo(Z)’ alch)(z)) x

(a;w(n),a;ﬂ"), . al®™), where

@ is a permutation of1,2, ..., n} andsgn (p = 1 or — 1 according as the permutation
1 2 .
= S even or odd.
v («p(l) o(1) - <p<1)) o eV

There aren! terms in the expression. Each term contains odeoaly one element from
each row and one and only one component from ezlama.

Let us consider, in particular, thth row. Each term of the expansiondaft A
contains one and only ai,,a,,, ..., a;,. Therefore the expansion eofetA can be
exhibited as,

detA = (a1 ,a2 . )(***) + (a1 ,a2 ) )(***) + -4 (a1 ,a2 ) a,'c )(***)
The companion facto(S**) of (@/,dy, ..., ’) is called theofactor of (a¥/,a”, ...,a?)
in detA and is denoted hy;;.

Thus

detA = (ail,atl, ..., al)Ay + (a?, a2, ..., a2 )A; + -+ (al, al, ..., al) Apy.
Again if one row and one column be deleted fromrar n orderk(odd)-dimensional
VWM, A= (a1 ,a2 s ,af(") , the determinant of the remainifig— 1) X (n — 1) matrix
is said to be a minor of ordét — 1) of A. The minor of orde¢n — 1) obtained by deleting
ith row and jth column is denoted Wdy;; and is said to be the minor of the element
(a1 ,a2 , e, ap)) of det A.
In the determinant

i(al',adl, ..ait) (al?dd? ..ai®) - (ai™al", ..ai™)j
(a2t ,a2 ,weaft) (a?%,a3%,..af*) - (a® ,a2 s agh)|
(a1 ,apt, at) (a1 ,a?z,...azz) o (@ adn, .al™)
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_|(af? a? ..ai?)  (aF? a3’ ..a}?)
(a3%,a3%, ..a*) (a$ a3, ..a}?)

_ (a1 , a3 ,...a,%l) (a1 , a3 ,...a,2(3)

(a1 ,a3 ,...a,?gl) (a1 ,a3 ,...a,?;3)

21 22
a?t,a?l,..a2 a??,a3?,...a2 ) )
M5 = ( ) ( ) ,etc are minors of the above determinant.

(a3t a3, ..alt) (a$% a3’ ..a}?)
5. Adjoint of VVM
LetA = (a1 ,ay, ...,a; ) be a squaré(odd)-dimensional VVM.. Let4;; be the cofactor

of (a1 ,a2 ) e ’) in det A. The transpose of the matii4;;) is said to be thadjoint (or
adjugate) ofA and is denoted bydj A.

Example5.1. Let us consider 8-dimensionaB x 3 order VVM defined as,
(1,0,1)) (1,23) (2,1,0)
A=10213) (1,0,0) (4,0,1)].
(3,0,6) (63,00 (0,1,0)
+ (1,0,1) (4,0,1) _ (1,2,3) (2,1,0) + (1,2,3) (21,0)
(6,3,0) (0,1,0) (6,3,0) (0,1,0) (1,0,0) (4,0,1)
@13 (401 (L0, (210 (101 (210)
Then.adjA=1-1356) 01,0 tl306 (01,0 2,1,3) (40D]]
(2,1,3) (1,0,0) (1,0,1) (1,2,3) (1,0,1) (1,2,3)
(3,0,6) (6,3,0) (3,0,6) (6,3,0) (2,1,3) (1,0,0)

(3,-6,12) (3,0,-1) (211,-7)
AdjA=|3B,-212) (-7124) (3,-9,0)
(=9,24,0) (15,-3,—9) (-3,-2,3)

Properties:

(@) adj (AY) = (adj A)t.

(b) If A be am x n orderk(odd)-dimensional VVM and be a scalar. Thendj (cA) =
c"ladj A.

Proof of those aforesaid properties are oblivious.
6. Conclusion
Based on the algorithms to find product of odd disienal vectors, we defined

determinant and adjoint of a square odd-dimensieeetior valued matrix. Although, still
we are unable to define the inverse of a vectanadiimatrix because the determinant of
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odd-dimensional vector valued matrix is geneedliinto a vector valued function

instead of scalar function so further investigai®required in this field. Also, its potential
application in mathematics and physics also desdnvbe further investigated.,
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