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Abstract. In this paper, we introduced Samarandache-2-agebstructure of soft
neutrosophic near-ring namely Smarandache-softrasmphic near-ring. A Samaran-
dache-2-algebraic structure on a set N means a algakraic structure;n N such that
there exist a proper subset M of N, which is embdddith a stronger algebraic structure
S,, stronger algebraic structure means satisfyingenagioms, that is;S<< S,, by proper
subset one can understand a subset different ffaempty set, from the unit element if
any, from the whole set. We define Smarandachersaftrosophic near-ring and obtain
the some of its characterization through soft rematphic quasi-ideals.

Keywords: Soft Neutrosophic Near-ring,Soft Neutrosophic Négld, Smarandache -
Soft Neutrosophic near- ring, Soft neutrosophic ideals

AMS Mathematics Subject Classification (2010): 46C20, 15A09

1.Introduction
In order that, new notions are introduced in algetar better study the congruence in
number theory by Florentin Smarandache [2]. By gprasubset> of a set A we consider
a set P included in A, and different from A, diffat from empty set, and from the unit
element in A-if any they rank the algebraic stroesuwising an order relationship:
They say that the algebraic structures$ Sif: both are defined on the same set; all S
laws are also Saws; all axioms of an;3aw are accomplished by the corresponding S
law; S law accomplish strictly more axioms thatl&ws, or $has more laws than S
For example: Semi group<< Monoid <<group<< ringekfi or Semi group<< to
commutative semi group, ring<< unitary ring etceyldefine a general special structure
to be a structure SM on a set A, different frontracture SN, such that a proper subset of
Ais a structure, where SM << SN. In additior, ave published [9,10,11,12].

For basic concept of near-ring we refer tlz, Hor quasi-ideals we refer Lwao
Yakabe and for soft neutrosophic algebraic stmectue refer to Muhammed Shabir,
Mumtaz Ali, Munazza Naz, and Florentin Smarandache.
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2. Preliminaries
Definition 2.1. Let (N UI) be a neutrosophic near-ring al, A) be a soft set over

(N UI).Then (F,A) is called soft neutrosophic near-ring if and oillyF(a) is a
neutrosophic sub near-ring & UI) for alla € A.

Definition 2.2. A soft neutrosophic near-ring we mean a non-eraptyF,A) in which an
addition + and multiplication are defined such that

(@) ((F,A),+) is a soft neutrosophic group

(b) ((F,A),*) is a soft neutrosophic semigroup

(€) (F(m) + F(rp))F(n) = F(n)F(n) + F(n)F(n) where F(n),F@,F(ry) in (F.A).
In dealing with general soft neutrosophic nearsitige neutral element of ((F,A),+) will
be denoted by F(0).

Definition 2.3. Let K(I) = (KUI) be a neutrosophic near-field and (€t A) be a soft
set overK(I). Then(F, A) is said to be soft neutrosophic near-field if @andy if F(a) is
a neutrosophic sub near-field 6{I) for alla € A.

Definition 2.4. Let (F,A) be a soft neutrosophic near-ring o{féru I').we say that (F,A)
is soft neutrosophic zero-symmertic if F(n)F(0) @For every element F(n) of (F,A).

Definition 2.5. An element F(d) of soft neutrosophic near-ring (Foker (N UI) is
called soft neutrosophic distributive if F(d)(E(# F(rp)) = F(d)F(n) + F(d)F(n) for all
elements F(p),F(np) of (F,A).

Definition 2.6. Let (H,A) and (G,B) be two non —empty soft neutgpdso subsets of
(F,A).We shall define two types of products:
(HA)G,B) = { H(&)G(b) / H(a) in (H,A), G(h) in (G,B) } and
(H.A)+(G,B) = { ¥ H(a) (H(@) + G(h)) — H(@H(a") / H(a).H(@) in (H,A) , G(h) in
(G,B) }where denotes all possible additions of finite terms tHe case when (G,B)
consists of single element G(b) , we denote (H,ABi®y (H,A)G(b) , and so on.

Definition 2.7. A soft neutrosophic subgroup (H,A) of ((F,A),49 called an (F,A)-
subgroup of (F,A) if (F,A)(H,Ax (H,A) .For instance, (F,A)F(a) is an (F,A)-subgoou
of (F,A) for every element F(a) in (F,A).

Definition 2.8. Let (F,A) be the soft neutrosophic near-ring o¥aru I).The set
(F,A = { F(n) in (F,A) / F(n)F(0) = F(0)} is called thesoft neutrosophic zero
symmetric part of (F,A) ;
(F,A), = {F(n) in (F,A) / F(n)F(0) = F(n)} is called theoft neutrosophic constant part of
(F,A).

Now we have introduced our basic concept,ledalSmarandache—soft
neutrosophic—near ring.
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Characterization of Smarandache-Soft NeutrosopkarfRing by Soft Neutrosophic
Quasi-ldeals

Definition 2.9 A Soft neutrosophic—near ring is said to be Smaaehe-soft
neutrosophic—near ring, if a proper subset of iaisoft neutrosophic—near field with
respect to the same induced operations.
Definition 2.10. A soft neutrosophic subgroup {JA) of ((F,A),+) is called a soft
neutrosophic quasi-ideal of (F,A), if {lA) (F,A) n (F,A) (Lo,A) N (F,A) * (Lo,A) ©
(Lo,A).
For instance, every (F,A)-sugroup of (F,A) and Bd)) with a distributive element F(d)
of (F,A) are soft neutrophic quasi-ideals of (F,A).
Clearly {F(0)} and (F,A) are soft neutrosopfijoasi-ideals of (F,A). If (F,A) has no
soft neutrosophic quasi-ideals except {F(0)} anghjFwe say that (F,A) is4- simple.
We recall the following properties of soft t@sophic quasi-ideals:
(a) The intersection of any set of soft neutrosophiasifideals of (F,A) is a soft
neutrosophic quasi-ideal of (F,A).
(b) Suppose that (F,A) is soft neutrosophic zero-symme&hen a soft neutrosophic
subgroup (k,A) of ((F,A),+) is a soft neutrosophic quasi-idesdl (F,A) if and
only if (Lo,A)(F,A) N (F,A) (Lo,A) € (Lo,A).

3. Characterization of Smarandache - soft neutrosdpc near-ring:
A soft neutrosophic near ring (F,A) ov¥ U I) is called a soft neutrosophic near-field ,
if its non-zero elements form a group with respgedhe multiplication defined in (F,A).
As usual, in this section, we will exclude thosé& seutrosophic near-fields which are
isomorphic to this soft neutrosophic near-field&ery soft neutrosophic near-field is
zero-symmetric and d=simple.

In this section we are going to characterizes¢hzero-symmetric soft neutrosophic
near-rings which are soft neutrosophic near-fielde.start with the following lemma.

Lemma 3.1.Let F(n) be a right cancellable element of a smdaiahe — soft neutrosophic
near-ring (F,A) ovefN U I) contained in the (F,A) — subgroup (F,A)F(n), tiEMA) has
a right identity element F(e) such that F(n) = F(g) = F(n)F(e). In particular, if F(n) is
a cancellable element of (F,A) contained in (F,A)F(then (F,A) has a two —sided
identity element.

Proof: Since F(n) is contained in (F,A)F(n),there exigtsetement F(e) in (F,A) such
that F(e)F(n) = F(n). Then FX)F(e)F(n) = F(X)F(fQr every element F(x) of
(F,A),whence F(X)F(e) = F(x), that is F(e) is righntity element of (F,A) such that F(n)
= F(e)F(n) = F(n)F(e).

If F(n) is a cancellable element contained inAfF(n), then the equations F(n) =
F(e)F(n) = F(n)F(e) imply that F(x)F(e) = F(x) arte)F(x) = F(x) for every element F(x)
in (F,A).

Now we characterize those soft neutrosophic sgnometric near-rings which are soft
neutrosophic near-fields.

Theorem 3.1.Let (F,A) be a smarandache - soft neutrosophic-riegrover (N U I)

which is soft neutrosophoic zero-symmetric with extiran one element. Then (H,A) is a
soft neutrosophic near-field if and only if (H,Axd cancellable and distributive element
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contained in a minimal soft neutrosophic quasaide (F,A),where (H,A) is a proper
subset of (F,A),which is soft neutrosophic nealdfie

Proof: Assume that (H,A) is soft neutrosophic near-fiditien (H,A) is a minimal soft
neutrosophic quasi-ideal of (F,A) and (H,A) hasva-sided identity element which is
cancellable and distributive.

Conversely, assume that the soft neutrosophia-gmmetric near-ring (H,A) has a
cancellable and distributive element H(n) contdime a minimal soft neutrosophic
quasi-ideal (k,A) of (F,A).Then H(n) (H,A)n (H,A) H(n) is a soft neutrosophic quasi-
ideal of (H,A) and it contains the non-zero elenméqt)’.

Moreover H(n) (H,A)n (H,A) H(n) c (Lo,A)(H,A) n (H,A) (La,A)  (Lg,A).
Hence we have d,A) = H(n)(H,A) n (H,A)H(n). Therefore (k,A) < (H,A)H(n).
So, by Lemma, (H,A) has a two-sided identity eletid(e).

On the other hand, H&M,A) N (H,A)H(n)? is also soft neutrosophic quasi-ideal of
(H,A), since H(nj is distributive. Moreover, it contains the nonaetement H(fand is
contained in the minimal soft neutrosophic quasaidLo,A). Hence we have ¢.A) =
H(n)’(H,A) n (H,A)H(n)%. Thus H(n) in (l,A) © (H,A)H(nY® and H(n) = H(e)H(n) =
H(x)H(n)? for some H(x) of (H,A). Therefore H(e) = H(x)H(im) (H,A)H(n). Dually we
obtain that H(e) in H(n)(H,A). So H(e) in H(n)(H,A) (H,A)H(n) = (Lo,A), whence
(H,A) = H(e)(H,A) n (H,A)H(e) c (Lo,A) ,that is, (H,A) = (lg,A) . This relation and the
minimality of (Lo,A) imply that (H,A) is lg— simple. So (H,A) is a soft neutrosophic
near-field.

Theorem 3.2.Let (F,A) be a smarandache - soft neutrosophic-riegrover (N U I)
which is soft neutrosophoic zero-symmetric with endhan one element.Then the
followings are equivalent :
0] (H,A) is a soft neutrosophic near-field;
(i) (H,A) has a cancellable element contained in ammahisoft neutrosophic (H,A)
— subgroup ofs 4 (H,A);
(i) (H,A) has a cacellable element contained in a mahisoft neutrosophic quasi-
ideal of (H,A), Where (H,A) is a soft neutrosophigar-field.
Proof: The implications (i} (ii) and (i) = (iii) are equivalent.
(i) = ()

Assume H(n) to be a cancellable elementadoed in a minimal soft neutrosophic
(H,A) — subgroup (HA) of 4(H,A). Then (H,A)H(n) is an (H,A) — subgroup of
wa(H,A) containing the non-zero element H(and (H,A)H(n)c (H,A)(H,A)
(Hy,A). So (H,A)H(n) = (H,A) by the minimality of (H,A) and (H,A) has a two-sided
identity element H(e) by the lemma.

On the other hand, (H,A)H{n)s an soft neutrosophic (H,A) — subgroup of
w.4(H,A) containing the non-zero element H(apd (H,A)H(n§ < (H,A)H(n) = (Hy,A).
So (H,AH(n¥ = (H,A) by the minimality of (H,A). This implies H(n) in (HA) =
(H,A)H(n)% Thus H(e)H(n) = H(n) = H(x)H(A¥or some H(x) of (H,A).

Therefore H(e) = H(x)H(n) in (H,A)H(n) = (5R) , that is (H,A) = (H,A). This relation
and the minimality of (HA) imply that 4 (H,A) is (H,A) — simple. So (H,A) is a soft
neutrosophic near-field.

(iii) = (i)
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Assume H(n) to be cancellable element éoethin a minimal soft neutrosophic
quasi-ideal (lg,A) of (H,A). Then (H,A)H(n) is a soft neutrophiaasi-ideal of (H,A)
containing a non-zero element H{rand H(nj in (Lo,A).

So (Lg,A) N (H,A)H(n) is a non-zero soft neutrosophic quasaidef (H,A) contained
in the minimal soft neutrosophic quasi-idealg@®), whence (kA) = (Lg,A) N
(H,A)H(n). Thus H(n) in (kA) < (H,A)H(M) and (H,A) has a two-sided identity
element H(e) by lemma.

On the other hand, (H,A)H{n)s also a soft neutrosophic quasi-ideal of (H,A)
containing a non-zero element H{r$imilarly to the above consideration we obtain

H() in (Lo,A) © (H,A)H(n)®> and H(e)H(n) = H(n) = H(x)H(R)for some H(x) of
(H,A).

Therefore H(e) = H(X)H(n) and H(e) = H(n)H(x) besauH(e) is a two-sided identity
element and H(n) is cancellable. Thus H(e) = H®)E H(X)H(n) in (Lg,A)(H,A) N

(H,A) (Lg,A) © (Lo,A), that is (lg,A) = (H,A). This relation and the minimality of

(Lo,A) imply that (H,A) is lg— simple. So (H,A) is a soft neutrosophic neardfiel

Proposition 3.1.Let (F,A) be a smarandache - soft neutrosophic-riegiN U I) is Lg
- simple, then either (F,A) is soft neutrosophimzeymmetric or (F,A) is constant.
Proof. Since the soft neutrosophic zero-symmetric pard)f,of (F,A) is a soft
neutrosophic quasi-ideal of (F,A), either (R&)(F,A) or (F,A) = {F(0)}, that is, either
(F,A) is soft neutrosophic zero-symmetric or (Fig\fonstant.

Theorem 3.3.Let (F,A) be a smarandache-soft neutrosophic riegraver(N U I) with
more than one element .Then the following condgtiare equivalent:

0] (H,A) is a soft neutrosophic near-field;

(i) (H,A) is Lo — simple and (H,A) has a left identity;

(i) (H,A) is Lo — simple , H(d)} {H(0)} and for each non-zero element H(n) of

(H,A) there exists an element H)rof (H,A) such that H()H(n) = H(0), where
(H,A) is a proper subset of (H,A).

Proof:

(i)=(ii)

Clearly (H,A) has a left identity and (H,A) is safeutrosophic zero-symmetric. Let
(Lo,A) be a soft neutrosophic quasi-ideal of (H,A) dmg(a) a non-zero element of
(Lo,A), then (HA) = Ly(a)(H,A) = (H,A) Ly(a). Hence (H,A) = k(a)(H,A) n (H,A)
Lo(a) € (Lo,A)(H,A) N (H,A) (Lo,A) € (Lo,A), whence (k,A) = (H,A)

(i) = (i)

If (H,A) has a left identity H(e), then H(e) is naero and distributive . Hence H(d&)
{H(0)} and H(e)H(n) = H(n)= H(O) for every non-zero element H(n) of (H,A).

(i) =(i)

H(d) = {H(0)} implies that (H,A) is not constant. Hence ,&J is soft neutrosophic zero-
symmetric by proposition 3.1. Moreover, let H(n) &@on-zero element of (H,A), then
(H,A)H(n) is a soft neutrosophic quasi-ideal of AHand H(n)H(n) in (H,A)H(n), where
H(n,) is an element of (H,A) such that H(H(n) = H(0). Hence (H,A)H(n) = (H,A).
Therefore, (H,A) is a soft neutrosophic near-field.
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