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1. Introduction 
Recent technological advancement demands fast transaction, minimal power 
consumption, less time consuming devices. To cope with these fast communicative 
applications, any cryptographic construction taking arbitrary length message should have 
the capability in very fast computation besides providing security. Minimizing the 
number of operations in computation and employing easily computable functions makes 
a system efficient. A simple modular, cascadable, reusable component is needed to 
generate complex function (1) using relatively simple functions. One such component is 
Cellular Automaton (2) which runs in affordable speed. Parallel processing for even 
faster computation is it’s another advantage. Because of its parallel execution and bit-
wise operations, CA are one of the most recommended components (3), (4) as far as 
hardware implementation is concerned. To get these sorts of advantages, Cellular 
Automata are vastly used in Biological science, Physics, Mathematics, Computer 
Science, Commerce etc. Depending on its vast applicability, characterization of 
properties of cellular automata have been done in a series of research papers (5), (6), (7), 
(8) etc. Specifically, a large number of cryptographic constructions (4), (9), (3), (10), (11) 
have been made utilizing Cellular Automata properties. Finding out new elementary 
properties of Cellular Automata, keeping in mind its ever increasing usability in its vast 
application spectrum, have always been of great demand (1). In this paper, we study on a 
special class of one dimensional, three neighborhood, two state, linear Cellular Automata 
called LNGCA. The state-transition graph of LNGCA consists of a set of disjoint trees 
rooted at some cyclic states. Here we develop some new interesting theoretical properties 
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regarding state transition diagram of LNGCA. Computer experiments have been 
conducted to verify the results.  
 The rest of the paper is organized as follows. In section 2, we state some 
preliminaries of Cellular automata. Then we report new properties of CA in section 3. 
Computer experimentation to validate the proposed property of newly defined CA is 
given in section 4 while concluding remarks have been made in section 5. 
 
2. Preliminaries of Cellular Automata 
We recall the concept of Cellular Automata (12). Cellular Automata are discrete lattice of 
cells with a particular geometry. Each cell consists of a memory element (Flip-Flop) and 
a combinatorial logic. Cells can assume values from a finite set Q. At each clock pulse, 
the cells are updated simultaneously. For k number of neighborhoods, � ∶ �� 	→ 	� is the 
local transition rule depending on which the cell values are updated. The transition 
function totally depends on local neighborhood of cells. If the next state function of a cell 
is expressed in the form of a truth table, then the decimal equivalent of the output is 
conventionally called the rule number for the cell (13). e.g. for 3-neighborhood CA i-th 
cell at t-th clock cycle evolves as follows: 																																														S�	
� = f(S���	 , S�	, S�
�	 )   
To be more explicit, the combinational logic of rule-90 and rule-150 are given by 
   ���� − 90:		S�	
� =	 S���	 	⊕	S�
�	  
   ���� − 150:		S�	
� = 	S���	 	⊕		S�		⊕		S�
�	  

    
Figure 1: A four neighborhood CA 

 
If in a CA, the values of next state of all the cells are calculated only by XOR operations 
of the present values of neighboring cells of the cell, then the CA is called linear CA. The 
operations depending on which cell values are updated is known as rule set. If n cells are 
connected and rules for each cell be placed one under another, then the matrix formed his 
way is called characteristic matrix of the CA. If a CA involves at least one nonlinear rule, 
then it is called non-linear CA. 

A CA is called group CA if its transformation is invertible in the sense that the 
CA will always return to its initial state. In this CA if we draw state transition graph, all 
the states must be in one cycle. In matrix notation, the determinant of the characteristic 
matrix of group CA becomes non-zero. On the other hand, if in matrix representation, the 
determinant of the characteristic matrix (T) is zero, then the CA configuration is called 
non-group CA. The next state of the automation is computed as  
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�(� + 1) = �	×		�(�) 
 
       In state transition diagram, for non-group CA, it is impossible to include all the states 
in one cycle. In a non-group CA, the cycles in the state transition diagram are called 
attractors. In Fig:2, cyclic states are {1,2,3} and {0}. If the length of the cycle in an 
attractor is 1, then the state is called graveyard. Graveyard is a state with self-loop. So the 
0 state always forms a graveyard. The set of all states rooted at a cyclic state  α is called 
α-basin. A state is called non-reachable (leaf) if the       

 
   Figure 2: State Transition Diagram 

state cannot be reached, whatever may the number of clock pulses be, starting from any 
other state. In other words, non-reachable states have no predecessor. In Figure 2, the 
states {5; 10; 4; 11; 7; 8; 6; 9} are non-reachable. The depth of a CA is defined to be the 
minimum number of clock cycles required to reach the nearest cyclic state from any non-
reachable state in the state transition diagram of the CA. The diagram has depth 2. Also if 
n, r are order and rank of the characteristic matrix, the number of predecessors for each 
reachable state is 2!�" . For the matrix T, the number of predecessors becomes 2#�$. 
Now we define LNGCA as follows.   
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Definition 1(LNGCA). A linear non-group Cellular Automata characterized by matrix 
T is called LNGCA if it satisfies �η
�(α) = 	�η(α)									∀	%	≥	1 
          and 
       �η��(α)	≠			�η(α)									 
where α is any non-reachable state and  η  is the depth of the CA. 
 

Computer experiments have been conducted in support of the existence of this 
particular type of CA. Small classes of experimental results are reported in Table-1. The 
next section reports some properties of the newly defined Cellular Automata. Here the 
conditions in LNGCA state that all non reachable states in the state transition diagram 
have equal length. 
 
3. Properties of LNGCA 
A linear non-group CA contains several non-reachable states, some reachable states and 
one or several cycles. The rule structure of an n cell CA can be characterized by an n × n 
matrix T whose ith row represents the updating rule of i-th cell. If the present state values 
of the cells are represented by a column vector α, then T(α), the matrix multiplication of 
T and α with XOR addition, is the next state value of the CA. In general, �&(α) is the i-th 
time applications of T on α i.e., i consecutive clock pulses are given to the linear CA 
taking α as seed. Following results provide some new interesting properties of LNGCA. 
 
Property 1. If θ�; θ'  be any attractors of an LNGCA characterized by the matrix T, then  
θ� ⊕ θ' must also be an attractor. 
Proof:  Let us assume that η be the depth of the LNGCA. Then ∃ non-reachable 
statesα�,α' such that 
  �η(α�) = θ�  and 		�η(α') = θ' 

 with �η	�&(α�)≠	θ�  and  �η�&(α')≠	θ'										η		>	%	>	1  
Now    θ�	⊕		θ' = �η(α�)	⊕		�η(α')     
            	= 	�η(α�	⊕		α')  
             = 	θ , an attractor [as depth of CA is η]  

 
Property 2. In an LNGCA characterized by the matrix T, if α is a non reachable state, 
then α	⊕		�(β	) is also non reachable, β being any state of the CA. 
Proof:  Since T is a linear map, the image space of T must be a subspace of co-domain of 
T. 
 Now α is non-reachable  ⇒ α ∉ Image space 
 Image space being closed,  α ⊕ T(β) ∉ Image space of T for any β. 
Hence  α ⊕ T(β)  is non-reachable. 
 

The proof does not require the specific property of LNGCA. So, the property 
remains valid not only for LNGCA but also for any linear non-group CA. 
 
Example 1.  In Figure-1, the state 6 is non-reachable while 14 is reachable. Now 6 ⊕ 14 
makes 8 which is also non-reachable as can be seen in that state transition diagram. 
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Extending the previously stated property, we give a more general property of 
linear non-group CA as follows. 

 
Property 3. If  α; β be any two non-reachable states of an LNGCA characterized by the 
matrix T, then depth((α) ⊕ (β)) = min{depth(α); depth(β)} i.e., ∀ j ≥ i, the relation �&(α)	⊕		�((β) = 	�&(µ)	holds; where  µ is a non-reachable state. 
Proof:  Since T is a linear map, �(	becomes a subspace of the vector space �& 		∀		)	≥		%. 
  ⇒  �&(α), �((β)	∈		Image space of  �& 	for non-reachable states α, β.  

⇒ �&(α)	⊕		�((β)	∈		Image space of  �& 
Then the element �&(α)	⊕		�((β)	 can be written as 
     �&(α)	⊕		�((β) = 	��(µ)  for k ≥ i. 
There may arise three cases depending on the value of  i 
Case-1: i = 0  
Here the result comes directly from Property-2. 
Case-2: 0 < i < η 
Our intension is to show k = i and we prove it by contradiction  

Let us consider k > i. 
Then we have �&(α)	⊕		�((β) = 	��(µ) 
                      ⇒ �&(α)	⊕		�((β)⊕	�((β) = 	��(µ)	⊕		�((β) 

   i.e., �&(α) 	= 	��(µ)	⊕		�((β) 
 

   ⇒ �&(α) 	= *��+µ	⊕	�(��(β)		,	, ) > .
�(+β	⊕	���((µ)		,, /�ℎ�12%3�4 

 

   ⇒ �&(α) 	= *��(δ�	)	, ) > .
�((δ'		), /�ℎ�12%3�4 

 
where δ� = 	µ	⊕	�(��(β)		is a leaf element as µ is so and δ' = 	β	⊕	���((µ)		 is also a 
leaf element as  β is so. 
Therefore, in general, �&(α) = 	�&
5(δ)	 for some t.   [ as k > i; j > i and δ being a leaf 
element].  
  ⇒ i ≥ η 
But here in this case, i < η which is a contradiction and hence i  ≥ k. 
The only remaining possibility is k = i. 
Case-3: i ≥ η 
Here  �&(α) = 	θ� and �((β) = 	θ' for attractors θ� and θ'. 
 Then from Property 1, we have �&(α)	⊕		�((β) = 	�&(µ). 
 
Combining all the cases, we conclude that �&(α)	⊕		�((β) = 	�&(µ)		∀		)	≥		%. 
 
Example 2. The states 15 and 1 are at depth 1 and at depth 2 respectively and 15 ⊕ 1 = 
14. The state 14 is at depth 1 as shown in the Figure-1. 
The proposition of Property-3 have been verified with computer experiment and the 
result for a particular rule-set is given in Table-2,3 
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4. Instances of LNGCA 
In support of the existence of the special class of CA (LNGCA), computer generated 
experiments have been conducted. Some of these results are given in the following tables. 
 
Rule 
set 

Lev
el-0 

Lev
el-1 

Lev
el-2 

Lev
el-3 

Lev
el-4 

Lev
el-5 

Lev
el-6 

Level-7 Cy
cle 

Non-
reachab
le  

<90,90, 
90,90,9
0,90,90
> 

0 85 34, 
119 

20, 
54, 
65, 
99 

8, 
28, 
42, 
62, 
73, 
93, 
107, 
127 

5, 
13, 
17, 
25, 
39, 
47, 
51, 
59, 
68, 
76, 
80, 
88, 
102,
110,
114,
122 

2,7,
10, 
15,1
9, 
22,2
7, 
30,3
2, 
37,4
0, 
45,4
9, 
52,5
7, 
60,6
7, 
70,7
5, 
78,8
2, 
87,9
0, 
95,9
7, 
100,
105,
108,
112,
117,
120,
125 

1,3,4,6, 
9,11,12,14,
16, 
18,21, 
23,24, 
26,29, 
31,33, 
35,36, 
38,41, 
43,44, 
46,48, 
50,53, 
55,56, 
58,61, 
63,64, 
66,69, 
71, 
72,74, 
77,79, 
81,83, 
84,86, 
89,91, 
92,94, 
96,98, 
101,103, 
104,106, 
109,111, 
113,115, 
116,118, 
121,123, 
124,126 

- 1,3,4,6, 
9,11,12,
14,16, 
18,21, 
23,24, 
26,29, 
31,33, 
35,36, 
38,41, 
43,44, 
46,48, 
50,53, 
55,56, 
58,61, 
63,64, 
66,69, 
71,72, 
74,77, 
79,81, 
83,84, 
86,89, 
91,92, 
94,96, 
98,101, 
103, 
104,106, 
109,111,
113,115,
116,118,
121,123,
124, 
126 

<102,1
02,102,
102,10
2,102,1
02> 

0,64 32, 
96 

 8, 
16, 
24, 
40, 
48, 
56, 

    Re
ma
ini
ng  
 
Sta

8,16,24,
40,48, 
56,72, 
80,89, 
104,112, 
120 
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72, 
80, 
89, 
104, 
112, 
120 

tes 

     Table 1:  LNGCA for n = 7 

4.1. Result in support of Property-3 
The following experimental results given in Table-2 show that for any (level-1) state α 
and any (level-2) state  β, α ⊕ β ∈ {x : x is a level-2 state}. 
 

Rule-set αααα Level-2 αααα ⊕⊕⊕⊕ Level-2 
<90,0,90,0,90,0> 2 1,3,4,5,6,7,9,11,12,13,14,15,16,17, 

18,19,20,21,22,23,24,25,26,27,28, 
29,30,31,33,35,36,37,38,39,41,43, 
44,45,46,47,48,49,50,51,52,53,54, 
55,56,57,58,59,60,61,62,63 

3,1,6,7,4,5,11,9,14,15,12,13, 
18,19,16,17,22,23,20,21,26, 
27,24,25,30,31,28,29,35,33, 
38,39,36,37,43,41,46,47,44, 
45,50,51,48,49,54,55,52,53, 
58,59,56,57,62,63,60,61 

<90,0,90,0,90,0> 8 1,3,4,5,6,7,9,11,12,13,14,15,16,17, 
18,19,20,21,22,23,24,25,26,27,28, 
29,30,31,33,35,36,37,38,39,41,43, 
44,45,46,47,48,49,50,51,52,53,54, 
55,56,57,58,59,60,61,62,63 

9,11,12,13,14,15,1,3,4,5,6,7, 
24,25,26,27,28,29,30,31,16, 
17,18,19,20,21,22,23,41,43, 
44,45,46,47,33,35,36,37,38, 
39,56,57,58,59,60,61,62,63, 
48,49,50,51,52,53,54,55 

<90,0,90,0,90,0> 10 1,3,4,5,6,7,9,11,12,13,14,15,16,17, 
18,19,20,21,22,23,24,25,26,27,28, 
29,30,31,33,35,36,37,38,39,41,43, 
44,45,46,47,48,49,50,51,52,53,54, 
55,56,57,58,59,60,61,62,63 

11,9,14,15,12,13,3,1,6,7,4,5, 
26,27,24,25,30,31,28,29,18, 
19,16,17,22,23,20,21,43,41, 
46,47,44,45,35,33,38,39,36, 
37,58,59,56,57,62,63,60,61, 
50,51,48,49,54,55,52,53 

<90,0,90,0,90,0> 32 1,3,4,5,6,7,9,11,12,13,14,15,16,17, 
18,19,20,21,22,23,24,25,26,27,28, 
29,30,31,33,35,36,37,38,39,41,43, 
44,45,46,47,48,49,50,51,52,53,54, 
55,56,57,58,59,60,61,62,63 

33,35,36,37,38,39,41,43,44, 
45,46,47,48,49,50,51,52,53, 
54,55,56,57,58,59,60,61,62, 
63,1,3,4,5,6,7,9,11,12,13,14, 
15,16,17,18,19,20,21,22,23, 
24,25,26,27,28,29,30,31 

Table 2: Experimental results in support of Property-3.  (Level -1) states are αααα ∈∈∈∈ {2, 
8, 10, 32}. 

5. Conclusion 
Some new properties of a class of Linear Non-Group Cellular Automata have been 
reported and the results have been verified in computer experimentation. The properties 
should have some applications to any field in the application spectrum of Cellular 
Automata. Research is still going on to improve existing CA models, combine CA 
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systems with other mathematical and conceptual models, and better understand the 
implications and nature of CA in general. 
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