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Abstract. The products of odd-dimensional vectors are discussed in [40]. Based on 
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we studied the determinant and adjoint of vector valued matrices. The definitions are 
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1. Introduction 
A matrix is a very important mathematical tool. It has various application in the field of 
Mathematics, Physics etc. This paper is the continuation of the previous published paper 
[40]. In this present article, the determinant and adjoint of vector valued matrices are 
defined and investigated.  

Specially for the case of matrix multiplication, we have used generalised concept 
of odd multi-dimensional vector cross product by generalizing Eckmann [2] axioms which 
was given by Tian et al. [12]. Here, vector cross product in n-dimensional vector space is 
defined. Multi-dimensional vector product is defined by Silagadze [14]. For other works 
on vector product see [1,2,3,4,7,9,10,13] and multi-dimensional vector product are used in 
[5,6,8]. 

Several other types of matrices are available on fuzzy setup.  There are some 
limitations in dealing with uncertainties by fuzzy set. Pal et al. defined intuitionistic fuzzy 
determinant in 2001 [29] and intuitionistic fuzzy matrices (IFMs) in 2002 [30]. Bhowmik 
and Pal [19] introduced some results on IFMs, intuitionistic circulant fuzzy matrix and 
generalized intuitionistic fuzzy matrix [19-25]. Shyamal and Pal [36-38] defined the 
distances between IFMs and hence defined a metric on IFMs. They also cited few 
applications of IFMs. In [28], the similarity relations, invertibility conditions and 
eigenvalues of IFMs are studied. Idempotent, regularity, permutation matrix and spectral 
radius of IFMs are also discussed. The parameterizations tool of IFM enhances the 
flexibility of its applications. For other works on IFMs see [16-18,27,33,34,37,38]. The 
concept of interval-valued fuzzy matrices (IVFMs) as a generalization of fuzzy matrix was 
introduced and developed in 2006 by Shaymal and Pal [39] by extending the max-min 
operation in fuzzy algebra. For more works on IVFMs see [32]. Combining IFMs and 
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IVFMs, a new fuzzy matrix called interval-valued intuitionistic fuzzy matrices (IVIFMs) 
is defined [26]. For other works on IVIFMs, see [23,25]. For recent works on uncertain 
matrix theory see [41-44]. 
 
1.1. Definition of odd multi-dimensional vector valued matrix 
A rectangular array of �� elements ��� into � rows and � columns, where the elements ��� ’s are the  vectors i.e. of the form (���� , �
�� , … , ����) where ���� ∈ �(scalar field), belong 
to a vector space ��of � dimension is called an odd multi-dimensional vector valued 
matrix for � ≥ 2. 
             A � × � order �-dimensional vector valued matrix is exhibited in the form 
 

⎣⎢
⎢⎡�����, �
��, … ����� ����
, �
�
, … ���
� ⋯ ����� , �
��, … ��������
�, �

�, … ��
�� ���

, �


, … ��

� ⋯ ���
� , �

� , … ��
��⋯�����, �
��, … ����� …����
, �
�
, … ���
� ⋯⋯ (���� , �
�� , … ����)⎦⎥

⎥⎤ 
 
1.3. Various type of vector valued matrices 
Row and column vector valued matrix 
In a � × � VVM (vector valued matrix (VVM) if � = 1, then the VVM is called row 
VVM. 
e.g. [ ])1,0,1()1,0,0()3,2,1(  etc. 

When � = 1, then the VVM is called column VVM. 

e.g.

















)4,0,0(

)1,0,2(

)5,4,1(

 etc. 

 
Null vector valued matrix 
If each element of a VVM be zero vector then the VVM is called Null VVM. A � × � order �-dimensional Null VVM is denoted as %�,�· 
 
Square vector valued matrix 
A VVM is said to be a square VVM if the number of rows of it is equal to the number of 
column of it. 
 
Diagonal vector valued matrix 
A Square VVM is called Diagonal matrix,if all of its non-diagonal elements are zero 
vector. 
 
Identity or unit vector valued matrix 
A Square VVM is said to be Identity or Unit VVM, if all diagonal elements of it are equal 
to unit vector and non-diagonal elements are all zero vectors. A � × � order �-dimensional 
VVM is denoted as &��. 
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Upper  and lower triangular vector valued matrix 
A Square VVM is said to be Upper Triangular VVM if all elements of it below the leading 
diagonal are zero vectors and it is said to be Lower Triangular VVM if all elements of it 
above the leading diagonal are zero vectors. 
 
1.3. Various type of algebraic operations on vector valued matrices 
We consider Vector Valued Matrices of same dimension. 
 
Addition 
Two vector valued matrices � and ' are said be Conformal for Addition if they have same 
order. 
If � = (���� , ���� , … ����)�,� and ' = ((���, (���, … (���)�,� be two � dimensional vector valued 
matrices of order × � . Then their sum is a � dimensional vector valued matrix ) of order � × � and it is defined as  ) = (*���, *
�� , … , *���)�,� = (���� + (���, �
�� + (
��, … , ���� + (���)�,�  

 

If � and ' two vector valued matrices of different order and different dimensions then 
Addition is not defined. 
 
Subtraction 
Two vector valued matrices � and ' are said be Conformal for Subtraction if they have 
same order. 
If � = (���� , ���� , … ����)�,�  and ' = ((��� , (���, … (���)�,� be two �(odd) dimensional vector 
valued matrices of order × � . Then their difference is an �(odd) dimensional vector valued 
matrix C of order � × � and it is defined as  ) = (*���, *
�� , … , *���)�,� = (���� − (���, �
�� − (
��, … , ���� − (���)�,�  

 
Scalar multiplication 
The product of a � × � order �-dimensional VVM , � = (���� , ���� , … ����)�,�by  a scalar * 
where * ∈ � , the field of scalars, is a � × � order �(odd)-dimensional VVM, ' =((���, (���, … (���)�,� defined by  �(���, (���, … (���� = �* ∙ ���� , * ∙ ���� , … * ∙ �����, . = 1,2, ⋯ , �; 0 = 1,2, ⋯ , �; and it can be 
written as ' = *�. 
 
             Let � be a � × � order odd-dimensional VVM and *, 1 are scalars.Then the 
following results are obvious. 
a) *(1�) = (*1)�, 
b) 0� = %�,� ; 0 being the zero element of�, 
c) *%�,� = %�,� , 
d) 1� = �, 1 being the identity element of �. 
 
Multiplication 
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Here the matrices are of vector valued. Hence we define two type of multiplication for such 
matrices. These are scalar multiplication (dot product) and vector multiplication ( cross 
product). 
 
Dot  product between two VVM 
Two VVM, � and ' are said to be conformal for the dot product if they have the same 
dimensions and the number of columns of � is equal to the number of rows of '. If � =(���� , ���� , … ����)�,�and ' = ((���, (��� , … (���)�,3 then the dot product between � and ' 
(denoted as � ∙ ') is a scalar matrix ) of order � × 4 defined as, � ∙ ' = ) = (*���, *
��, … , *���)�,3 where �*���, *
��, … , *���� = ∑ (���� , �
�� , … , ����) ×�67�((���, (
��, … , (���) = ����6 ∙ (�6�, �
�6 ∙ (
6�, … , ���6 . (�6��, . = 1,2, ⋯ , �;  0 = 1,2, ⋯ , 4. 
 
2. Transpose of a vector valued matrix 
Let A be a � × � order k(odd)-dimensional VVM . Then the � × � VVM obtain by 
interchanging rows and columns of A is said to be the transpose of A and it is denoted by �6(89 �:) . 
Thus if  � = (���� , ���� , … ����)�,�  then �6 = ' = ((���, (���, … (���)�,� where  �(���, (���, … (���� = (���� , ���� , … ����) , . = 1,2, … , �; 0 = 1,2, … , � .  
 

Example 2.1.  Consider a 2 × 2 order 3-dimensional VVM,  � = ; (1,0,0) (0,1,0)(1,2,1)) (0,0,1)< then  

�6 = ;(1,0,0) (1,2,1)(0,1,0) (0,0,1)< 
 
Theorem 3.1. (�6)6 = �. 
Theorem 3.2.  If A and B two odd-dimensional VVMs such that � + ' is defined then    (� + ')6 = �6 + '6 . 
 
Theorem 3.3. If c is a scalar, (*�)6 = *�6 . 
Theorem 3.4.  If A and B two odd-dimensional VVMs such that �' is defined then (�')6 = '6�6 . 
The proofs of the above theorems are obvious. 
 
Symmetric and skew symmetric vector valued matrices 
A square odd-dimensional VVM  � is said to be symmetric VVM if � = �6 . Therefore � = (���� , �
�� , … ����)�,� is Symmetric if  ����� , �
�� , … ����� = (���� , �
�� , … ����) . 
 

Example 2.2. =(1,0,0) (1,2,3) (2,9,5)(1,2,3) (0,1,0) (1,5,1)(2,9,5) (1,5,1) (0,0,1)A. 
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A square odd-dimensional VVM  � is said to be skew-symmetric VVM if � = −�6. 
Therefore � = (���� , �
�� , … ����)�,� is skew-symmetric if  ����� , �
�� , … ����� =−(���� , �
�� , … ����) . 

 

Example 2.3.   = (1,0,0) (1,2,1) (2,9,5)(−1, −2, −1) (0,1,0) (−1, −4, −1)(−2, −9, −5) (1,4,1) (0,0,1) A. 
 
Some important results hold for such type of VVMs given as 
a) If A and B two symmetric VVM of same order then � + ' is symmetric. 
b) If A and B two symmetric VVM of same order then �' is symmetric if and only if �' = '�. 
c) If A be a � × �  VVM, then the VVMs ��6 and �6� are both symmetric. 
d) If A real square VVM can be uniquely expressed as the sum of symmetric VVM and 

skew symmetric VVM. 
 
3.  Determinant 
Here we generalized the idea of determinant in case of vector valued matrices which is 
defined as follows: 
 
Definition 3.1. A determinant function  C: E → � is a vector valued function on the set E 
of all� × � ordervector valued matrices of k(odd)-dimension over the vector space � such 
that if � = (���� , �
�� , … , ����) ∈ E, then C(�) , or det � is a vectorbelonging to � and is 
defined by  

 det � = ∑ JK� L M N���M(�), �
�M(�), … ���M(�)O × N��
M(
), �

M(
), … ��
M(
)O × ⋯ ×N���M(�), �
�M(�), … ���M(�)O, 

whereL is a permutation on {1,2, … , �} and JK� L = 1 89 − 1 according as the 
permutation L = R 1 2 ⋯ �L(1) L(1) ⋯ L(1)S is even or odd. det � is said to be a determinant of order n and is denoted by the symbol 
 

TT �����, �
��, … ����� ����
, �
�
, … ���
� ⋯ ����� , �
��, … ��������
�, �

�, … ��
�� ���

, �


, … ��

� ⋯ ���
� , �

� , … ��
��⋯�����, �
��, … ����� …����
, �
�
, … ���
� ⋯⋯ (���� , �
�� , … ����)TT 
 
Or shortly byU����� , �
�� , … �����U�. 
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The summation is said to be the expansion of det �. It contains �! terms as there are �! permutations on the set {1,2, … , �}.As there are  
�
 �! even and 

�
 �! odd permutations on 

the set{1,2, … , �}, contains  
�
 �! positive terms and 

�
 �! negative terms. 

Each term is a cross product of n vector elements. In each term the first suffices 
(row suffices) of the elements appears in their natural order and the second suffices appears 
in a permutation of 1,2,…,n. So each term contains one element from each row and one 
element from each column of �. 
We now illustrate determinant of vector valued matrices by following examples 
 
Examples 3.1. Let us consider a 3 × 3 order 3-dimensional real vector valued matrix given 
by 

� = =(1,1,0) (2,1,3) (0,1,0)(1,1,3) (1,0,1) (1,1,0)(2,0,1) (2,3,4) (1,3,1)Athen 

 

det A = X(1,1,0) (2,1,3) (0,1,0)(1,1,3) (1,0,1) (1,1,0)(2,0,1) (2,3,4) (1,3,1)X       
= (1,1,0) × Y(1,0,1) × (1,3,1) − (1,1,0) × (2,3,4)Z+ (2,1,3) × Y(1,1,0) × (2,0,1) − (1,1,3) × (1,3,1)Z+ (0,1,0) × Y(1,1,3) × (2,3,4) − (1,0,1) × (2,0,1)Z= (1,1,0) × Y(−3,0,3) − (4, −4,1)Z+ (2,1,3) × Y(1, −1, −2) − (−8,2,2)Z + (0,1,0) × Y(−5,2,1) − (0,1,0)Z                                         = (1,1,0) × (−7,4,2) + (2,1,3) × (9, −3, −4) + (0,1,0) × (−5,1,1) 

                                   = (2, −2,11) + (5,35, −15) + (1,0,5) = (8,33,1) 
Hence, det � = (8,33,1). 
 
Example 3.2. Let us consider a 2 × 2 order 5-dimensional real vector valued matrix given 
by ' = ; (1,1,2,3,4) (2,3,1,1,2)(1,0,1,0,3)) (4,1,0,0,1)<  then 

 det ' = ] (1,1,2,3,4) (2,3,1,1,2)(1,0,1,0,3)) (4,1,0,0,1)] 
 = (1,1,2,3,4) × (4,1,0,0,1) − (2,3,1,1,2) × (1,0,1,0,3) 
 
Now to compute the cross product we used (14) and get 
 (1,1,2,3,4) × (4,1,0,0,1)= ^_`1 31 0` + `2 40 1`a , _`2 10 4` + `3 40 1`a , _`3 10 4` + `4 11 1`a , _`1 21 0`+ `4 11 4`a , _`1 14 1` + `2 30 0`ab = (−1,11,15,13, −3) 
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 (2,3,1,1,2) × (1,0,1,0,3)= ^_`3 10 0` + `1 21 3`a , _`1 21 1` + `1 20 3`a , _`1 20 1` + `2 33 0`a , _`3 10 1`+ `2 23 1`a , _`2 31 0` + `1 11 0`ab = (1,2, −8, −1, −4) 
 
Hence, det � = (−1,11,15,13, −3) − (1,2, −8, −1, −4) = (−2,9,23,14,1) 
 
Example 3.3. Let us consider a 2 × 2 order 7-dimensional real vector valued matrix given 
by 
 ) = ;(1,2,1,0,0,1,2) (2,3,4,1,2,1,0)(1,0,0,1,2,3,4) (2,1,0,1,0,2,0)<. 
 

 Now, det ) = ](1,2,1,0,0,1,2) (2,3,4,1,2,1,0)(1,0,0,1,2,3,4) (2,1,0,1,0,2,0)] 
 = (1,2,1,0,0,1,2) × (2,1,0,1,0,2,0) − (2,3,4,1,2,1,0) × (1,0,0,1,2,3,4) 
 
Now elementary cross products in 7-dimension, are calculated with the help of 2nd 
algorithm of Table 5  as follows: 
 (1,2,1,0,0,1,2) × (2,1,0,1,0,2,0) 
 = ^_`2 01 1` + `1 20 0` + `0 10 2`a , _`0 11 2` + `1 00 0` + `1 22 0`a , _`2 10 2` + `0 20 1`+ `0 11 2`a , _`1 22 1` + `1 12 0` + `0 20 0`a , _`1 12 2` + `2 12 0`+ `2 00 1`a , _`1 02 0` + `2 20 1` + `1 00 1`a , _`1 12 0` + `2 11 2` + `0 01 0`ab 

 = (2, −5,3, −5,0,3,1) 
 
Similarly, (2,3,4,1,2,1,0) × (1,0,0,1,2,3,4) 
 = ^_`3 10 1` + `4 10 4` + `2 02 3`a , _`1 21 1` + `4 20 2` + `0 13 4`a , _`1 24 1` + `2 32 0`+ `1 01 3`a , _`2 31 0` + `0 43 0` + `2 12 4`a , _`0 23 1` + `3 40 0`+ `1 14 1`a , _`2 21 2` + `1 34 0` + `4 10 1`a , _`2 42 0` + `3 00 3` + `1 21 2`ab 

 = (25,4, −10, −15, −9, −6,5) 
 
Hence, det ) = (2, −5,3, −5,0,3,1) − (25,4, −10, −15, −9, −6,5) 
                      = (−23, −9,13,10,9,9, −4). 
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Generally, the results hold for usual determinant of matrices may or may not holds 
for the determinant of VVM, for example, the result  det � = 1de�6 holds for the 
determinants of matrices but does not holds for odd dimensional vector valued matrices 
since vector cross multiplication is not commutative. 

We can easily illustrate this by considering a 2 × 2 order 3-dimensional matrix � = ;(1,0,1) (1,2,3)(2,1,0) (4,2,1)<. 
Then 1de� = ](1,0,1) (1,2,3)(2,1,0) (4,2,1)] = (1,0.1) × (4,2,1) − (1,2,3) × (2,1,0) = (−2,3,2)— (3,6, −3) = (1, −3,5). 
But 1de�6 = ](1,0,1) (2,1,0)(1,2,3) (4,2,1)] = (1,0.1) × (4,2,1) − (2,1,0) × (1,2,3) = (−2,3,2)— (3, −6,3) = (−5,9, −1). 
Hence, clearly det � ≠ 1de�6 . 
 
4. Cofactor and minors 
Let � = (���� , �
�� , … , ����) be a � × � order �-dimensional VVM.  

Then N���M(�), �
�M(�), … ���M(�)O × N��
M(
), �

M(
), … ��
M(
)O × ⋯ ×N���M(�), �
�M(�), … ���M(�)O, where  L is a permutation on {1,2, … , �} and JK� L = 1 89 − 1 according as the permutation 

                               L = R 1 2 ⋯ �L(1) L(1) ⋯ L(1)S is even or odd. 

 
There are �! terms in the expression. Each term contains one and only one element from 
each row and one and only one component from each column. 

Let us consider, in particular, the .th row. Each term of the expansion of det � 
contains one and only of ��� , �
� , … , ��� . Therefore the expansion of 1de� can be 
exhibited as, 1de� = �����, �
��, … , �����(∗∗∗) + ����
, �
�
, … , ���
�(∗∗∗) + ⋯ + �����, �
�� , … , �����(∗∗∗). 
The companion factors (∗∗∗) of (���� , �
�� , … , ����)  is called the cofactor  of (���� , �
�� , … , ����) 
in det � and is denoted by ���. 
Thus  1de� = �����, �
��, … , �������� + ����
, �
�
, … , ���
���
 + ⋯ + ����� , �
��, … , ��������. 
Again if one row and one column be deleted from an  � × � order �(811)-dimensional 

VVM , � = (���� , �
�� , … , ����) , the determinant of the remaining (� − 1) × (� − 1) matrix 
is said to be a minor of order (� − 1) of �. The minor of order (� − 1) obtained by deleting 
ith row and jth column is denoted by i�� and is said to be the minor of the element (���� , �
�� , … , ����) of det �. 
In the determinant   

TT �����, �
��, … ����� ����
, �
�
, … ���
� ⋯ ����� , �
��, … ��������
�, �

�, … ��
�� ���

, �


, … ��

� ⋯ ���
� , �

�, … ��
��⋯�����, �
��, … ����� …����
, �
�
, … ���
� ⋯⋯ (����, �
��, … ����)TT, 
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 i�� = j���

, �


, … ��

� ���
k, �

k, … ��
k����k
, �
k
, … ��k
� ���kk, �
kk, … ��kk�j, 
 i�
 = j���
�, �

�, … ��
�� ���
k, �

k, … ��
k����k�, �
k�, … ��k�� ���kk, �
kk, … ��kk�j, 
 i�k = j���
�, �

�, … ��
�� ���

, �


, … ��

����k�, �
k�, … ��k�� ���k
, �
k
, … ��k
�j, etc are  minors of  the above determinant. 

 
5. Adjoint of VVM 
Let � = (���� , �
�� , … , ����) be a square  �(811)-dimensional VVM.. Let ��� be the cofactor 

of (���� , �
�� , … , ����) in det �. The transpose of the matrix (���) is said to be the adjoint (or 
adjugate ) of � and is denoted by �10 �.  
 
Example 5.1. Let us consider a 3-dimensional 3 × 3 order VVM defined as, 

� = =(1,0,1) (1,2,3) (2,1,0)(2,1,3) (1,0,0) (4,0,1)(3,0,6) (6,3,0) (0,1,0)A. 
  

Then, �10 � = T
T+ ](1,0,1) (4,0,1)(6,3,0) (0,1,0)] − ](1,2,3) (2,1,0)(6,3,0) (0,1,0)] + ](1,2,3) (2,1,0)(1,0,0) (4,0,1)]
− ](2,1,3) (4,0,1)(3,0,6) (0,1,0)] + ](1,0,1) (2,1,0)(3,0,6) (0,1,0)] − ](1,0,1) (2,1,0)(2,1,3) (4,0,1)]
+ ](2,1,3) (1,0,0)(3,0,6) (6,3,0)] − ](1,0,1) (1,2,3)(3,0,6) (6,3,0)] + ](1,0,1) (1,2,3)(2,1,3) (1,0,0)]T

T. 
 
 

�10 � = =(3, −6,12) (3,0, −1) (2,11, −7)(3, −21,2) (−7,12,4) (3, −9,0)(−9,24,0) (15, −3, −9) (−3, −2,3)A. 
 
Properties: 
(a) �10 (�6) = (�10 �)6 . 
(b) If � be an � × � order �(811)-dimensional VVM and * be a scalar. Then  �10 (*�) =*�l��10 �. 
 
Proof of those aforesaid properties are oblivious. 
 
6. Conclusion 
Based on the algorithms to find product of odd dimensional vectors, we defined 
determinant and adjoint of a square odd-dimensional vector valued matrix. Although, still 
we are unable to define the inverse of a vector valued matrix because the determinant of 
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an odd-dimensional vector valued matrix is generalized into a vector valued function 
instead of scalar function so further investigation is required in this field. Also, its potential 
application in mathematics and physics also deserves to be further investigated., 
 
Acknolegement. The author is thankful to the revierews for their valuable comments for 
improvement of the paper. 
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