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1. Introduction

Recent technological advancement demands fast attms, minimal power
consumption, less time consuming devices. To cofib these fast communicative
applications, any cryptographic construction takémbitrary length message should have
the capability in very fast computation besidesvjaing security. Minimizing the
number of operations in computation and employiagilg computable functions makes
a system efficient. A simple modular, cascadabdeisable component is needed to
generate complex function (1) using relatively denfoinctions. One such component is
Cellular Automaton (2) which runs in affordable sge Parallel processing for even
faster computation is it's another advantage. Beeanf its parallel execution and bit-
wise operations, CA are one of the most recommemdedponents (3), (4) as far as
hardware implementation is concerned. To get themgs of advantages, Cellular
Automata are vastly used in Biological science, dktsy Mathematics, Computer
Science, Commerce etc. Depending on its vast aiplity, characterization of
properties of cellular automata have been doneseri@s of research papers (5), (6), (7),
(8) etc. Specifically, a large number of cryptodrapconstructions (4), (9), (3), (10), (11)
have been made utilizing Cellular Automata propsttiFinding out new elementary
properties of Cellular Automata, keeping in mirgl éver increasing usability in its vast
application spectrum, have always been of greatadenil). In this paper, we study on a
special class of one dimensional, three neighbathtveo state, linear Cellular Automata
called LNGCA. The state-transition graph of LNGC#@nsists of a set of disjoint trees
rooted at some cyclic states. Here we develop swweinteresting theoretical properties
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regarding state transition diagram of LNGCA. Congpuexperiments have been
conducted to verify the results.

The rest of the paper is organized as follows.sdgtion 2, we state some
preliminaries of Cellular automata. Then we repatv properties of CA in section 3.
Computer experimentation to validate the proposexperty of newly defined CA is
given in section 4 while concluding remarks haverbmade in section 5.

2. Preliminaries of Cellular Automata
We recall the concept of Cellular Automata (12)liar Automata are discrete lattice of
cells with a particular geometry. Each cell corssidta memory element (Flip-Flop) and
a combinatorial logic. Cells can assume values feofimite set Q. At each clock pulse,
the cells are updated simultaneously. For k nurobaeighborhoodsf : Q% — Q is the
local transition rule depending on which the cellues are updated. The transition
function totally depends on local neighborhoodalfsc If the next state function of a cell
is expressed in the form of a truth table, then dbeimal equivalent of the output is
conventionally called the rule number for the ¢&B). e.g. for 3-neighborhood CA i-th
cell at t-th clock cycle evolves as follows:
Si™t = f(Si_1,Si,Sivs

To be more explicit, the combinational logic ofe+d0 and rule-150 are given by

Rule — 90: Sf** = St @St

Rule — 150: Sf*' = Sf_, @ Sf@ St

i-2 i-1 B i+l

|
&
¥

Figure 1: A four neighborhood CA

If in a CA, the values of next state of all thelgelre calculated only by XOR operations
of the present values of neighboring cells of tbke then the CA is called linear CA. The
operations depending on which cell values are @odat known as rule set. If n cells are
connected and rules for each cell be placed onerwambther, then the matrix formed his
way is called characteristic matrix of the CA. IEA involves at least one nonlinear rule,
then it is called non-linear CA.

A CA is called group CA if its transformation isvigrtible in the sense that the
CA will always return to its initial state. In th@3A if we draw state transition graph, all
the states must be in one cycle. In matrix notatibe determinant of the characteristic
matrix of group CA becomes non-zero. On the otladhif in matrix representation, the
determinant of the characteristic matrix (T) is@ehen the CA configuration is called
non-group CA. The next state of the automatiorommputed as
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Xt+1)=Tx X(t)

In state transition diagram, for non-groud, @ is impossible to include all the states
in one cycle. In a non-group CA, the cycles in hiate transition diagram are called
attractors. In Fig:2, cyclic states are {1,2,3} aftd. If the length of the cycle in an
attractor is 1, then the state is called gravey@rdveyard is a state with self-loop. So the
0 state always forms a graveyard. The set of alestrooted at a cyclic state is called
o-basin. A state is called non-reachable (Ieai)_éft
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Figure2: State Transition Diagram

state cannot be reached, whatever may the numbsoak pulses be, starting from any
other state. In other words, non-reachable stad®s Ino predecessor. In Figure 2, the
states {5; 10; 4; 11; 7; 8; 6; 9} are non-reachalblee depth of a CA is defined to be the
minimum number of clock cycles required to reaahikarest cyclic state from any non-
reachable state in the state transition diagratheofCA. The diagram has depth 2. Also if
n, r are order and rank of the characteristic mathie number of predecessors for each
reachable state B*~". For the matrix T, the number of predecessors rhes@* 3.
Now we define LNGCA as follows.
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Definition 1(LNGCA). A linear non-group Cellular Automata characterized by matrix
Tiscalled LNGCA if it satisfies
T () = T"(q) vi>1
and
T a) # T )
where a isany non-reachable state and 77 isthe depth of the CA.

Computer experiments have been conducted in suppdhte existence of this
particular type of CA. Small classes of experimergaults are reported in Table-1. The
next section reports some properties of the newfindd Cellular Automata. Here the
conditions in LNGCA state that all non reachabltes in the state transition diagram
have equal length.

3. Propertiesof LNGCA

A linear non-group CA contains several non-reacghaléhtes, some reachable states and
one or several cycles. The rule structure of aalh@A can be characterized by arxm
matrix T whose ith row represents the updating difileth cell. If the present state values
of the cells are represented by a column veztdahen T), the matrix multiplication of

T anda with XOR addition, is the next state value of @&. In generalT*(a) is the i-th
time applications of T om i.e., i consecutive clock pulses are given tolthear CA
takinga as seed. Following results provide some new istierg properties of LNGCA.

Property 1. If 6;; 6, beany attractors of an LNGCA characterized by the matrix T, then
6, [7 6, must also be an attractor.
Proof: Let us assume thgtbe the depth of the LNGCA. Thémon-reachable
statesy;, a, such that
T'"ey) =6, and T"(e,) = 6,
with 77~ ()= 6, and T (o) = 6, n>i>1
Now & @ 6,=T"ey) @ T"x,)
=Ty @ )
= @, an attractor [as depth of CAnR$

Property 2. In an LNGCA characterized by the matrix T, if @ is a non reachable state,
then o @ T(B) isalso non reachable, £ being any state of the CA.
Proof: Since T is a linear map, the image space of Tt imeis subspace of co-domain of
T.

Now a is non-reachable= a [0 Image space

Image space being closed,d T(B) O Image space of T for arfy
Hencea O T(B) is non-reachable.

The proof does not require the specific propertft IGCA. So, the property
remains valid not only for LNGCA but also for ariiydar non-group CA.

Example 1. In Figure-1, the state 6 is non-reachable whiléslreachable. Now @ 14
makes 8 which is also non-reachable as can beirs¢ieat state transition diagram.
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Extending the previously stated property, we given@re general property of
linear non-group CA as follows.

Property 3. If a; 3 be any two non-reachable states of an LNGCA characterized by the
matrix T, then depth((a) 7 (£)) = min{depth(a); depth(A)} i.e, 7] =i, the relation
T (@) @ TV(f) = T'(u) holds, where yisa non-reachable state.
Proof: Since T is a linear maf/ becomes a subspace of the vector sface’ j > i.

= T (), T/(p) € Image space of’! for non-reachable states .

= Ti(a) @ T'(f) € Image space of"
Then the elemerti(a) @ T/(f) can be written as

T a) @ TV(F) = T*(u) fork=i.

There may arise three cases depending on the ehlue
Case-l:i=0
Here the result comes directly from Property-2.
Case-2. 0<i<n
Our intension is to show k =i and we prove it lopttadiction

Let us consider k > i.

Then we hav&i(a) @ T/(B) = T*(u)
=T a) @ T(HDT/ (P = TH(w) @ T/ (B)
i.e.,Ti(a) = T*(w) @ TV (B

. T*(u@T/* ,j>k
o Ti) = (u k_'(ﬁ)) J |
Tf(ﬁ AT (W) ), otherwise
k .
T/ (6, ), otherwise

wheres, = u @T/7¥(p) is a leaf element ag is so ands, = S@T* () is also a
leaf element ag is so.
Therefore, in generall!(a) = T*t(o) for some t. [as k > i; j > i and being a leaf
element].
=ixn
But here in this case, igwhich is a contradiction and hence k.
The only remaining possibility is k = i.
Case-3:izn
Here T'(a) = 6, andT/ () = 6, for attractorsd; andé,.
Then from Property 1, we ha¥é(a) @ T/(f) = T ().

Combining all the cases, we conclude tidta) @ T/(f) = Ti(w) Vj=>i.
Example 2. The states 15 and 1 are at depth 1 and at deqgtbp2ctively and 151 1 =
14. The state 14 is at depth 1 as shown in ther&igju

The proposition of Property-3 have been verifiedhwéomputer experiment and the
result for a particular rule-set is givenTable-2,3

89



S. Kuila, D.R. Chowdhurgnd M. Pal

4. Instances of LNGCA
In support of the existence of the special clas€af(LNGCA), computer generated
experiments have been conducted. Some of thedésraseigiven in the following tables.

Rule Lev |Lev |Lev |Lev |Lev |Lev | Lev | Level-7 Cy | Non-
set e-0 |d-1 |e-2 |e-3 |4 |e-5 |66 cle | reachab
le
<9090, |0 85 |34 |20, |8, 5, 2,7, 11,3,4,6 - 1,3,4,6
90,90,9 119 | 54, |28, |13, |10, |9,11,12,14, 9,11,12,
0,90,90 65, |42, |17, | 15,1 16, 14,16,
> 99 |62, |25 |9, 18,21, 18,21,
73, |39, |22,2]| 23,24, 23,24,
93, |47, |7, 26,29, 26,29,
107, | 51, | 30,3 31,33, 31,33,
127 |59, |2, 35,36, 35,36,
68, | 37,4 38,41, 38,41,
76, |0, 43,44, 43,44,
80, | 45,4 | 46,48, 46,48,
88, |9, 50,53, 50,53,
102, | 52,5 | 55,56, 55,56,
110, | 7, 58,61, 58,61,
114, | 60,6 | 63,64, 63,64,
122 | 7, 66,69, 66,69,
70,7 | 71, 71,72,
5, 72,74, 74,77,
78,8 | 77,79, 79,81,
2, 81,83, 83,84,
87,9 | 84,86, 86,89,
0, 89,91, 91,92,
95,9 | 92,94, 94,96,
7, 96,98, 98,101,
100, | 101,103, 103,
105, | 104,106, 104,106,
108, | 109,111, 109,111,
112, | 113,115, 113,115,
117, | 116,118, 116,118,
120, | 121,123, 121,123,
125 | 124,126 124,
126
<102,1 | 0,64 | 32, 8, Re | 8,16,24
02,102, 96 16, ma | 40,48,
102,10 24, ini | 56,72,
2,102,1 40, ng | 80,89,
02> 48, 104,112,
56, Sta | 120
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72,
80,
89,
104,
112,
120

tes

Tablel: LNGCAforn=7

4.1. Result in support of Property-3
The following experimental results given Table-2 show that for any (level-1) state
and any (level-2) stat@, a O B O {x : x is a level-2 state}.

Rule-set

a

Level-2

aOLevel-2

<90,0,90,0,9(0>

2

1,3,4,5,6,7,9,11,12,13,14,15,16
18,19,20,21,22,23,24,25,26,27,2
29,30,31,33,35,36,37,38,39,41,4
44,45,46,47,48,49,50,51,52,53,54
55,56,57,58,59,60,61,62,63

3,1,6,7,4,5,11,9,14,15,12,
818,19,16,17,22,23,20,21,26
327,24,25,30,31,28,29,35,33
138,39,36,37,43,41,46,47,44

45,50,51,48,49,54,55,52,53

58,59,56,57,62,63,60,61

<90,0,90,0,9(0>

1,3,4,5,6,7,9,11,12,13,14,15,16
18,19,20,21,22,23,24,25,26,27,2
29,30,31,33,35,36,37,38,39,41,4
44,45,46,47,48,49,50,51,52,53,54
55,56,57,58,59,60,61,62,63

9,11,12,13,14,15,1,3,4,5,¢
824,25,26,27,28,29,30,31,16
317,18,19,20,21,22,23,41,43
144,45,46,47,33,35,36,37,38

39,56,57,58,59,60,61,62,63

48,49,50,51,52,53,54,55

<90,0,90,0,90,>

1C

1,3,4,5,6,7,9,11,12,13,14,15,16
18,19,20,21,22,23,24,25,26,27,2
29,30,31,33,35,36,37,38,39,41,4
44,45,46,47,48,49,50,51,52,53,54
55,56,57,58,59,60,61,62,63

11,9,14,15,12,13,3,1,6,7,4
826,27,24,25,30,31,28,29,18§
319,16,17,22,23,20,21,43,41]
146,47,44,45,35,33,38,39,36

37,58,59,56,57,62,63,60,61

50,51,48,49,54,55,52,53

<90,0,90,0,90,>

32

1,3,4,5,6,7,9,11,12,13,14,15,16
18,19,20,21,22,23,24,25,26,27,2
29,30,31,33,35,36,37,38,39,41,4
44,45,46,47,48,49,50,51,52,53,54
55,56,57,58,59,60,61,62,63

33,35,36,37,38,39,41,43,
845,46,47,48,49,50,51,52,53
354,55,56,57,58,59,60,61,62
163,1,3,4,5,6,7,9,11,12,13,14

15,16,17,18,19,20,21,22,23

24,25,26,27,28,29,30,31

e

Table 2: Experimental resultsin support of Property-3. (Level -1) statesarea 0O {2,

8, 10, 32}.

5. Conclusion

Some new properties of a class of Linear Non-GrQgtlular Automata have been
reported and the results have been verified in coengexperimentation. The properties
should have some applications to any field in tippliaation spectrum of Cellular
Automata. Research is still going on to improveseng CA models, combine CA
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systems with other mathematical and conceptual mpded better understand the
implications and nature of CA in general.
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