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Abstract. A comparison of the estimation methods used and the comparison of the OLS 
and PES methods was performed with a distribution of one parameter. The simulation was 
used to compare the OLS method with the gamma distribution under the assumption that 
Bayes' is known to have a gamma distribution under the assumption that is not known. The 
estimation process for the parameters of the simple linear regression model is an important 
topic, despite the fact that it has been written about it through researches and studies that 
differ according to the methods used in the estimation process, whether this method is 
traditional or Bayes'. 

The purpose of this study is to employ advance information about the parameters 
to be estimated based on the concept of the Pseudo theory of distribution of a single 
parameter in the estimation process and for the sizes of different samples. Therefore, a 
comparison was made between OLS method, the process of derivations to obtain the 
Pseudo-estimation formulas. 

Keywords: Ordinary Least Squares Method, Bayes’ Approach in the Estimation, estimation 
of marks in case O2 is known, estimating the marks in case of O2 is unknown 
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1. Introduction  
In this particular side, we touch upon a brief idea about estimating the marks of simple 
linear declension, by using the classical methods and of them is (the regular minimized 
square method) OLS and inclusively the properties of this method, after that we go to 
dealing with the Bayes' analytic method for this model in estimating the marks which 
represent the basic target of this research, depending on previous information about the 
marks represented by Gamma distribution. 
 
2. Ordinary least squares method OLS 
It is a style of matching a straight line of an observation sample x. y and includes 
minimizing the total squares at the points diversions  from the line to the least degree if 
possible , and the meaning of this is that to depending on calculating the values of unknown 
marks for model and Which make the total of random mistakes of the squares that are in 
its minimized end. 
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We can obtain the marks values on the following form: 

 

 
To choose the statistical abstractness for the estimations of the declension marks, we need 
to know about the contrast of each of 

                                                         (1)                                                                 

                                                             (2)                                                                   
3.  Estimator’s properties of OLS method 
The ordinary least squares method estimators are the best unbiased estimators and being 
not biased  

 
Mean : 

                                                (3) 
 
As for describing the best unbiased linear estimation means it has the smallest contrast, 
sometimes the researcher may desire to accept some of the bias against a smaller contrast 
by minimizing the medium of (MSE) square mistake. 

                                                          (4) 
 
4. Bayes’ approach in the estimation 

Bayes' approach focuses in estimation in its concept generally on employing prior 
information about unknown marks θ = [θ1, θ2….θp]  that are requested to be estimated, 
considering that these marks are random variables and are not fixed quantities which can 
be described by a form of contingent distribution, defined by the former function of 
contingency density (Prior p.d.f)  and these information are recognized from the data and 
previous experiments or from the theory which controls these phenomena . 
          Whereas recent distribution function of the recent observation samples are under 
study, in them the value of random variable (y) for these observations is a distributive 
function  that depends on θ  and is symbolized with P(y/θ)  named the Function)   
(Likelihood Bayes’ estimation for these marks relies on the   (Posterior p.d.f)  which has 
been obtained by mixing the primary P.D.F of the marks with the likelihood function of 
observations , in which Larson defines the posterior P.d.f of the marks (θ)as the conditional 
function in the marks field  (θ) and with existing of the recent sample marks and are 
expressed mathematically as the following: : 

                                                 (5) 
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At which ∝  is referring that the quantity is proportional, and for the purpose of clarifying 
Bays approach in estimation very clearly, after obtaining the posterior P.D.F for the vector 
of (θ) marks, and in which it’s specified what is called the (Loss function) and that is 
symbolized usually by which (Mood) defines it as the real value function fulfilling two 
conditions: 

 

                                                   (6) 
Therefore, the linear estimation by bays approach depends on finding out the   value that 
decreases the expectation of the loss. 
 
          It's worth mentioning that there are several kinds of loss functions, the most spread 
one and most used is the (Quadratic Loss Function)  which is named in case of existing a 
vector with loss of (Weighted Squared Error Loss Function)  expressed as the following: 

                                                (7) 
Since C is representing the positive matrix of m*m dimension and is an equalized not 
random matrix, and the expectation for this case is as follows: 

                                          (8) 
Estimating the marks values in the equation (11) by using bays approach and by relying on 
(squared error loss function weighted), it resembles the arithmetic mean for the (posteriors. 
P.D.F) f (θ/y) as it is clarified in the following: 

                                                                                       (9) 

                                            (10)                                        
 By taking the first derivative of the equation (9) in regard of  and equalizing it to zero 
for the purpose of obtaining the least loss expectation we have. 

                                   (11) 
This means that the critical point is eventually a local minimum that’s why Bays approach 
of estimation is expecting the next distribution. 
 
5. Previous probability density functions prior p.d.f  
Using Bays approach in estimation requires the existence of first density function, thus 
marking out the type of posterior density function for the marks is one of the important 
subjects. As Zellner mentioned that determining the type of functions depends totally on 
the type of information previously acquired by the research, for it can be a contained 
information in the data of former samples, which have been provided through a practical 
approach, for the prior p.d.f that resembles this type of information are called ( data based 
prior p.d.f) . and if there is former information provided through researching or by the result 
of theoretical considerations which have no relation with any data, whatever the former 
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sample is, the posterior p.d.f that is resembled in such an information called (NDB)  (Non 
Data-Based Prior P.d.f) And we might have first p.d.f functions representing the provided 
information from other samples previously, and also from provided information and from 
theoretical considerations. In which it is possible to divide the posterior p.d.f as follows: 
In case of not providing enough posterior information, Zellner has mentioned that Jeffery 
has suggested two rules to test posterior distribution at the following shape: 
 
First rule  
If the marks has value in infinite field from (-∞,∞)  the posterior p.d.f of it will be taking an 
organized distribution (Uniform Distribution) 

                                                       (12 ) 
 
This type is considered one of the improper p.d.f types, by in case of merging it with the 
likelihood function; we would obtain a proper posterior distribution. 
 
Second rule 
If the marks in the field (0,∞)     ، such as the normative diversion (σ)   ، for Jeffery has 
suggested to take the organized logarithm distribution, therefore the posterior p.d.f.  of  �    
Be as follows: 

                             (13) 
So in this formula (1-13) is being correspondent to the first rule of Jeffery 

                                                                          (14 ) 
Whereas the formula (14) is represented by the improper posterior p.d.f, this type of 
functions is called (Non informative prior p.d.f) 
1. In the case of availability of enough posterior information about the marks and which 

is represented by restrictions about these marks, therefore we can use the same rules 
which Jeffery mentioned earlier, and which have been mentioned in the previous point 
(1), but in a restrictive marks field, that the field to be from (-∞) into  (+∞)    so  we would 
have gained an organized distribution and restrictive about the marks, when this type 
of functions is being called as (Informative Prior p.d.f) . 

2. In case of using a recognized posterior p.d.f which through merging it with likelihood 
functions for the observation, it results a next p.d.f that is the same posterior p.d.f but 
with different features, therefore it would be called (Natural conjugate prior p.d.f). 

3. There is a generalization in this research, and in case of existing more than one marks, 
for which one of the properties of this type of posterior p.d.f is being an invariant, thus 
Jeffery suggested to generalize what he had obtained in (1) which the function of 
posterior p.d.f is as follows: 

                                                              (15) 
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So the formula (16) is called (Fisher information Matrix) and the expectation has taken the 
percentage of y. 
          On the light of what has been said before, when estimating the marks of the 
declension model (2), and when there is an availability of posterior information, and by 

providing a likelihood distribution of the marks1   which is a gamma distribution with one 
marks (Gamma distribution). 
         We can estimate the model marks according to two assumptions and like the 
following: 
 
6.  Estimation of marks in case O2 is known 
Relying on function (16), the next posterior p.d.f can be found for the marks (β0)via 
processing the integration calculus for the function (16) with regard to  β1 and as follows : 

 

 

 

                                                                                       (17) 
We can simplify Q2 in the formula (17) in the following: 

                                                       (18) 
And with adding and subtracting the final boundary of the square: 
 

                                                                   (19) 
7.  Estimating the marks in case of O2 is unknown 
Depending on the function, the next boundary likelihood function can be found (Zellner ) 
[40] for βo, β1  (through integrating the function in respect to the marks  (σ) as follows: 

                                                                (20) 
After proceeding with mathematical operations, we can give the final picture of the next 
function for the marks (βo, β1) 
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                                                                          (21) 
Depending on function (21) the next boundary of the likelihood function can be found 
pursuant to the marks  (β0)  by making an integration of the function for the marks β1  and as 
follows : 

                                                                                                               (22) 

                                                                                          (23) 
 
8.  Comparisons 
We will cover in this side the procedure of comparing between the used estimation methods 
and a procedure of comparison for each of the estimating approaches (OLS) and Bays 
Approach,  on availability of distribution about one of the marks (Gamma Distribution), 
that has one marks which has used the stimulation to compare between OLS estimation 
method , and Bays approach . Under the availability of gamma distribution by assuming 
that σ2  is known in Bays approach, with providing of gamma distribution under the 
assumption that σ2 is unknown. 
 
1-4 description for the special stimulation experiment of the research 
In this stimulation experiment, random data with sample sizes will be used such as (15, 30, 
68, and 90,140) an observation for the dependent variable  (yi)  in dependence of the 
hypothetical declension model as follows: 

�� = �� + ��	� + 
�                                                          (24) 

  
The hypothetical values of the marks do represent the estimators of OLS method, for the 
data from the practical reality, they will later be defined, as for the marks distribution of 
)λ;α(, the researcher is suggesting five cases. 
 

stat 
paramtar 

1 2 3 4 5 

α 2 2 2 2 2 

λ 1 2 2.75 3.75 4.25 

 
Table 1: The hypothetical values of distribution marks that are employed in estimation 
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9.  Analysing the stimulation results 
For the repeated size of (1000), of an experiment for the hypothesized declension model, 
and for each case of the explained cases in table (1) A comparison has been made between 
the used methods in the estimation operation, which is represented by the minimal squared 
method (OLS), and by Bays Approach for the use of estimation, on availability of Gamma 
Distribution (BCK), in case of assuming that is known and unknown. 
           We can subsequently define the hypnotized marks of the models. The comparison 
has been made by calculating the proportional efficiency, that represents the average of 
square mistakes, of the marks estimation by Bays approach, used to estimate the 
availability of Gamma distribution under the assumption that o2 is known to the average 
of minimal squared estimators with their square mistakes. If the efficiency is equal to the 
real one, this  proves that the two styles have the same efficiency, or if it was less than a 
real one then this would refer to that (BCK) is much efficient than (OLS) and vice versa . 
As follows the explanations of the used symbols in the tables: 
OLS: Ordinary least squares Method 
IBCK: Bays Approach of estimation by providing Gamma distribution under the 
assumption that σ2 is known. 
2BCK: Bays Approach of estimation by providing Gamma distribution under the 
assumption that σ2 is unknown. 
 
Case one: 
The following table (2) shows the average of square mistakes (Mse) for the estimators 
relying on the first case when α=2 ,λ=1    and as follows 
 

State N 
estimators       

15 30 40 68 90 140 

σ2is 
kno
wn 

∧
β

0 

OLS 103.35 
88.1
0 

81.76 75.04 73.09 71.00 

1BCK 103.16 
88.1
4 

81.02 74.41 76.62 63.40 

∧
β

1 

OLS 0.86 0.83 0.77 0.75 0.74 0.75 

1BCK 0.86 0.83 0.76 0.74 0.72 0.70 

σ2is 
unkn
own 

∧
β

0 

OLS 103.66 
91.9
7 

75.67 74.78 73.12 70.20 

2BCK 101.47 
92.0
6 

70.75 73.98 67.67 62.80 

∧
β

1 

OLS 0.85 0.86 0.75 0.78 0.69 0.75 

2BCK 0.87 0.86 0.75 0.74 0.67 0.71 

Table 2: The average of square mistakes for the marks within the first case 
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From the table (2) we noticed the following: 
a-In case of assuming that (o2) is known. 
b- For the estimator (��) and for the sample sizes (15, 40, 68,140), the approach of IBCK 
showed that the average of square mistakes is less than OLS method. 
c- For the estimator  (���)  and for the sample sizes of (40-68—90-140), the IBCK showed 
that the average of square mistakes is less than OLS method. 
1-In case of assuming that (σσσσ2)  is unknown 

a- For the estimator  (��) and for the sample sizes (15.40.68.90.140), the approach of 
2BCK showed that the average of square mistakes is less than OLS method. 

b- For the estimator  ( ���)  and for the sample sizes of (40-68—90-140), the 2BCK 
showed that the average of square mistakes is less than OLS method. 
 

As to the relative efficiency for the methods, in regard of OLS method within the first case, 
it has been clarified by table (3). 
 

N 
Estimators 

15 30 40 68 90 140 

∧
β

0 
 

1BCK 0.99 1.00 0.99 0.99 1.04 0.89 

2BCK 0.97 1.00 0.93 0.98 0.92 0.89 

∧
β

1 
 

1BCK 1.00 1.00 0.99 0.98 0.97 0.94 

2BCK 1.00 1.03 0.97 0.92 0.98 0.93 

   
Table 3: The proportional efficiency for the estimation methods in regard of OLS 
method within the first case 
 
From table (3) we can notice that following: 
 

1- The estimator  (��) as well as the sample sizes of (30,140), 2BCK approach has 
showed itself to be more qualified than IBCK whereas IBCK has showed itself to 
be more efficient at the sample sizes of (15, 40, 68, and 90).  

2- For the estimator  ( ���) 2BCK has showed more efficiency of estimation than the  
IBCK Method at the size of two samples (68-50). 

 
As for the average of square mistakes (Mse) for the estimators) ����, ��   (within the second 
case, the following table (4) illustrates it and as follows: 
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State 
n        
estimators 

15 30 40 68 90 140 

σ2is 
Known 

∧
β
� 

OLS 103.90 93.05 83.60 
75.0
4 

72.919 
71.5
0 

1BCK 103.89 88.90 81.69 
71.4
1 

69.30 
65.0
1 

∧
β
� 

OLS 0.82 0.86 0.77 0.75 0.72 0.75 

1BCK 0.83 0.86 0.77 0.74 0.68 0.80 

σ2is 
unknown 

∧
β
� 

OLS 103.66 91.97 80.34 
72.8
7 

71.93 
73.1
7 

2BCK 102.47 91.99 82.60 
65.5
2 

70.30 
65.2
9 

∧
β
� 

OLS 0.88 0.85 0.77 0.75 0.75 0.71 

2BCK 0.87 0.88 0.76 0.75 0.70 0.76 

Table 4: Average values of square mistakes for the estimators within the second case 
 
From table (4) we can notice the following:  
1- In case of assuming that (σσσσ2) is known. 
2- For the estimator (��) and for the sample sizes (15, 30, 40, 68,140), the approach of IBCK 
showed that the average of square mistakes is less than OLS method. 
3- For the estimator (��) and for the sample sizes of (40-68—90), the IBCK showed that 
the average of square mistakes is less than OLS method. 
 
D-     In case of assuming that (σσσσ2) is unknown 
1-For the estimator (��) and for the sample sizes (15...68.90.140), the approach of 2BCK 
showed that the average of square mistakes is less than OLS method. 
2-For the estimator (��) and for the sample sizes of (15, 40-68—90- ), the 2BCK showed 
that the average of square mistakes is less than OLS method. 
Table (5) shows the proportional efficiency of the methods regarding to OLS method as 
the following: 

                     n                
estimators 

15 30 40 68 90 140 

∧
β0 
 

1BCK 0.99 0.95 0.97 0.95 0.95 0.90 

2BCK 0.98 1.03 1.02 0.89 0.97 0.89 

∧
β1 
 

1BCK 1.01 1.00 0.99 0.89 0.93 1.05 

2BCK 0.99 1.03 0.98 0.99 0.94 1.05 

Table 5: The proportional efficiency of the estimation methods, in respect of OLS method 
within the second case 
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From table (5) we can notice the following: 
1- The estimator (�
 ) and the sized samples of (15, 68,140) show how 2BCK is much 
efficient than IBCK method. 
2- In the estimator (��


) 2BCK method showed a more efficient marks of estimation than 
IBCK method, at sizes of (15, 40). 
Table (6) shows the values of square mistakes average for the estimators (1��


 , �
 ) within 
the third case as the following: 
 

State 
N 
estimators 

15 30 40 68 90 140 

σ2 is 
known 

∧
β

0 

OLS 108.65 
97.6
8 

79.79 72.11 73.73 71.50 

1BCK 105.87 
99.6
4 

80.26 75.79 68.06 65.01 

∧
β

1 
OLS 1.09 0.89 0.76 0.75 0.75 0.76 
1BCK 0.98 0.90 0.75 0.75 0.74 0.76 

σ2is 
unknow
n 

∧
β

0 

OLS 104.82 
91.0
0 

78.35 77.71 72.14 73.17 

2BCK 99.54 
86.9
1 

71.01 70.06 69.11 65.29 

∧
β

1 

OLS 0.96 0.85 0.76 0.76 0.75 0.75 

2BCK 0.96 0.85 0.77 0.76 0.76 0.67 

Table 6:  Square mistakes average for the estimators within the third case. 
 
From Table (6) we note the following : 
 
A- Assuming (σσσσ2) is knowing 
1  In case of presuming that o2 is known 

1.  For the estimator (��

) and for sample sizes (15, 90,140), IBCK method showed a 

square mistakes average less than OLS method. 
2.  For the estimator (��


), IBCK showed square mistakes are less than OLS at sizes of 
(15, 40, 68, and 90). 

3.   In case of presuming that o2 is unknown 
4. Concerning the estimator (��


) ,2BCK method showed a square mistakes average 
less than OLS method at all sizes of (15,30,40,68,90,140). 
 

As for the table (7) shows the relative efficiency for the methods in respect of OLS method 
as the following: 
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               n                      
estimators 

15 30 40 68 90 140 

∧
β

0 
 

1BCK 0.97 1.02 1.01 1.05 0.93 0.90 

2BCK 0.94 0.95 0.90 0.90 0.95 0.89 
∧
β

1 
 

1BCK 0.92 1.04 0.98 0.99 0.98 1.01 

2BCK 0.99 1.00 1.00 1.00996 1.01 0.88 

Table 7: Relative efficiency for the estimation methods in respect of OLS method within 
the third case 

From the table (7) we can notice the following: 
1- The estimator (��


), and sample sizes (15, 25, 50, 75,150), 2BCK method showed that it 
was more efficient than 1BCK method. 
2- The estimator (��


), and for sample sizes of (15, 50, 75,100), 1BCK showed an estimation 
marks efficiency much efficient than 2BCK 
3- The square mistakes average for the estimators (��


-��

) is explained in table (8) within 

the fourth case. 
1-4 results and guidelines 

1.  Relying on the five cases, we can deduce that the marks value of (α  ) does not 
equal to the marks value of  λ that means (α≠λ) . 

2.  Depending on the second and third case, we can deduce that the two ways have 
proved their efficiency to estimate the marks (��


) for which their efficient equals 
to number one the real, or is more larger than the one at the sample size of (30), 
for which sample sizes have different effects on the efficient. 

3. Recommendation: to use the Bays approach in the estimation process by using 
Gamma distribution for a number marks K . 

To use Bays approach in estimation and specially when there is an availability of former 
information, being described as a likelihood distribution function, former and a natural 
associated, and using a former likelihood density function by depending on the subsequent 
samples, and under the assumption that the mark (σ)  is unknown from the perspective of 
Bays school, and by comparing it with the used ways in this study. 
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