Annals of Pure and Applied Mathematics Vol. 11, No. 1, 2016, 115-122 ISSN: 2279-087X (P), 2279-0888(online) Published on 12 February 2016 www.researchmathsci.org

Connectedness in soft Čech Closure Spaces

R. Gowri¹ and G. Jegadeesan²

 ¹Department of Mathematics, Govt. College for Women's (A) Kumbakonam - 612 001, India. Email: <u>gowrigck@rediffmail.com</u>
²Department of Mathematics, Anjalai Ammal Mahalingam College Kovilvenni - 614 403 India. Email: jega0548@yahoo.co.in

Received 8 January 2016; accepted 28 January 2016

Abstract. The aim of the present paper is to study the concept of connectedness in Čech closure spaces through the parameterization tool which is introduced by Molodtsov.

Keywords: soft separated sets, soft connectedness, soft feebly disconnectedness, local soft connectedness.

AMS Mathematics Subject Classification (2010): 54A05, 54B05

1. Introduction

E.Čech [1] introduced the concept of closure spaces and developed some properties of connected spaces in closure spaces. According to him, a subset A of a closure space X is said to be connected in X is said to be connected in X if A is not the union of two non-empty Semi-Separated Subsets of X.

Plastria studied [2] connectedness and local connectedness of simple extensions.

Rao and Gowri [3] studied pairwise connectedness in biČech closure spaces.

Gowri and Jegadeesan [7] studied the concept of connectedness in fuzzy Čech closure spaces.

In 1999, Molodtsov [4] introduced the notion of soft set to deal with problems of incomplete information. Later, he applied this theory to several directions [5] and [6].

In this paper, through the parameterization tool of Molodtsov [4], we introduced and exhibit some results of connectedness in Čech closure spaces.

2. Preliminaries

In this section, we recall the basic definitions of soft Čech closure space.

Definition 2.1[8]. Let X be an initial universe set, A be a set of parameters. Then the function $k: P(X_{F_A}) \to P(X_{F_A})$ defined from a soft power set $P(X_{F_A})$ to itself over X is called Čech Closure operator if it satisfies the following axioms: (C1) $k(\phi_A) = \phi_A$.

(C2)
$$F_{\Lambda} \subseteq k(F_{\Lambda})$$

(C3) $k(F_A \cup G_A) = k(F_A) \cup k(G_A)$

Then (X, k, A) or (F_A, k) is called a soft Čech closure space.

Definition 2.2[8]. A soft subset U_A of a soft Čech closure space (F_A, k) is said to be soft *k*-closed (soft closed) if $k(U_A) = U_A$.

Definition 2.3[8]. A soft subset U_A of a soft Čech closure space (F_A, k) is said to be soft *k*-open (soft open) if $k(U_A^{\ C}) = U_A^{\ C}$.

Definition 2.4[8]. A soft set $Int(U_A)$ with respect to the closure operator k is defined as $Int(U_A) = F_A - k(F_A - U_A) = [k(U_A^{\ C})]^{\ C}$. Here $U_A^{\ C} = F_A - U_A$.

Definition 2.5[8]. A soft subset U_A in a soft Čech closure space (F_A, k) is called Soft neighbourhood of e_F if $e_F \in Int(U_A)$.

Definition 2.6[8]. If (F_A, k) be a soft Čech closure space, then the associate soft topology on F_A is $\tau = \{U_A^{\ C}: k(U_A) = U_A\}$.

Definition 2.7[8]. Let (F_A, k) be a soft Čech closure space. A soft Čech closure space (G_A, k^*) is called a soft subspace of (F_A, k) if $G_A \subseteq F_A$ and $k^*(U_A) = k(U_A) \cap G_A$, for each soft subset $U_A \subseteq G_A$.

Definition 2.8[8]. Let (F_A, k) and (G_B, k^*) be two Soft Čech Closure spaces over X and Y respectively. For $x \in X$ and $e: A \to B$, a map $f: (F_A, k) \to (G_B, k^*)$ is said to be soft e-continuous if $\Phi_{fe}(k(F, A)) \subseteq k^* \Phi_{fe}(F, A)$, for every soft subset $(F, A) \subseteq SS(X, A)$.

On the other hand a map $f: (F_A, k) \to (G_B, k^*)$ is said to be soft e-continuous if and only if $k\Phi_{fe}^{-1}(G,B) \subseteq \Phi_{fe}^{-1}(k^*(G,B))$, for every soft subset $(G,B) \subseteq SS(Y,B)$. Clearly, if $f: (F_A, k) \to (G_B, k^*)$ is said to be soft e-continuous then $\Phi_{fe}^{-1}(U_B)$ is a soft closed subset of (F_A, k) for every soft closed subset U_B of (G_B, k^*) .

3. Connectedness in soft Čech closure space

In this section, we introduce soft separated sets and discuss the connectedness in soft Čech closure space.

Definition 3.1. Two non-empty soft subsets U_A and V_A of a soft Čech closure space (F_A, k) are said to be soft separated if and only if $U_A \cap k[V_A] = \emptyset_A$ and $k[U_A] \cap V_A = \emptyset_A$.

Remark 3.2. In other words, two non-empty U_A and V_A of a soft Čech closure space (F_A, k) are said to be soft separated iff $(U_A \cap k[V_A]) \cup (k[U_A] \cap V_A) = \emptyset_A$.

Theorem 3.3. In a soft Čech closure space (F_A, k) , every soft subsets of soft separated sets are also soft separated.

Proof. Let (F_A, k) be a soft Čech closure space. Let U_A and V_A are soft separated sets and $G_A \subset U_A$ and $H_A \subset V_A$. Therefore, $U_A \cap k[V_A] = \emptyset_A$ and $k[U_A] \cap V_A = \emptyset_A \dots \dots \dots (1)$ Since, $G_A \subset U_A \Rightarrow k[G_A] \subset k[U_A] \Rightarrow k[G_A] \cap H_A \subset k[U_A] \cap H_A$ Connectedness in Soft Čech Closure Spaces

$$\Rightarrow k[G_A] \cap H_A \subset k[U_A] \cap V_A \Rightarrow k[G_A] \cap H_A \subset \emptyset_A \dots \dots \text{ by } (1) \Rightarrow k[G_A] \cap H_A = \emptyset_A. Since, H_A \subset V_A \Rightarrow k[H_A] \subset k[V_A] \Rightarrow k[H_A] \cap G_A \subset k[V_A] \cap G_A \Rightarrow k[H_A] \cap G_A \subset k[V_A] \cap U_A \Rightarrow k[H_A] \cap G_A \subset \emptyset_A \dots \dots \text{ by } (1) \Rightarrow k[H_A] \cap G_A = \emptyset_A.$$

Hence, U_A and V_A are also soft separated.

Theorem 3.4. Let (G_A, k^*) be a subspace of a soft Čech closure space (F_A, k) and *let* U_A , $V_A \subset G_A$, then U_A and V_A are soft separated in F_A if and only if U_A and V_A are soft separated in G_A .

Proof. Let (F_A, k) be a soft Čech closure space and (G_A, k^*) be a subspace of (F_A, k) . Let $U_A, V_A \subset G_A$. Assume that, U_A and V_A are soft separated in F_A implies that $U_A \cap k[V_A] = \emptyset_A$ and $k[U_A] \cap V_A = \emptyset_A$. That is, $(U_A \cap k[V_A]) \cup (k[U_A] \cap V_A) = \emptyset_A$. Now, $(U_A \cap k^*[V_A]) \cup (k^*[U_A] \cap V_A) = (U_A \cap (k[V_A] \cap G_A)) \cup ((k[U_A] \cap G_A) \cap V_A)$ $= (U_A \cap G_A \cap k[V_A]) \cup (k[U_A] \cap G_A \cap V_A)$ $= (U_A \cap k[V_A]) \cup (k[U_A] \cap V_A)$

Therefore, U_A and V_A are soft separated in F_A if and only if U_A and V_A are soft separated in G_A .

Definition 3.5. A soft Čech closure space (F_A, k) is said to be disconnected if it can be written as two disjoint non-empty soft subsets U_A and V_A such that $k[U_A] \cap k[V_A] = \emptyset_A$ and $k[U_A] \cup k[V_A] = F_A$.

Definition 3.6. A soft Čech closure space (F_A, k) is said to be connected if it is not disconnected.

Example 3.7. Let the initial universe set $X = \{u_1, u_2\}$ and $E = \{x_1, x_2, x_3\}$ be the parameters. Let $A = \{x_1, x_2\} \subseteq E$ and $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$. Then $P(X_{F_A})$ are, $F_{1A} = \{(x_1, \{u_1\})\}, F_{2A} = \{(x_1, \{u_2\})\}, F_{3A} = \{(x_1, \{u_1, u_2\})\}, F_{4A} = \{(x_2, \{u_1\})\}, F_{5A} = \{(x_2, \{u_2\})\}, F_{6A} = \{(x_2, \{u_1, u_2\})\}, F_{7A} = \{(x_1, \{u_1\}), (x_2, \{u_1\})\}, F_{5A} = \{(x_1, \{u_1\}), (x_2, \{u_2\})\}, F_{9A} = \{(x_1, \{u_2\}), (x_2, \{u_1\})\}, F_{10A} = \{(x_1, \{u_2\}), (x_2, \{u_2\})\}, F_{11A} = \{(x_1, \{u_1\}), (x_2, \{u_1, u_2\})\}, F_{12A} = \{(x_1, \{u_2\}), (x_2, \{u_2\})\}, F_{13A} = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1\})\}, F_{14A} = \{(x_1, \{u_1, u_2\}), (x_2, \{u_2\})\}, F_{15A} = F_A, F_{16A} = \emptyset_A.$ An operator $k: P(X_{F_A}) \rightarrow P(X_{F_A})$ is defined from soft power set $P(X_{F_A})$ to itself over X as follows. $k(F_{1A}) = k(F_{2A}) = k(F_{3A}) = F_{3A}, k(F_{4A}) = k(F_{6A}) = F_{6A}, k(F_{5A}) = F_{5A}, k(F_{8A}) = k(F_{10A}) = k(F_{14A}) = F_{14A}, k(F_{7A}) = k(F_{9A}) = k(F_{11A}) = k(F_{12A}) = k(F_{13A}) = k(F_A) = F_A, k(\emptyset_A) = \emptyset_A.$ Taking, $U_A = F_{1A}$ and $V_A = F_{4A}$, $k[U_A] \cap k[V_A] = \emptyset_A$ and $k[U_A] \cup k[V_A] = F_A.$ Therefore, the soft Čech closure space(F_A, k) is disconnected.

Example 3.8. Let us consider the soft subsets of F_A that are given in *example 3.7.* An operator $k: P(X_{F_A}) \to P(X_{F_A})$ is defined from soft power set $P(X_{F_A})$ to itself over X as follows.

 $k(F_{1A}) = k(F_{7A}) = k(F_{8A}) = k(F_{11A}) = F_{11A}, k(F_{4A}) = k(F_{5A}) = k(F_{6A}) = F_{6A},$ $k(F_{2A}) = F_{10A}, k(F_{9A}) = k(F_{10A}) = k(F_{12A}) = F_{12A},$ $k(F_{3A}) = k(F_{13A}) = k(F_{14A}) = k(F_A) = F_A, k(\emptyset_A) = \emptyset_A.$ Here, the soft Čech closure space (F_A, k) is connected.

Remark 3.9. The following example shows that connectedness in soft Čech closure space does not preserves hereditary property.

Example 3.10. In *example 3.8.*, the soft Čech closure space (F_A, k) is connected. Consider (G_A, k^*) be the subspace of (F_A, k) such that $G_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1\})\}$. Taking, $U_A = \{(x_1, \{u_1\})\}$ and $V_A = \{(x_1, \{u_2\})\}$, $k^*[U_A] \cap k^*[V_A] = \emptyset_A$ and $k^*[U_A] \cup k^*[V_A] = G_A$. Therefore, the Soft Čech closure subspace (G_A, k^*) is disconnected.

Theorem 3.11. Connectedness in soft topological space (F_A , τ) need not imply that the soft Čech closure space (F_A , k) is connected.

Proof. Let us consider the soft subsets of F_A that are given in *example 3.7.* An operator $k: P(X_{F_A}) \rightarrow P(X_{F_A})$ is defined from soft power set $P(X_{F_A})$ to itself over X as follows. $k(F_{1A}) = F_{1A}, k(F_{2A}) = F_{12A}, k(F_{4A}) = F_{4A}, k(F_{5A}) = F_{14A}, k(F_{7A}) = F_{7A},$ $k(F_{3A}) = k(F_{6A}) = k(F_{10A}) = k(F_{11A}) = k(F_{12A}) = k(F_{13A}) = k(F_{14A}) = k(F_A) =$ $= F_A, k(F_{8A}) = F_{14A}, k(F_{9A}) = F_{12A}, k(\emptyset_A) = \emptyset_A.$

Here, the two disjoint non empty soft subsets $U_A = F_{1A}$ and $V_A = F_{2A}$ satisfies $k[U_A] \cap k[V_A] = \emptyset_A$ and $k[U_A] \cup k[V_A] = F_A$. Therefore, the soft Čech closure space (F_A, k) is disconnected. But, it's associated soft topological space (F_A, τ) , the only non empty soft open and soft closed subset is F_A . Hence, (F_A, τ) is connected.

Theorem 3.12. If soft Cech closure space is disconnected such that $F_A = k[U_A]/k[V_A]$ and let G_A be a connected soft subset of F_A then G_A need not to be holds the following conditions $(i)G_A \subseteq k[U_A]$ $(ii)G_A \subseteq k[V_A]$

Proof. Let us consider the soft subsets of F_A that are given in *example 3.7*. An operator $k: P(X_{F_A}) \to P(X_{F_A})$ is defined from soft power set $P(X_{F_A})$ to itself over X as follows.

 $k(F_{1A}) = k(F_{2A}) = k(F_{3A}) = F_{3A}, k(F_{4A}) = k(F_{6A}) = F_{6A}, k(F_{5A}) = F_{5A}, k(\emptyset_A) = \emptyset_A,$ $k(F_{8A}) = k(F_{10A}) = k(F_{14A}) = F_{14A}, k(F_{7A}) = k(F_{9A}) = k(F_{11A}) = k(F_{12A}) =$ $k(F_{13A}) = k(F_A) = F_A.$ Taking, $U_A = F_{3A}$ and $V_A = F_{4A}$ then we get, $F_A = k[U_A]/k[V_A].$ Here, the soft Čech closure space (F_A, k) is disconnected. Let $G_A = F_{7A}$ be the connected

soft subset of F_A . Clearly, G_A does not lie entirely within either $k[U_A]$ or $k[V_A]$.

Theorem 3.13. If the soft topological space (F_A, τ) is disconnected then the soft Čech closure space (F_A, k) is also disconnected.

Connectedness in Soft Čech Closure Spaces

Proof. Let the soft topological space (F_A, τ) is disconnected, implies that it is the union of two disjoint non empty soft subsets U_A and V_A such that $[U_A \cap \tau - cl(V_A)] \cup [\tau - cl(U_A) \cap V_A] = \emptyset_A$. Since, $k[U_A] \subset \tau - cl(U_A)$ for every $U_A \subset F_A$ and $\tau - cl(U_A) \cap \tau - cl(V_A) = \emptyset_A$ then $k[U_A] \cap k[V_A] = \emptyset_A$. Since, $U_A \cup V_A = F_A$, $U_A \subseteq k[U_A]$ and $V_A \subseteq k[V_A]$ implies that $U_A \cup V_A \subseteq k[U_A] \cup k[V_A]$, $F_A \subseteq k[U_A] \cup k[V_A]$. But, $k[U_A] \cup k[V_A] \subseteq F_A$. Therefore, $k[U_A] \cup k[V_A] = F_A$. Hence, (F_A, k) is also disconnected.

Definition 3.14. A soft Čech closure space (F_A, k) is said to be feebly disconnected if it can be written as two disjoint non-empty soft subsets U_A and V_A such that $U_A \cap k[V_A] = \emptyset_A$ and $U_A \cup k[V_A] = F_A$.

Result 3.15. Every disconnected soft Čech closure space (F_A, k) is feebly disconnected but the following example shows that the converse is not true.

Example 3.16. In *example 3.8* Consider, $F_{2A} = \{(x_1, \{u_2\})\}$ and $F_{1A} = \{(x_1, \{u_1\})\}$. Which satisfies the condition $F_{2A} \cap k[F_{1A}] = \emptyset_A$ and $F_{2A} \cup k[F_{1A}] = F_A$. Therefore, the soft Čech closure space (F_A, k) is feebly disconnected. But, the soft Čech closure space (F_A, k) is connected.

Theorem 3.17. Let G_A be a connected subset of the connected soft Čech closure space (F_A, k) , then $(k[G_A], k^*)$ need not be connected.

Proof. The above theorem is proved by the following counter example.

Example 3.18. Let us consider the soft subsets of F_A that are given in *example 3.7*. An operator $k: P(X_{F_A}) \to P(X_{F_A})$ is defined from soft power set $P(X_{F_A})$ to itself over X as follows.

$$\begin{split} &k(F_{1A}) = F_{1A}, k(F_{2A}) = k(F_{3A}) = F_{14A}, k(F_{4A}) = k(F_{7A}) = F_{7A}, k(F_{5A}) = F_{6A}, \\ &k(F_{6A}) = k(F_{8A}) = k(F_{11A}) = F_{11A}, k(\emptyset_A) = \emptyset_A, \\ &k(F_{9A}) = k(F_{10A}) = k(F_{12A}) = k(F_{13A}) = k(F_{14A}) = k(F_A) = F_A. \\ &\text{The soft Čech closure space } (F_A, k) \text{ is connected. Consider the connected soft subset} \\ &G_A = \{(x_1, \{u_1\}), (x_2, \{u_2\})\}. \text{ Then } k[G_A] = \{(x_1, \{u_1\}), (x_2, \{u_1, u_2\})\} \text{ and } P(X_{k[G_A]}) \\ &\text{are } k[G_{1A}] = \{(x_1, \{u_1\})\}, k[G_{2A}] = \{(x_2, \{u_1\})\}, k[G_{3A}] = \{(x_2, \{u_2\})\}, \\ &k[G_{4A}] = \{(x_2, \{u_1, u_2\})\}, k[G_{5A}] = \{(x_1, \{u_1\}), (x_2, \{u_1\})\}, \\ &k[G_{6A}] = \{(x_1, \{u_1\}), (x_2, \{u_2\})\}, k[G_{7A}] = \{(x_1, \{u_1\}), (x_2, \{u_1, u_2\})\} = k[G_A], \\ &k[G_{8A}] = \emptyset_A. \end{split}$$

An operator $k^*: P(X_{k[G_A]}) \to P(X_{k[G_A]})$ is defined from soft power set $P(X_{k[G_A]})$ to itself over X as follows. $k^*(k[G_{1A}]) = k[G_{1A}], k^*(k[G_{2A}]) = k^*(k[G_{5A}]) = k[G_{5A}], k^*(k[G_{3A}]) = k[G_{4A}],$ $k^*(k[G_{4A}]) = k^*(k[G_{6A}]) = k^*(k[G_{7A}]) = k[G_A], k^*(k[G_{8A}]) = \emptyset_A$. Taking, $k[G_{1A}]$ and $k[G_{3A}], k^*[k[G_{1A}]] \cap k^*[k[G_{3A}]] = \emptyset_A$ and $k^*[k[G_{1A}]] \cup k^*[k[G_{3A}]] =$

 $k[G_A]$. Therefore, $(k[G_A], k^*)$ is disconnected.

Definition 3.19. Let (F_A, k) and (G_A, k^*) are two Soft Čech closure spaces over X and Y respectively. For $x \in X$ and $e: A \to B$, a map $f: (F_A, k) \to (G_A, k^*)$ is said to be morphism if $\varphi_{fe}(k(U_A)) \subset k^*(\varphi_{fe}(U_A))$, for every soft subset $U_A \in SS(X, A)$.

Theorem 3.20. The image of a connected soft Čech closure space under morphism need not be connected.

Proof. Let us consider the soft subsets of *F_A* that are given in *example 3.7.* An operator *k*: *P*(*X_{F_A*) → *P*(*X_{F_A*) is defined from soft power set *P*(*X_{F_A*) to itself over X as follows. *k*(*F*_{1A}) = *F*_{1A}, *k*(*F*_{2A}) = *k*(*F*_{9A}) = *F*_{12A}, *k*(*F*_{4A}) = *F*_{4A}, *k*(*F*_{5A}) = *k*(*F*_{8A}) = *F*_{14A}, *k*(*F*_{3A}) = *k*(*F*_{6A}) = *k*(*F*_{10A}) = *k*(*F*_{11A}) = *k*(*F*_{12A}) = *k*(*F*_{13A}) = *k*(*F*_{14A}) = *k*(*F_A*) = *F_A*, *k*(*F_{7A}*) = *F_{7A}*, *k*(Ø_A) = Ø_A. Then, (*F_A*, *k*) is soft Čech closure space. Let the initial universe set *Y* = {*v*₁, *v*₂} and *E* = {*x*₁, *x*₂, *x*₃} be the parameters. Let *B* = {*x*₁, *x*₂} ⊆ *E* and *G_B* = {(*x*₁, {*v*₁, *v*₂}), (*x*₂, {*v*₁, *v*₂)}. Then *P*(*X_{G_B*) are *G*_{1B} = {(*x*₁, {*v*₁})}, *G*_{2B} = {(*x*₁, {*v*₂})}, *G*_{3B} = {(*x*₁, {*v*₁, *v*₂)}, *G*_{4B} = {(*x*₂, {*v*₁)}}, *G*_{5B} = {(*x*₂, {*v*₂})}, *G*_{6B} = {(*x*₂, {*v*₁, *v*₂)}, *G*_{7B} = {(*x*₁, {*v*₁)}, (*x*₂, {*v*₁)}}, *G*_{10B} = {(*x*₁, {*v*₂}), (*x*₂, {*v*₂})}, *G*_{11B} = {(*x*₁, {*v*₁)}, (*x*₂, {*v*₁, *v*₂)}, *G*_{12B} = {(*x*₁, {*v*₂), (*x*₂, {*v*₁, *v*₂)}, *G*_{13B} = {(*x*₁, {*v*₁, *v*₂), (*x*₂, {*v*₁)}}, *G*_{14B} = {(*x*₁, {*v*₁), *v*₂, {*v*₂}), (*x*₂, {*v*₂)}, *G*_{15B} = *G_A*, *G*_{16B} = Ø_A.}}}}

An operator $k^*: P(X_{G_B}) \to P(X_{G_B})$ is defined from soft power set $P(X_{G_B})$ to itself over Y as follows.

 $k^{*}(G_{1B}) = k^{*}(G_{5B}) = G_{8B}, k^{*}(G_{2B}) = G_{3B}, k^{*}(G_{3B}) = k^{*}(G_{9B}) = k^{*}(G_{13B}) = G_{13B}, k^{*}(G_{4B}) = G_{4B}, k^{*}(G_{6B}) = k^{*}(G_{8B}) = k^{*}(G_{11B}) = G_{11B}, k^{*}(G_{7B}) = G_{7B}, k^{*}(G_{10B}) = G_{14B}, k^{*}(G_{12B}) = k^{*}(G_{14B}) = k^{*}(G_{B}) = G_{B}, k^{*}(\emptyset_{B}) = \emptyset_{B}.$ Here, (G_{B}, k^{*}) is the soft Čech closure space.

Let $f: (F_A, k) \to (G_B, k^*)$ and $e: A \to B$ are the map defined in such a way that $f(u_1) = v_2$; $f(u_2) = v_1$ and $e(x_1) = x_2$; $e(x_2) = x_1$. Therefore, $f: (F_A, k) \to (G_B, k^*)$ is morphism. Taking, the connected soft subset $F_{12A} = \{(x_1, \{u_2\}), (x_2, \{u_1, u_2\})\}$, we get the image $G_{13B} = \{(x_1, \{v_1, v_2\}), (x_2, \{v_1\})\}$. But $f(F_{12A}) = G_{13B}$ is disconnected. Therefore, image of a connected soft Cech closure space under morphism need not be connected.

Definition 3.20. Each soft point $(x, u) \in F_A$ belongs to a unique soft component of F_A , called the soft component of (x, u). A soft component E_A of a soft Čech closure space (F_A, k) is a maximal soft connected subset of F_A ; that is, E_A is soft connected and E_A is not a proper soft subset of any soft connected subset of F_A . Clearly, E_A is non-empty. The central facts about the soft components of a space are contained in the following theorem.

Theorem 3.21. Let the soft components of a soft Čech closure space (F_A, k) form a partition of F_A , then every soft connected subset of F_A is contained in some soft component.

Proof. The proof of the theorem shows in the following example.

Connectedness in Soft Čech Closure Spaces

Example 3.22. Let us consider the soft subsets of F_A that are given in *example 3.7*. An operator $k: P(X_{F_A}) \to P(X_{F_A})$ is defined from soft power set $P(X_{F_A})$ to itself over X as follows.

 $k(F_{1A}) = k(F_{5A}) = F_{8A}, k(F_{2A}) = F_{3A}, k(F_{4A}) = F_{4A}, k(F_{7A}) = F_{7A},$ $k(F_{3A}) = k(F_{9A}) = k(F_{13A}) = F_{13A}, k(F_{10A}) = F_{14A}, k(\emptyset_A) = \emptyset_A,$ $k(F_{6A}) = k(F_{8A}) = k(F_{11A}) = F_{11A}, k(F_{12A}) = k(F_{14A}) = k(F_A) = F_A.$ The soft components of F_A are $k(F_{4A})$ and $k(F_{10A})$. Any other soft connected subset of F_A , such as $\{(x_1, \{u_1, u_2\})\}$ is contained in $k(F_{10A})$.

4. Local soft connectedness

In this section, we devoted to study and characterize local soft connectedness in soft Čech closure space.

Definition 4.1. A soft Čech closure space (F_A, k) is said to be locally soft connected at (x, u) if for every soft neighbourhood U_A of (x, u), there is a soft connected neighbourhood V_A of (x, u) contained in U_A . If F_A is locally soft connected at each of its soft points, then F_A is said to be locally soft connected.

Example 4.2. Let us consider the soft subsets of F_A that are given in *example 3.7*. An operator $k: P(X_{F_A}) \to P(X_{F_A})$ is defined from soft power set $P(X_{F_A})$ to itself over X as follows.

 $\begin{aligned} &k(F_{1A}) = F_{1A}, k(F_{2A}) = F_{2A}, k(F_{3A}) = F_{3A}, k(F_{4A}) = F_{4A}, k(F_{5A}) = F_{5A}, k(F_{6A}) = F_{6A}, \\ &k(F_{7A}) = F_{7A}, k(F_{8A}) = F_{8A}, k(F_{9A}) = F_{9A}, k(F_{10A}) = F_{10A}, k(F_{11A}) = F_{11A}, \\ &k(F_{12A}) = F_{12A}, k(F_{13A}) = F_{13A}, k(F_{14A}) = F_{14A}, k(F_{A}) = F_{A}, k(\emptyset_{A}) = \emptyset_{A}. \end{aligned}$

For if $(x, u) \in F_A$, then $\{(x, u)\}$ is a soft open connected set containing (x, u) which is contained in every soft open set containing (x, u). Therefore, (F_A, k) is locally soft connected.

Result 4.3. The following example shows that a locally soft connected Čech closure space (F_A, k) is need not imply soft connectedness.

Example 4.4. In *example 4.2*, the discrete soft Čech closure space (F_A, k) is locally soft connected but not soft connected.

Theorem 4.5. Every soft open subspace of a locally soft connected Čech closure space (F_A, k) is locally soft connected.

Proof. Let (G_A, k^*) be the soft open subspace of a locally soft connected Čech closure space (F_A, k) . Let $(y, u) \in G_A$ be arbitrary, then $(y, u) \in F_A$. Let U_A be a soft k^* -open neighbourhood of (y, u), then U_A be the soft k-open neighbourhood of (y, u) in F_A . Also F_A is locally soft connected. Hence, there exist soft connected soft k-open neighbourhood V_A of (y, u) such that $(y, u) \in V_A \subset U_A$. Consequently, (G_A, k^*) is locally soft connected at (y, u).

Theorem 4.6. A soft Čech closure space (F_A, k) is locally soft connected if and only if the soft components of every soft open subspace of F_A are soft open in F_A .

Proof. Let (G_A, k^*) be a soft open subspace of (F_A, k) . Let $E_A \subset G_A$ be any component of G_A , then E_A is maximal soft connected set in (G_A, k^*) . Since, $G_A \subset F_A$. Then, E_A is also maximal soft connected in (F_A, k) . Let (F_A, k) be locally soft connected. It is enough to show that, E_A is soft open in (F_A, k) . Let $(y, u) \in E_A$ be arbitrary, then $(y, u) \in G_A \subset F_A$ or $(y, u) \in F_A$. Since, (F_A, k) is locally soft connected this implies given any soft *k*-open neighbourhood U_A of (y, u), there exist soft connected soft *k*-open neighbourhood V_A such that $(y, u) \in V_A \subset U_A$. (y, u) $\in E_A$ is maximal soft connected and $(y, u) \in V_A$ is soft connected. This implies, $V_A \subset E_A$. Thus, given any $(y, u) \in E_A$ is soft open in (F_A, k) . Conversely, Let E_A be soft open in (G_A, k^*) , then E_A is soft open in (F_A, k) . Let $(y, u) \in E_A$. Now, $(y, u) \in E_A \subset G_A$, where E_A, G_A are soft *k*-open in (F_A, k) . Also, E_A is soft connected. This implies that (F_A, k) is locally soft connected at (y, u). From this the required result follows.

REFERENCES

- 1. E.Čech, *Topological spaces*, Inter Science Publishers, John Wiley and Sons, New York (1966).
- F.Plastria, Connectedness and local connectedness of simple extensions, *Bull. Soc. Math. Belg.*, 28 (1976) 43-51.
- 3. K.Chandrasekhara Rao and R.Gowri, Pairwise connectedness in biČech closure spaces, *Antartica J.Math.*, 5(1) (2008) 43-50.
- 4. D.A.Molodtsov, Soft set theory- first results, Comput Math. Appl., 37 (1999) 19-31.
- 5. D.A.Molodtsov, The description of a dependence with the help of soft sets, J. *Comput. Sys. Sc. Int*, 40 (2001) 977-984.
- 6. D.A.Molodtsov, The theory of soft sets (in Russian), URSS publishers, Moscow (2004).
- 7. R.Gowri and G.Jegadeesan, Connectedness in fuzzy Čech closure spaces, *Asian. J. Current Engg and Math*, (2) (2013) 326-328.
- 8. R.Gowri and G.Jegadeesan, On soft Čech closure spaces, *Int. J. Math. Trends and Technology*, 9 (2) (2014) 122-127.