Progressin Nonlinear Dynamics and Chaos
Vol. 8, No. 1 & 2, 2020, 1-13

ISSN: 2321 — 923gonline) Progress in
Published on 30 March 2020 g
WwWw.resear chmathsci.org NO.:. I l:l‘deChar
DOI: http://dx.doi .org/10.22457/pindac.v8n1a07701 Dynamics a ao0s

Solution of System of Linear Equations with Coeffients
as Triangular Fuzzy Number
Suman Kanti Sen

Department of Applied Mathematics with Oceanologgl &omputer Programming
Vidyasagar University, Midnapore, West Bengal,72,18dia
Email: sumankantisen@gmail.com

Received 22 January 2020; accepted 27 March 2020

Abstract. In the field of science and engineering technololiyear systems have
contributed more applications. But, in fact, theelir systems occur in uncertain
environment. In such situations, the parametehefsystem can be represented by fuzzy
nature with the help of fuzzy numbers. In this papee have to studied fuzzy linear
systems with the aid of triangular fuzzy numbers.néw procedure namely matrix
inversion method is proposed for solving fuzzy éineystem (FLS) of equations. Finally,
the method is illustrated by solving relevant nuaarexamples.
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1. Introduction

Uncertainty can be classified into two types-prolisti uncertainty and fuzzy
uncertainty, though people were aware of fuzzy unogty before the mathematical
formulation of fuzziness by Zadeh. Fuzziness carepeesented in flerent ways. One of
the most useful representation is membership fancAlso, depending the nature or shape
of membership function a fuzzy number can be diaskiin diferent ways, such as
triangular fuzzy number (TFN), trapezoidal fuzzymher etc. Triangular fuzzy numbers
(TFNs) are frequently used in applications. It &lnown that the matrix formulation of
a mathematical formula gives extra facility to hafstudy the problem. Due to the
presence of uncertainty in many mathematical foatiuhs in diferent branches of science
and technology, we introduce triangular fuzzy neasi (TFMs). To the best of our
knowledge, no work is available on TFMs, thougloadf work on fuzzy matrices is
available in literature. A brief review on fuzzy triees is given below.

Fuzzy matrices were introduced for thet fime by Thomason [4], who discussed
the convergence of powers of fuzzy matrix. Xin gddthe controllable fuzzy matrix.
Ragab et al. [3] presented some properties of thexmax composition of fuzzy matrices.
Kim et al. [2] presented some important resultsleterminant of a square fuzzy matrices.

Several other types of matrices are available azyfisetup. There are some
limitations in dealing with uncertainties by fuzzgt. Pal et al. defined intuitionistic fuzzy
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determinant in 2001 [18] and intuitionistic fuzzyatmces (IFMs) in 2002 [19]. Bhowmik
and Pal [8] introduced some results on IFMs, ifdnistic circulant fuzzy matrix and
generalized intuitionistic fuzzy matrix [8-14]. Shmal and Pal [25-27] defined the
distances between IFMs and hence defined a metri¢FMs. They also cited few
applications of IFMs. In [17], the similarity relans, invertibility conditions and
eigenvalues of IFMs are studied. Idempotent, regylegpermutation matrix and spectral
radius of IFMs are also discussed. The parametenzatool of IFM enhances the
flexibility of its applications. For other works difMs see [5-7,16,22,23,26,27]. The
concept of interval-valued fuzzy matrices (IVFMs)aageneralization of fuzzy matrix was
introduced and developed in 2006 by Shaymal andZ8lby extending the max-min
operation in fuzzy algebra. For more works on IVF8& [21]. Combining IFMs and
IVFMs, a new fuzzy matrix called interval-valueduiitionistic fuzzy matrices (IVIFMSs)
is defined [15]. For other works on IVIFMs, see [fild]. For recent works on uncertain
matrix theory see [30-33].

In this article, a fuzzy system of linear equatiassinvestigated where the
coefficients are triangular fuzzy numbers. The mativerse method is discussed in this

paper.

2. Preliminaries
In this section some basic related definitionsstwdied and recalled the representations of
Fuzzy Numbers.

Definition 2.1. A fuzzy set is characterized by a membership fonctnapping the
elements of a domain, space or universe of disedorthe unit intervdl0,1].
A fuzzy sefl in a universe of discourseis defined as the following set of pairs
A= {(pa(x):x € X)}
Herep;(x): X — [0,1] is mapping called the degree of membership funafdhe fuzzy
setA and pz(x)is called the membership value ofe X in the fuzzy setd. These
membership grades are often represented by regihcafrom[0,1].

Definition 2.2. Convex fuzzy set: A fuzzy setd = {(x,uz(x)} € X is called convex set
in all A, are convex set i.e. for every elemente A, andx, € A, for everya €
[0,1].Ax; + (1 — 1) x, € A, for all A € [0,1]. Otherwise the fuzzy set is called non-
convex fuzzy set.

Definition 2.3. Fuzzy number: A fuzzy set4, defined on the set of real numb&rs said
to be fuzzy number if its membership function Hasfollowing characteristics

1. Ais normal.

2. Ais convex set.

3. The support ofl is closed and bounded thdris called fuzzy number.

3. Triangular fuzzy number

Sometimes it may happen that some data or numlaensot be specified precisely or
accurately due to the error of the measuring teglior instruments etc. Suppose the
height of a person is recorded1a®) cm. However, it is impossible in practice to measure



Solution of System of Linear Equations with Coaffits as Triangular Fuzzy Number

the height accurately; actually this height is a0 cm; it may be a bit more or a bit
less thanl60 cm. Thus the height of that person can be writtenenmecisely as the
triangular fuzzy numbét60 — a, 160,160 + ), wherea andf are the left and right
spreads. In general, a TFN™can written aga — a,a,a + B), wherexandp are the left
and right spreads of a respectively. These typaunibers are alternately represented as
< a,a, B >. The mathematical definition of a TFN is given below

Definition 3.1. A triangular fuzzy number denoted By=<m,a,f >has the
membership function

0 forx<m-—a
m-—x
1- p form—a<x<m
wir (x) =4 1 forx=m
xX—m
1- form<x<m+p
0 forx=m+p

The point m, with membership grade df is called the mean value and8 are
the left hand and right hand spreads of M respelgtiv

A TFN is said to be symmetric if both its spreads equal, i.e., it = g and it
is sometimes denoted By =< m,a > .

Due to the wide field of applications of TFNs, mauthors have tried to define
the basic arithmetic operations on TFNs. Here wimdce the definitions of arithmetic
operations due to Dubois and Prade.

3.2. Arithmetic operations on TFNs
LetM =<m,a,B >andN =<n,y,5 > be two TFNs.

(1) Addition: M+ N =<m+n,a+y,f+8 >

(2) Scalar multiplication: Let) be a scalalM = < Am, Aa, AB >, wheni > 0
AM =< Am,—AB, —Aa >, whenl < 0. In particulay—M =< —m, B, a >.

(3) Subtraction: M —N=<m—n,a+6,8+y >.
For two TFNsM and N, their addition, subtraction and scalar multigica, i.e.M + N,
M — NandAM are all TFNSs.

(4) Multiplication: It can be shown that the shape of the membershigi@n of M. N is
not necessarily a triangular, but, if the spread#faand N are small compared to their
mean values andn then the shape of membership function is closedtiangle. A good
approximation is as follows:
(@) WhenM > 0andN > 0 (M > 0,if m > 0)
M.N =<m,a,B >.<n,y,6 >~<mnmy +na,ms +np >

(b) WhenM < 0, N> 0

M.N =< ma,f >.<ny 0 >=<mnna—ménf —my >
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(c) WhenM <0andV<0
M.N =< ma,fB>.<nyd>=<mn—-nf —md —na—my >.
When spreads are not small compared witanmelues, the following is a better
approximation:
<ma,pf>.<nyd>x<mnmy+na—ay,mé+nf+p5>forM > 0, N> 0.

(5) Inverse: The inverse of a TFNV =<m,a,8 >, m > 0is defined as M=
<mapf >t=z<m™ L, pm %, am? >.
This is also an approximate valuedf* and it is valid only a neighbourhood ét/m.
Division of M by N is given by,

2= iR
Since inverse and product both are approximagedithision is also an approximate value.
The formal definition of division is given below.

(6) Division:
Mo m mé+na my+n
==M.N!'=<mapf><nién?2yn?2>~<—, > 4 5 F
N n ns n
From the definition of multiplication ofTFN$)e power of any TFW s defined in the
following way.

)

(7) Exponentiation : Using the definition of multiplication it can behin thatM™is

given by

M" =<m,a,f >"~<m",—nm" 18, —nm" a >, whenn is negative ,
~<mh,nm" la,-nm"1p > whem is positive.

Consider two TFN'’s with a common mean value. Théraction produces a TFN
whose mean value is zero and the spreads are thefshoth the spreads of computed
TFN. The quotient of same TFNs is a TFN having medoe one. THE Inverse of a TFN
whose mean value is zero does not exist and weotalivide by such a number. The
addition and multiplication of TFNs are both comatie and associative. But the
distributive law does not always hold.

For example, ifA =< 2,0.5,0.5 >,B =< 3,0.8,0.7 >, =<5,1,2>andD =

< -5,2,1>,thend.(B + €) = A.B +A.C holds butA.(C + D) # A.C +A.D.
It may be remembered that
<m,a,f>.<0,00>=<0,00>.

4. Triangular fuzzy matrix

Definition 4.1. Triangular fuzzy matrix (TFM): A triangular fuzzy matrix of order

m X n is defined agd = (@ij)mxn, Wherea;; =<my;, a;; , B;;> is theijth element of,

mjis the mean value of;; ande;; , B;; are the left and right spreadsaf respectively.
As for classical matrices define the followimgerations on TFMs. Let= (aij) and =

(bi;) be two TFMs of same order. Then we have the \faiig :

(DA +B = (a;;+by) (i) A—B = (a;;— b)),



Solution of System of Linear Equations with Coaffits as Triangular Fuzzy Number

(lll) FOI‘A = (al-j)mxn andE’ = (bij)nxp, AE = (Cij)mxp _Whel‘ecl-j = Z;(I:l Aik- bkj ,
i=12,....mandj= 12,..,p.

(iv)A' = (a;;) (the transpose of)

(v) k. A = (ka;;) , where k is a scalar.

We now define special types of TFMs correspondingspecial classical matrices.
However, because of fuzziness we will have morae thee type of TFM corresponding to
one type of classical matrix.

Definition 4.2. Pure null TFM: A TFM is said to be a pure null TFM if all itsteies are
zero, i.e., all elements ae0,0,0 >. This matrix is denoted bg.

Definition 4.3. Fuzzy null TFM: A TFM is said to be a fuzzy null TFM if all ehents
are of the formu;; = < 0,¢&, &, > whereg;. g, # 0.

Definition 4.4. Pure unit TFM: A square TFM is said to be a pure unit TFM,jf=<
1,0,0 > anda;; =< 0,0,0 >,i # j, for alli,j. It is denoted by.

Definition 4.5. Fuzzy unit TFM: A square TFM is said to be a fuzzy unit TFMijf =
<1,&,& >anda;; =< 0,&3,&4 >fori # jforalli,j, wheree;. e, # 0, e5.£4# 0.

Definition 4.6. Pure triangular TFM: A square TFMA = (a;j) is said to be a pure
triangular TFM if eithera;; =< 0,0,0 > for all i >j or a;; =<0,0,0> for all i <
jii,j = 1,2, ,n.

A pure triangular TFMA = (a;;) is said to be pure upper triangular TFM when
a;j= <0,0,0 > for alli > j and is said to be a pure lower triangular TFM;jf= <
0,0,0 > foralli <.

Definition 4.7. Fuzzy triangular TFM: A square TFMA = (a;j) is said to be a fuzzy
triangular TFM if eithera;; = <0,e1,&, > for alli > j or a;; = < 0,1, &, >for all i <
jii,j = 1,2, ,nande.g, # 0.

Definition 4.8. Symmetric TFM: A square TFMA = (a;;) is said to be symmetricAf=

A', i.e., Ifau = ajl- for all l,]

Definition 4.9. Pure skew-symmetric TFM: A square TFMA = (a;;) is said to be pure
skew-symmetric iA = —A’ anda; = < 0,0,0 >, i.e., ifa;; = —a;; for all i,j anda;; =
<0,0,0 >

Definition 4.10. Fuzzy Skew-symmetric TFM: A square TFMA = (a;;) is said to be
fuzzy skew-symmetriciff = —A4' anda;=<0,,,¢, > i.e., ifa;; = —aj; for alli,j and
a;i=<0,&1,6 >,61.60F 0

5. Adjoint and determinant of triangular fuzzy matrix
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The triangular fuzzy determinant (TFD) of a TFMinor and cofactor are defined as in
classical matrices. But, TFD has some special ptiegedue to the sub-distributive
property of TFNs.

Definition 5.1. Determinant of TFM: The triangular fuzzy determinant of a TEAdf
ordern x n is denoted by 4 | or det(4) and is defined as,
|A| = Zges, Sgn o < Mgy, A1say Proa) > - < Mpgny Anam) Pnom) >
= Zaesn Sgn o H?=1 Aig(i) -
wherea;q ;) =< Mig(i), Aig(i) Bisiy > are TFNs and,, denotes the symmetric group

of all permutations of the indices { 1,2,....,n fidaSgn o = 1 or —1 according as the
2

. (1 .. n . .
permutationo _<a(1) o(2) .. a(n)) is even or odd respectively.
The computation afet(4) involves several product of TFNs. Since the produc
of two or more TFNs is an approximate TFN, the gadidet(4) is also an approximate
TFEN.

Definition 5.2. Minor: Letd = (a;j) be a square TFM of ordex n. The minor of an
elementa;; in det(A) is a determinant of orden 1) x (n — 1), which is obtained by
deleting theth row and thgth column fromd and is denoted bﬁ?ll-j .

Definition 5.3. Cofactor: Letd = (a; ;) be a square TFM of ordarx n. The cofactor of
an element; in A is denoted by and;; is defined ad;; = (—=1)"*/1;; .

Definition 5.4. Adjoint: LetAd = (a;;) be asquare TFM al = (4;j) be a square TFM
whose elements are the cofactors of the correspgredements ind| then the transpose
of Bis called the adjoint or adjugate4find it is equal to#iﬁ). The adjoint ofd is denoted
by adj(A).

Here|A| containsi! terms out of whiclc;i! are positive terms and the same number
of terms are negative. All thesg terms contaim quantities at a time in product form,
subject to the condition that from thequantities in the product exactly one is takemfro
each row and exactly one from each column.

Alternatively, a TFD of a TFMA = (a;;) may be expanded in the
form Z?=1 a;j.A;j, i€{1,2,...,n}, wheraiij is the cofactor ofi;;. Thus the TFD is the sum
of the products of the elements of any row (or moiy and the cofactors of the
corresponding elements of the same row (or columg. refer to this method as the
alternative method.

In classical mathematics, the value of a deterntilsacomputed by any one of the
aforesaid two processes and both yield same ré&utlt.due to the failure of distributive
laws of triangular fuzzy numbers, the value of @DTEEomputed by the aforesaid two
processes will dier from each other. For this reason the value af8& should be
determined according to the definition, i.e., ughmgfollowing rule only

|A| = 2 Sgno < mla(l)tala(l)tﬁlo'(l) > < Mpo(n) Eno(n) '.Bno(n) >.

o€eSy
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On the other hand the value of a TFD computed bylernative process yields dfdrent
and less desirable result.

Theorem 5.5. Let Abe a square TFM of ordet. Then A.adjA = adjA.A =
(det A)I,.

Proof: Let Abe a square TFM of orderis defined asA = (aij)nxn Wherea;; = <
myj, a;;, Bi; > is theijth element ofl. m;; is the mean value of;; anda;;, §;; are the left
and right spreads respectively.

aiq aqp A1n
~ a a .. a
LetZ = 21 Q22 2n
ani Ap2 " ann~ .
Ay Ay Anl\
Thenadjd = | A1z A2z AnZ/ , whered;; is the cofactor, of
Ain ‘ilZn v Apn
ajj = < mij,aij,ﬁij > in det(A)
< Myy, Az, Bz > < Mys,Qns,f23 > o <My, dap, Pon >
e Ay, = < Mgy, A3z, P32 > <Mzz 33,33 > . < May, d3p, B3 >
< Mpo, Anz, Prz > < Mp3, Anz, Pz > o < Mpy, Ay Prn >
Yk=1MkA1k  Dh=101kA2k - Dk=1 alkAnk\
s Yi=192kA1k  Lk=1921A2k - Lk=1%2kAnk
Now, A.adjA = |
Yi=1 kA1 Xk=1nidok - Xk=1 ankAnk/
detA 0 0
0 detA .. 0 iNT
= = (detDI,,
0 0 .. detd

Since Y-, ay Ay, = detd, if i=j
=0, ifi #j where0 =< 0,&;,¢, > is a zero TFNg,.g, # 0

Zﬁ:ﬂ‘?mam Z;cl=1/§k1ak2 Zz=1‘§k1akn\
) o Yi=1Ak2ak1 Lh=14Kk2x2 - Dk=1Ak20kn
Again adjA. A = | )
\Z;cl=1‘zikn~ak1 ~Zﬁ=1‘4knak~2 Zﬁ:ﬂ‘Iknakn/
de~tA 0 e Q
— 0 detA e 0 — (detA' )in,
0 0 .. detA

Since Yp_, ay; Ax; = detd, if i=j
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= 0,ifi # jwhere0 =< 0,;,&, > is a zero equivalent
TFN,e1.6, # 0
And), is the fuzzy unit TFM where;; =<1,&;,&, > andy;; =< 0,&3,& >
fori = j foralli,j ande;.e, #0,e5.6,# 0
ThereforeA.adjA = adjA.A = (detA)I, .

6. Inverse of triangular fuzzy matrix
Definition 6.1. Singular TFM: LetAd = (a;;) be a square TFM of ordethen it is said

to be Singular TFM ifdet(A)= 0.where 0 = < 0,5,&, > is a zero equivalent
TFN,&;. &, # 0.

Definition 6.2. Non-Singular TFM: LetA =(a;j) be asquare TFM of ordes then it is
said to be Non-Singular TFM ifet(4) # 0 .

Definition 6.3. Inverse of a TFM: A non-singular square TFM of ordern is said to be
invertible if there exist a TFNB such thalB = BA = I,. B is said to be an inverse &f

and is denoted bf~! .Thus AA=1 = I, = A~'4. Also A~ = ﬁadjﬁ :
In order that botti B and BA should exist B must be a square TFM of order

6.4. Numerical example
. ~ <3,0505> <20202>
Evaluate the inverse df = (< 2.0101> <20505 >)
Solution: det(4) =< 3,0.5,0.5>< 2,0.5,0.5 > —-<2,0.2,0.2 ><2,0.1,0.1 >
=<6,2.5,25>-<4,0.6,0.6 >
=<2,3.1,3.1>
g <2,0505> <-20202>
Now, adj(A) = ~2,01,01> <3,0.5,05> )
Then from the definition of inverse we have,
A7l = ! —adj(A)
det(4)
_ ( <1,18,1.8 > < —-1,—-1.45,-1.45 >)
<-1,-15,-15> < 1.5,2.575,2.575 >
Check:Now A.A71 =
(< 3,0505> <20.20.2 >)( <118,1.8 > < -1,—-1.45,—-1.45 >)
<2,0101> <20505>/\«<-1,-15,-15> < 1.5,2.575,2575 >
_ (< 3,59,59>+<-2,-28,-28> < —-3,—-3.85,—-3.85> +< 3,545,545 >)
<2,37,37>+<-2,—-25,-25> <-2,—-28,—-28> +<3,5959>
_ (< 1,3.1,3.1> <0,1.6,1.6 >) =Y
<0,12,1.2> <1,31,3.1> 2 '

Definition 6.5. Defuzzification: We define a functiod : F(R) — R which maps each

fuzzy numbers to real lind(R) represents the set of all Triangular Fuzzy Numbérs
be any linear defuzzification functions then ,
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D(M) = (@) where M = < m, a, 8 > be any TFN.
We can also evaluate the inverse of a TFM bygudefuzzified value afet(A4) instead

. -1 _ 1 Pt
of (A) .i.edA™" = Saet) adj(A).

6.6. Numerical example

. - <3,0505> <20202>
Evaluate the inverse df = (2 2,01,01> <2,0505>
det(A).
Solution:
We have alreadyfet(4) =< 2,3.1,3.1 >

Now, D(det(d)) = 2331 = 237

o [<20505> <-20202>
We havend;(4)= (< ~2,01,01> <3,05,05> )

—_— -1 _ 1 L
Then, A = S ety adj(4)

_ L( <20505> <-2,0.2,0.2 >)
237\< —2,0.1,0.1 > <3,0.505>
_ ( < 0.84,0.21,0.21 > < —0.84,0.084,0.084 >)
< —0.84,0.042,0.042 > < 1.26,0.21,0.21 >
Check: 4.4t =
(< 3,0505> <2020.2 >) ( < 0.84,0.21,0.21 > < —0.84,0.084,0.084 >)
<2,01,01> <2,05,05>/\<—-0.84,0.042,0.042 > < 1.26,0.21,0.21 >
_ (< 0.98,1.302,1.302 > <0,1.344,1.344 > ) ~L =14
< 0,1.008,1.008 > < 0.98,1.302,1.302 > 2 ’

) using defuzzified value of

7. Matrix inversion method for fuzzy linear systemon TFN
In this section, we define the concept of fuzzgdinsystem is justify in matrix inversion
method with the aid of Triangular Fuzzy Numbers tredrelevant definitions are recalled
in nature.
Consider the systemwffuzzy linear non- homogeneous TFN equationsimknown
TEN vectorsey, xo, ..., Xp.
Here a;;, x; , b; are triangular fuzzy numbers. Foralj = 1,2,...,n.
ag1X1 + aypxy + o+ agpx, = by
Ay1X1 + AgpXxy + o+ aypx, = by

An1X1 + ApoXxy + o+ appxy, = by
The above linear system is represented in the figiven by,
AX = b
whereA = (aij), 1 < i,j < nis Triangular Fuzzy Matrix of order anda;; € F(R) and
(x;, b;) EF(R),foralli = 1,2,..,nandj = 1,2, ...,n .This system is called Fuzzy Linear
System (FLS).
If the coefficient Triangular Fuzzy matuikis non singular, then we get ,
A1 (AX)=A"'b
(A*A)X = A'D

9



Suman Kanti Sen

X =471
The solution of FLS will be represented by,
=A"1b

7.1. Numerical example
In this section a simple example is given in otdaHustrate the two proposed method.
Consider the following fuzzy linear system and solve by matrix inversion method .
<3,05,05>x+<20202>x, =<5,01,01>
<2,01,01>x +<2,0505>x, =<4,0.1,0.1 >
Solution:

The given linear system may be written as,
(<30505> <20202>)( )_(<5,0.1,0.1>)
<2,01,01> <20505> ~ \<4,01,01>
A™1b

i) Using determinant ofA:
Now det(4d) =< 2,3.1,3.1 >
Sincedet(A) # 0 whered =< 0,¢;,¢&, > s.t.e;.6, #0

P o 1 <1 _ 1 .
So,4 is non-singular, theA™ exists. A™" = ot adj(A)

_ ( <11.8,1.8 > < -1,—-1.45,-1.45 >)
~“\«-1,-15,-15> < 1.5,2575,2.575>

The solution is¥ = A~ 1h
(xl) _ ( <11.8,1.8 > < —-1,—-1.45,-1.45 >) (< 50.1,0.1 >)
X2) -1,-1.5,—-1.5> < 1.5,2.575,2575>/\< 4,0.1,0.1 >
(LS 59.1,91> + < —4,-5.7,-5.7 > )= (= 1,3.4,3.4 > )
"\« -5,-74,-74>+<6,10.45,1045 >/ = \< 1,3.05,3.05 >

The solution isc; =< 1,3.4,3.4 > x, =< 1,3.05,3.05 >.

ii) Using defuzzied value
NOW E(det(ﬁ)) — 8+3.1+3.1

SinceD (det(A)) # 0

So,4 is non-singular and~?! exists.

1 _ 1 Lo _
Then A7l = Slaer D) adj(A) =
( < 0.84,0.21,0.21 > < —0.84,0.084,0.084 >)

< —0.84,0.042,0.042 > < 1.26,0.21,0.21 >

= 2.37

The solution ist = A~1h
X 0.84,0.21,0.21 —0.84,0.084,0.084 50.1,0.1
( 1) _ ( < > < >) (< >)

X < —0.84,0.042,0.042 > <1.26,0.21,0.21 > <4,01,01>
_ ( <4.2,1134,1.134 > + < —3.36,0.42,0.42 > )

< —4.2,0.294,0.294 > + < 5.04,0.966,0.966 >
_ (< 0.84,1.76,1.76 >)

< 0.84,1.26,1.26 >
The solution isx; = < 0.84,1.76,1.76 > x, = < 0.84,1.26,1.26 >

10
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Calculation of residues: These two solutions are slightly different. Now will calculate
the sum of square of residugs, S7 of method i) and ii) respectively.

§2 =[<3,050.5><1,34,34> +<2020.2><1,3.053.05 > —< 5,0.1,0.1 >]?
+[< 2,0.1,0.1 >< 1,3.4,3.4 > +< 2,0.5,0.5 >< 1,3.05,3.05 > —< 4,0.1,0.1 >]?
=[<0,17.1,17.1 >]*> + [< 0,13.6,13.6 >]*> =< 0,0,0 >

§2 =

[< 3,0.5,0.5 >< 0.84,1.76,1.76 > + < 2,0.2,0.2 >< 0.84,1.26,1.26 > —< 5,0.1,0.>]
+[< 2,0.1,0.1 >< 0.84,1.76,1.76 > + < 2,0.5,0.5 >< .84,1.26,1.26 > —< 4,0.1,0 >]?
=[< —0.8,8.488,8.488 >]? + [< —0.64,6.644,6.644 >]* = < 0.409,8.504,8.504 >

Since §# is exactly< 0,0,0 > so, the solution obtained by using the determinahte
of Agives exact solution.

8. Conclusion

In this article, some elementary operations omgyidar fuzzy numbers are defined. Like
classical matrices we also define some operationsTEMs. Using the elementary
operations, some important properties of TFMs aesgnted. The concept of adjoint of
TFM is discussed and some properties on it are@ssented. The definition and some
properties of determinant of TFM are presentechis article. It is well known that the
determinant is a very important tool in mathematstsan ficient method is required to
evaluate a TFD. Presently, we are trying to devalogficient method to evaluate a TFD
of large size. Some special types of TFMs, i.ee@nd fuzzy triangular, symmetric, pure
and fuzzy skew-symmetric, singular, semi-singulad aonstant TFMs are defined here.
Then we evaluate the inverse of a TFM using twohoddt. One is general adjoint
determinant method. Other is defuzzified methocerirve investigated the fuzzy linear
system of equations with fuzzy coefficients invalyiin fuzzy variables. The matrix
inversion method is used to solve the system oé#agpus. This method is illustrated with
numerical example and the inverse of the correspgndoefficient matrix is obtained
using both methods. The solution obtained usingrdehant value of coefficient matrix is
most exact. The notion of FLS can be applying iarar's rule and LU decomposition
method by this proposed method in future.

Acknolegement. The author is thankful to the revierews for theafuable comments for
improvement of the paper.
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