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Abstract. A comparison of the estimation methods used aad:ttmparison of the OLS
and PES methods was performed with a distributfamme parameter. The simulation was
used to compare the OLS method with the gammahdistvn under the assumption that
Bayes' is known to have a gamma distribution utftieassumption that is not known. The
estimation process for the parameters of the sitimgar regression model is an important
topic, despite the fact that it has been writteoualit through researches and studies that
differ according to the methods used in the estamaprocess, whether this method is
traditional or Bayes'.

The purpose of this study is to employ advancerinftion about the parameters
to be estimated based on the concept of the Pstvedoy of distribution of a single
parameter in the estimation process and for thessid different samples. Therefore, a
comparison was made between OLS method, the pradfedsrivations to obtain the
Pseudo-estimation formulas.

Keywords: Ordinary Least Squares Method, Bayes’ ApproactherEstimation, estimation
of marks in case Qs known,estimating the marks in case of ® unknown
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1. Introduction

In this particular side, we touch upon a brief idd@ut estimating the marks of simple
linear declension, by using the classical methouk af them is (the regular minimized
square method) OLS and inclusively the propertiethis method, after that we go to
dealing with the Bayes' analytic method for thisdeloin estimating the marks which
represent the basic target of this research, dépgrh previous information about the
marks represented by Gamma distribution.

2. Ordinary least squares method OLS

It is a style of matching a straight line of an etstion sample x. y and includes
minimizing the total squares at the points divarsidrom the line to the least degree if
possible , and the meaning of this is that to ddjpeon calculating the values of unknown
marks for model and Which make the total of randoistakes of the squares that are in
its minimized end.
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Minz(yi -9, )2
We can obtain the marks values on the followingnfor
f = NXXY, —2X% 2,
ConIx-(Exf
,Bo = y - bli
To choose the statistical abstractness for thenatins of the declension marks, we need
to know about the contrast of each of

valf)6. 2%,

walp)=5 L

2)
3. Estimator’s properties of OLS method
The ordinary least squares method estimators arbeaht unbiased estimators and being
not biased

(1)

Elb)=b
Mean :
Biased= E(B)— b 3)

As for describing the best unbiased linear estiomatheans it has the smallest contrast,
sometimes the researcher may desire to acceptabtie bias against a smaller contrast
by minimizing the medium of (MSE) square mistake.

MSE(B) =varb + (biasedS)2 4)

4. Bayes’ approach in the estimation

Bayes' approach focuses in estimation in its canggmerally on employing prior
information about unknown marl&= [6,, 6.....8,] that are requested to be estimated,
considering that these marks are random varialnidsaee not fixed quantities which can
be described by a form of contingent distributidefined by the former function of
contingency density (Prior p.d.f) and these infation are recognized from the data and
previous experiments or from the theory which aolstthese phenomena .

Whereas recent distribution function loé recent observation samples are under
study, in them the value of random variable (y) tteese observations is a distributive
function that depends of and is symbolized with Py named the Function)
(Likelihood Bayes’ estimation for these marks rel@n the (Posterior p.d.f) which has
been obtained by mixing the primary P.D.F of theksawith the likelihood function of
observations , in which Larson defines the post&id.f of the marks$jas the conditional
function in the marks field8) and with existing of the recent sample marks arel
expressed mathematically as the following: :

P@|Y)OP(O).P(yl6) ) (5
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At which O is referring that the quantity is proportionatdefor the purpose of clarifying
Bays approach in estimation very clearly, afteaotihg the posterior P.D.F for the vector
of (6) marks, and in which it's specified what is calliw (Loss function) and that is
symbolized usually by which (Mood) defines it as tieal value function fulfilling two
conditions:

L(,6)=0 06,06
L(8,6) =0 06=6 ®)

Therefore, the linear estimation by bays approagedds on finding out th&  value that
decreases the expectation of the loss.

It's worth mentioning that there are salkinds of loss functions, the most spread
one and most used is the (Quadratic Loss Functihiph is named in case of existing a
vector with loss of (Weighted Squared Error Losadtion) expressed as the following:

L(8,6) = (8- 6)'C(O-6) (7)

Since C is representing the positive matrix of mdimension and is an equalized not
random matrix, and the expectation for this casesifollows:

E[L(H, H)Iy] = IL(H, 6).P(8/y)da

o 8
Estimating the marks values in the equation (11)dimg bays approach and by relying on
(squared error loss function weighted), it resemitiie arithmetic mean for the (posteriors.
P.D.F) f @ly) as it is clarified in the following:

ElL@.0)/y|=E[@-6)/y[ o
=6°[ 1(6/y)do-26[61(6/y)do+ [6° (81 y)do .

By taking the first derivative of the equation (8)regard of¢ and equalizing it to zero
for the purpose of obtaining the least loss expectave have.

) «
0 E|L§29:26?!\Y| —250
0°6 (11)
This means that the critical point is eventuallpaal minimum that's why Bays approach
of estimation is expecting the next distribution.

5. Previous probability density functions prior p.df

Using Bays approach in estimation requires thetexée of first density function, thus

marking out the type of posterior density functfon the marks is one of the important

subjects. As Zellner mentioned that determiningtifpe of functions depends totally on

the type of information previously acquired by tlesearch, for it can be a contained
information in the data of former samples, whickiéhbeen provided through a practical
approach, for the prior p.d.f that resembles #ye tof information are called ( data based
prior p.d.f) . and if there is former informatioropided through researching or by the result
of theoretical considerations which have no retatith any data, whatever the former
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sample is, the posterior p.d.f that is resembleslich an information called (NDB) (Non
Data-Based Prior P.d.f) And we might have firstffihctions representing the provided
information from other samples previously, and dism provided information and from
theoretical considerations. In which it is possiiol@ivide the posterior p.d.f as follows:

In case of not providing enough posterior informatiZellner has mentioned that Jeffery
has suggested two rules to test posterior distdbut the following shape:

First rule
If the marks has value in infinite field from{;) the posterior p.d.f of it will be taking an
organized distribution (Uniform Distribution)

P(BdBLUdE —co<f<e (12)

This type is considered one of the improper pypés, by in case of merging it with the
likelihood function; we would obtain a proper pogiedistribution.

Second rule

If the marks in the field (8) < such as the normative diversioo){ for Jeffery has
suggested to take the organized logarithm disiohutherefore the posterior p.d.f. 6f
Be as follows:

f(6)doa do —w< <00 (13)
So in this formula (1-13) is being corresponderthiofirst rule of Jeffery

P(o)do 0L do
g (14)

Whereas the formula (14) is represented by the apgr posterior p.d.f, this type of

functions is called (Non informative prior p.d.f)

1. In the case of availability of enough posterioomhation about the marks and which
is represented by restrictions about these mahksefiore we can use the same rules
which Jeffery mentioned earlier, and which havenbmentioned in the previous point
(1), but in a restrictive marks field, that thedig be from (eo) into (+0)so we would
have gained an organized distribution and restgacabout the marks, when this type
of functions is being called as (Informative Priod.f).

2. In case of using a recognized posterior p.d.f wkiicbugh merging it with likelihood
functions for the observation, it results a nextfithat is the same posterior p.d.f but
with different features, therefore it would be edl(Natural conjugate prior p.d.f).

3. There is a generalization in this research, arwhée of existing more than one marks,
for which one of the properties of this type of fgo®r p.d.f is being an invariant, thus
Jeffery suggested to generalize what he had oltdmé1) which the function of
posterior p.d.f is as follows:

P(6) 0| f4i2

2
i, = _E{a Log P(Y/H):I

(15)

0606, 16
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So the formula (16) is called (Fisher informatioatkix) and the expectation has taken the
percentage of y.

On the light of what has been said befereen estimating the marks of the
declension model (2), and when there is an avétialoif posterior information, and by

providing a likelihood distribution of the maréswhich is a gamma distribution with one
marks (Gamma distribution).

We can estimate the model marks accordingwo assumptions and like the
following:

6. Estimation of marks in case ®is known

Relying on function (16), the next posterior p.dan be found for the markgojvia

processing the integration calculus for the func(ip6) with regard t@, and as follows :
n [ M

f(B)=0"@m 2 F[fe'he * dp,

_h _Ql oo _Qz
— -(n+1) 32 2 2 -/
=(2m) 207" 2 20 jﬁleza e 4 dp,

o

n _(n+l) _&

A=(2m) 20 Ke“

£ (8)=A[ 8" & df,

17)
We can simplify Qin the formula (17) in the following:
o X 2 Bifn <2 P
25 g+ BBy (8,5, )5 x
t(B)=A|Be" e g g,
° (18)
And with adding and subtracting the final boundaiyhe square:
+%[Blzxi2 '(ﬁo _Bo )z % -Ao? ]2
£(8,)=Ae 2"
(19)

7. Estimating the marks in case of ®is unknown
Depending on the function, the next boundary Ih@dd function can be found (Zellner )

[40] for 3o, B1 (through integrating the function in respectite marks @) as follows:

°° - Q
t(8,8)0X B e [0 e 2 do?

° (20)
After proceeding with mathematical operations, \&a give the final picture of the next
function for the marksf, 1)
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-1
t(8,B)0F4B Q22—

—i(n—z)
2°* (21)
Depending on function (21) the next boundary of ltkelihood function can be found
pursuant to the mark8d) by making an integration of the function for tharksf3: and as
follows :

_n VQ ‘2
o
v (22)
_h VQ
Q2= exp[—ﬂlog(—ﬂ
2 \ (23)

8. Comparisons

We will cover in this side the procedure of compgietween the used estimation methods
and a procedure of comparison for each of the afitig approaches (OLS) and Bays
Approach, on availability of distribution abouteonf the marks (Gamma Distribution),
that has one marks which has used the stimulatiamompare between OLS estimation
method , and Bays approach . Under the availalmfitygamma distribution by assuming
that o2 is known in Bays approach, with providing of gammiistribution under the
assumption that? is unknown.

1-4 description for the special stimulation experirent of the research

In this stimulation experiment, random data witmpke sizes will be used such as (15, 30,
68, and 90,140) an observation for the dependerniébla (yi) in dependence of the
hypothetical declension model as follows:

Vi = Po + B1X;i + U; (24)

The hypothetical values of the marks do representestimators of OLS method, for the
data from the practical reality, they will later 8efined, as for the marks distribution of
)A;a(, the researcher is suggesting five cases.

Table 1: The hypothetical values of distribution marks thie employed in estimation
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9. Analysing the stimulation results

For the repeated size of (1000), of an experimenthfe hypothesized declension model,
and for each case of the explained cases in thpk ¢omparison has been made between
the used methods in the estimation operation, wikiokpresented by the minimal squared
method (OLS), and by Bays Approach for the usestifr@tion, on availability of Gamma
Distribution (BCK), in case of assuming that is Wwmoand unknown.

We can subsequently define the hypndtimarks of the models. The comparison
has been made by calculating the proportionalieffity, that represents the average of
square mistakes, of the marks estimation by Baywoagh, used to estimate the
availability of Gamma distribution under the asstiowpthat 02 is known to the average
of minimal squared estimators with their squaretakiss. If the efficiency is equal to the
real one, this proves that the two styles haveséimee efficiency, or if it was less than a
real one then this would refer to that (BCK) is tmedficient than (OLS) and vice versa .
As follows the explanations of the used symbolthatables:

OLS: Ordinary least squares Method

IBCK: Bays Approach of estimation by providing Gamndlistribution under the
assumption that? is known.

2BCK: Bays Approach of estimation by providing Gamrdistribution under the
assumption that? is unknown.

Case one:
The following table (2) shows the average of squaigtakes (Mse) for the estimators
relying on the first case when=2A\=1 and as follows

Table 2: The average of square mistakes for the marks wiktarfirst case
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From the table (2) we noticed the following:
a-In case of assuming that (02) is known.
b- For the estimator3) and for the sample sizes (15, 40, 68,140), theagzh of IBCK
showed that the average of square mistakes ishassOLS method.
c- For the estimator (;8) and for the sample sizes of (40-68—90-140)JB@K showed
that the average of square mistakes is less th&hrdthod.
1-In case of assuming th@?) is unknown
a- For the estimator®) and for the sample sizes (15.40.68.90.140), pipecach of
2BCK showed that the average of square mistakessshan OLS method.
b- For the estimator (;f) and for the sample sizes of (40-68—90-140) 2BEK
showed that the average of square mistakes ishassOLS method.

As to the relative efficiency for the methods,égard of OLS method within the first case,
it has been clarified by table (3).

Table 3: The proportional efficiency for the estimation madk in regard of OLS
method within the first case

From table (3) we can notice that following:

1- The estimatorf) as well as the sample sizes of (30,140), 2BCKragugh has
showed itself to be more qualified than IBCK wheréBCK has showed itself to
be more efficient at the sample sizes of (15, 8)a6d 90).

2- For the estimator (,3) 2BCK has showed more efficiency of estimatiomttize
IBCK Method at the size of two samples (68-50).

As for the average of square mistakes (Mse) foesitienators) ;5,, # (within the second
case, the following table (4) illustrates it and@ows:
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Table 4: Average values of square mistakes for the estimatithin the second case

From table (4) we can notice the following:

1- In case of assuming th@?) is known.

2- For the estimatoj3) and for the sample sizes (15, 30, 40, 68,148)afiproach of IBCK
showed that the average of square mistakes isHassOLS method.

3- For the estimator3) and for the sample sizes of (40-68—90), the IB&Kwed that
the average of square mistakes is less than OLBowhet

D- In case of assuming th@f) is unknown

1-For the estimatorf) and for the sample sizes (15...68.90.140), tpeagzh of 2BCK
showed that the average of square mistakes isHassOLS method.

2-For the estimatorf() and for the sample sizes of (15, 40-68—90- ),2BEK showed
that the average of square mistakes is less th&hrxdthod.

Table (5) shows the proportional efficiency of thethods regarding to OLS method as
the following:

Table 5: The proportional efficiency of the estimation methoin respect of OLS method
within the second case
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From table (5) we can notice the following:

1- The estimatord ) and the sized samples of (15, 68,140) show ho®KRB much
efficient than IBCK method.

2- In the estimatorf;) 2BCK method showed a more efficient marks ofneation than
IBCK method, at sizes of (15, 40).

Table (6) shows the values of square mistakes gedoa the estimatord 8, , 8 ) within

the third case as the following:

Table 6: Square mistakes average for the estimators wiieirthird case.

From Table (6) we note the following:

A- Assuming (@?) is knowing
1 In case of presuming that 02 is known
1. For the estimatorB) and for sample sizes (15, 90,140), IBCK methcahstd a
square mistakes average less than OLS method.
2. For the estimatof), IBCK showed square mistakes are less than Ols&es of
(15, 40, 68, and 90).
3. In case of presuming that 02 is unknown
4. Concerning the estimatog{) ,2BCK method showed a square mistakes average
less than OLS method at all sizes of (15,30,40((84D).

As for the table (7) shows the relative efficiefioythe methods in respect of OLS method
as the following:
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Table 7: Relative efficiency for the estimation methodséspect of OLS method within
the third case

From the table (7) we can notice the following:
1- The estimatorﬁ,?), and sample sizes (15, 25, 50, 75,150), 2BCK atktihowed that it
was more efficient than 1BCK method.
2- The estimatorf, ), and for sample sizes of (15, 50, 75,100), 1BB#ged an estimation
marks efficiency much efficient than 2BCK
3- The square mistakes average for the estimagsg,0) is explained in table (8) within
the fourth case.
1-4 results and guidelines
1. Relying on the five cases, we can deduce thatni#eks value ofd ) does not
equal to the marks value dfthat meanso#A).
2. Depending on the second and third case, we cancdetiat the two ways have
proved their efficiency to estimate the marRg) for which their efficient equals
to number one the real, or is more larger tharotieat the sample size of (30),
for which sample sizes have different effects andfiicient.
3. Recommendation: to use the Bays approach in tlimagin process by using
Gamma distribution for a number marks K.
To use Bays approach in estimation and speciallgnvthere is an availability of former
information, being described as a likelihood disttion function, former and a natural
associated, and using a former likelihood densitgfion by depending on the subsequent
samples, and under the assumption that the neauis inknown from the perspective of
Bays school, and by comparing it with the used wayhis study.
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