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1. Introduction 
E.Čech [1] introduced the concept of closure spaces and developed some properties of 
connected spaces in closure spaces. According to him, a subset A of a closure space X is 
said to be connected in X is said to be connected in X if A is not the union of two non-
empty Semi-Separated Subsets of X. 
     Plastria studied [2] connectedness and local connectedness of simple extensions.  
     Rao and Gowri [3] studied pairwise connectedness in biČech closure spaces. 
     Gowri and Jegadeesan [7] studied the concept of connectedness in fuzzy Čech closure 
spaces. 
 In 1999, Molodtsov [4] introduced the notion of soft set to deal with problems of 
incomplete information. Later, he applied this theory to several directions [5] and [6]. 
 In this paper, through the parameterization tool  of  Molodtsov [4], we introduced 
and exhibit some results of connectedness in Čech closure spaces. 
 
2. Preliminaries 
In this section, we recall the basic definitions of soft Čech closure space. 
 
Definition 2.1[8]. Let X be an initial universe set, A be a set of parameters. Then the 
function �: ������ → ������	defined from a soft power set �(���) to itself over X is 
called Čech Closure operator if it satisfies the following axioms: 
(C1)  �(∅�) = ∅�	. 
(C2) 	��	 ⊆ 	�(��) 
(C3)  �(�� ∪ ��) = �(��) ∪ �(��)  
  
Then (X, �, A) or (��, �) is called a soft Čech closure space. 
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Definition 2.2[8]. A soft subset �� of a soft Čech closure space (��, �) is said to be soft                  
�-closed (soft closed) if �(��) = ��.  
  
Definition 2.3[8]. A soft subset �� of a soft Čech closure space (��, �) is said to be soft               
�-open (soft open) if ����

		�� = ��
		�.   

 
Definition 2.4[8]. A soft set ���(��) with respect to the closure operator � is defined as 

	���(��) = �� − �(�� −��) = �����
		���

�
.		Here 	��

	� = �� −��. 
 
Definition 2.5[8]. A soft subset �� in a soft Čech closure space (��	, �) is called Soft 
neighbourhood of	 � 	!"	 � ∈ ���(��). 
 
Definition 2.6[8]. If  (��	, �) be a soft Čech closure space, then the associate soft 
topology on ��	 is  $ = %��

		�: �(��) = ��&. 
 
Definition 2.7[8]. Let (��	, �) be a soft Čech closure space. A soft Čech closure space 
(��, �∗) is called a soft subspace of (��	, �) if �� 	⊆ F) and �∗(��) = �(��) ∩ ��,	 for 
each soft subset �� ⊆ G). 
 
Definition 2.8[8]. Let (��	, �) and (�, , �∗) be two Soft Čech Closure spaces over X and 
Y respectively. For - ∈ �	.�/	 : 0 → 1, a map ": (��	, �) → (�,, �∗) is said to be soft              
e-continuous if  Φ23��(�, 0)� ⊆ �∗Φ23(�, 0), for every soft subset (�, 0) ⊆ SS(X, A). 
                   On the other hand a map ": (��	, �) → (�,, �∗) is said to be soft e-continuous 
if and only if  �Φ23

56(�, 1) ⊆ Φ23
56(�∗(�, 1)), for every soft subset   (�, 1) ⊆ SS(Y, B). 

Clearly, if ": (��	, �) → (�,, �∗) is said to be soft  e-continuous then Φ23
56(�,) is a soft 

closed subset of (��	, �) for every soft closed subset �, of (�, , �∗).   
 
3. Connectedness in soft Čech closure space  
In this section, we introduce soft separated sets and discuss the connectedness in soft 
Čech closure space.  
 
Definition 3.1. Two non-empty soft subsets U)		and		V) of a soft Čech closure                   
space (F), k) are said to be soft separated if and only if U) ∩ �?V)@ = ∅) and                   
�?U)@ ∩ V) = ∅). 
 
Remark 3.2. In other words, two non-empty U)	and		V) of a soft Čech closure space 
(F), �) are said to be soft separated iff  (U) ∩ �?V)@) ∪	(�?U)@ ∩ V)) = ∅). 
 
Theorem 3.3. In a soft Čech closure space (F), �), every soft subsets of soft separated 
sets are also soft separated. 
Proof. Let (F), �) be a soft Čech closure space. Let U)	and	V) are soft separated sets and 
��	⊂	��	.�/	A�	⊂	B� .Therefore,U) ∩ �?V)@ = ∅) and �?U)@ ∩ V) = ∅)………(1) 
Since, ��	⊂	�� ⇒ �?��@	⊂	�?��@ ⇒ �?��@ ∩ H)⊂	�?��@ ∩ A� 
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                                                      ⇒ �?��@ ∩ H)⊂�?��@ ∩ B� 
                                                      ⇒ �?��@ ∩ H)⊂∅)……by	(1) 
                                                      ⇒ �?��@ ∩ H) =	∅). 
Since, A�	⊂	B� ⇒ �?A�@	⊂	�?B�@ ⇒ �?A�@ ∩ G)⊂�?B�@ ∩ �� 
                                                      ⇒ �?A�@ ∩ G)⊂	�?B�@ ∩ �� 
                                                      ⇒ �?A�@ ∩ G)	⊂	∅)……by	(1) 
                                                      ⇒ �?A�@ ∩ G) =	∅). 
Hence, U)	and	V) are also soft separated. 
 
Theorem 3.4. Let (G), �∗) be a subspace of a soft Čech closure space (F), �) and 
I �	��, V)	⊂	G), then U)	and	V) are soft separated in �� if and only if U)	and	V) are soft 
separated in G). 
Proof. Let (F), �) be a soft Čech closure space and (G), �∗) be a subspace of (F), �).                  
Let U), V)	⊂	G). Assume that, U)	and	V) are soft separated in �� implies that                                
U) ∩ �?V)@ = ∅) and �?U)@ ∩ V) = ∅). That is, (U) ∩ �?V)@) ∪	(�?U)@ ∩ V)) = ∅). 
Now, (U) ∩ �∗?V)@) ∪	(�∗?U)@ ∩ V)) = �U) ∩ (�?V)@ ∩ G))� ∪	�(�?U)@ ∩ G)) ∩ V)� 
                                                                = (U) ∩ G) ∩ �?V)@) ∪ (�?U)@ ∩ G) ∩ V)) 
                                                                = (U) ∩ �?V)@) ∪ 	(�?U)@ ∩ V)) 
                                                                = ∅). 
Therefore, U)	and	V) are soft separated in F) if and only if U)	and	V) are soft separated 
in G). 
 
Definition 3.5. A soft Čech closure space	(F), �) is said to be disconnected if it can be 
written as two disjoint non-empty soft subsets	U)and	V) such that �?U)@ ∩ �?V)@ = ∅) 
and �?U)@ ∪ �?V)@ = F). 
 
Definition 3.6. A soft Čech closure space	(F), �) is said to be connected if it is not 
disconnected. 
 
Example 3.7. Let the initial universe set � = JK6, KLM and N = J-6, -L, -OM                              
be the parameters. Let 0 = J-6, -LM ⊆ Nand		�� = J(-6, JK6, KLM), (-L, JK6, KLM)M.      
Then  ������ are,                   
�6� = J(-6, JK6M)M, �L� = J(-6, JKLM)M, �O� = J(-6, JK6, KLM)M, �P� = J(-L, JK6M)M, 
�Q� = J(-L, JKLM)M, �R� = J(-L, JK6, KLM)M, �S� = J(-6, JK6M), (-L, JK6M)M, 
�T� =	 J(-6, JK6M), (-L, JKLM)M, �U� = J(-6, JKLM), (-L, JK6M)M,	 
�6V� = J(-6, JKLM), (-L, JKLM)M, �66� = J(-6, JK6M), (-L, JK6, KLM)M, 
�6L� = J(-6, JKLM), (-L, JK6, KLM)M, �6O� = J(-6, JK6, KLM), (-L, JK6M)M, 
�6P� = J(-6, JK6, KLM), (-L, JKLM)M, �6Q� = ��, �6R� = ∅�. 
An operator �: �(���) → �(���)is defined from soft power set �(���) to itself over X 
as follows. 
	�(�6�) = �(�L�) = �(�O�) = �O�, �(�P�) = �(�R�) = �R�, �(�Q�) = �Q�,	 
�(�T�) = �(�6V�) = �(�6P�) = �6P�, �(�S�) = �(�U�) = 	�(�66�) = �(�6L�) 
= �(�6O�) = �(��) = ��, 	�(∅�) = ∅�. 
Taking, �� = �6�	.�/	B� = �P� ,	�?��@ ∩ �?B�@ = ∅� and 	�?U)@ ∪ �?V)@ = F). 
Therefore, the soft Čech closure space(��, �) is disconnected. 
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Example 3.8. Let us consider the soft subsets of �� that are given in example 3.7.                         
An operator �: �(���) → �(���)is defined from soft power set �(���) to itself over X 
as follows. 
�(�6�) = �(�S�) = �(�T�) = �(�66�) = �66�, �(�P�) = �(�Q�) = �(�R�) = �R�, 
�(�L�) = �6V�, �(�U�) = �(�6V�) = �(�6L�) = �6L�, 
�(�O�) = �(�6O�) = �(�6P�) = �(��) = ��, 	�(∅�) = ∅�. Here, the soft Čech closure 
space (�), �) is connected. 
  
Remark 3.9. The following example shows  that connectedness in soft Čech closure 
space does not preserves hereditary property. 
 
Example 3.10. In example 3.8., the soft Čech closure space (F), �) is connected. 
Consider  (��, �∗) be the subspace of (��, �) such that	�� = J(-6, JK6, KLM), (-L, JK6M)M. 
Taking, �� = J(-6, JK6M)M	.�/	B� = J(-6, JKLM)M, �∗?��@ ∩ �∗?B�@ = ∅� and          
	�∗?��@ ∪ �∗?B�@ = ��.	Therefore, the Soft Čech closure subspace (G), �∗) is 
disconnected. 
 
Theorem 3.11. Connectedness in soft topological space	(��	, $)	need not imply that the             
soft Čech closure space (��, �) is connected. 
Proof. Let us consider the soft subsets of �� that are given in example 3.7. An operator 
�: ������ → ������	is defined from soft power set �(���) to itself over X as follows. 
�(�6�) = �6�, �(�L�) = �6L�, �(�P�) = �P�, �(�Q�) = �6P�, �(�S�) = �S�,	 
�(�O�) = �(�R�) = �(�6V�) = �(�66�) = �(�6L�) = �(�6O�) = �(�6P�) = �(��) = 
= ��, �(�T�) = �6P�, �(�U�) = �6L�, 	�(∅�) = ∅�. 
Here, the two disjoint non empty soft subsets �� = �6�	.�/	B� = �L�	satisfies                    
�?��@ ∩ �?B�@ = ∅�	and	�?��@ ∪ �?B�@ = ��. Therefore, the soft Čech closure space 
(��, �) is disconnected. But, it’s associated soft topological space (��	, $), the only non 
empty soft open and soft closed subset is	��. Hence, (��	, $) is connected.   
 
Theorem 3.12. If soft Čech closure space is disconnected such that �� = �?��@/�?B�@ 
and let �� be a connected soft subset of �� then �� need not to be holds the following 
conditions (!)��	⊆	�?��@		(!!)��	⊆		�?B�@ 
Proof. Let us consider the soft subsets of �� that are given in example 3.7. An operator 
�: ������ → ������	is defined from soft power set �(���) to itself over X as follows. 
�(�6�) = �(�L�) = �(�O�) = �O�, �(�P�) = �(�R�) = �R�, �(�Q�) = �Q�, 	�(∅�) = ∅�, 
�(�T�) = �(�6V�) = �(�6P�) = �6P�, �(�S�) = �(�U�) = �(�66�) = k(F6L)) =
k(F6O)) = k(F)) = F). Taking, �� = �O�	.�/	B� = �P� then we get, �� = �?��@/�?B�@.  
Here, the soft Čech closure space (F), �) is disconnected. Let �� = �S� be the connected 
soft subset of ��. Clearly, �� does not lie entirely within either �?��@	XY	�?B�@. 
 
Theorem 3.13. If the soft topological space (��	, $) is disconnected then the soft Čech 
closure space (��, �) is also disconnected. 
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Proof. Let the soft topological space (��	, $) is disconnected,  implies that it is the union 
of two disjoint non empty soft subsets U)	and	V) such that                   
?U) ∩ τ− cl(V))@ ∪ ?τ− cl(U)) ∩ V)@ = ∅). Since, �?U)@⊂	τ− \I(U)) for every 
U)⊂	F) and τ− cl(U)) ∩ τ− cl(V)) = ∅)		then		�?U)@ ∩ �?V)@ = ∅)	.	Since, U) ∪
V) = F), U)⊆	�?U)@	and	V)⊆	�?V)@ implies that U) ∪ V)⊆	�?U)@ ∪ �?V)@,
F)⊆	�?U)@ ∪ �?V)@. But, �?U)@ ∪ �?V)@⊆	��	. Therefore, �?U)@ ∪ �?V)@ = F).                
Hence, (F), �) is also disconnected. 
 
Definition 3.14. A soft Čech closure space (F), �) is said to be feebly disconnected if it 
can be written as two disjoint non-empty soft subsets U)and	V) such that                             
�� ∩ �?B�@ = ∅� and �� ∪ �?B�@ = ��. 
 
Result 3.15. Every disconnected soft Čech closure space (��, �) is feebly disconnected 
but the following example shows that the converse is not true. 
 
Example 3.16. In example 3.8 Consider, �L� = J(-6, JKLM)M and �6� = J(-6, JK6M)M. 
Which satisfies the condition �L� ∩ �?�6�@ = ∅� and �L� ∪ �?�6�@ = ��.Therefore, the 
soft Čech closure space (��, �) is feebly disconnected . But, the soft Čech closure space 
(��, �) is connected. 
 
Theorem 3.17.  Let G) be a connected subset of  the connected soft Čech closure space 
(��, �), then (�?��@, �∗) need not be connected. 
Proof.  The above theorem is proved by the following counter example. 
 
Example 3.18. Let us consider the soft subsets of �� that are given in example 3.7.                 
An operator �: �(���) → �(���)is defined from soft power set �(���) to itself over X 
as follows. 
�(�6�) = �6�, �(�L�) = �(�O�) = �6P�, �(�P�) = �(�S�) = �S�, �(�Q�) = �R�, 
�(�R�) = 	�(�T�) = �(�66�) = �66�, 	�(∅�) = ∅�, 
�(�U�) = �(�6V�) = �(�6L�) = �(�6O�) = �(�6P�) = �(��) = ��. 
The soft Čech closure space (�), �) is connected. Consider the connected soft subset 
G) = J(-6, JK6M), (-L, JKLM)M. Then �?G)@ = J(-6, JK6M), (-L, JK6, KLM)M and ���`?ab@� 
are �?G6)@ = J(-6, JK6M)M, �?GL)@ = J(-L, JK6M)M, �?GO)@ = J(-L, JKLM)M, 
�?GP)@ = J(-L, JK6, KLM)M, �?GQ)@ = J(-6, JK6M), (-L, JK6M)M, 
�?GR)@ = J(-6, JK6M), (-L, JKLM)M, �?GS)@ = J(-6, JK6M), (-L, JK6, KLM)M = �?G)@, 
�?GT)@ = ∅�. 
 
An operator �∗: ���`?ab@� → ���`?ab@�is defined from soft power set ���`?ab@� to itself 
over X as follows. 
�∗(�?G6)@) = �?G6)@, , �∗(�?GL)@) = �∗(�?GQ)@) = �?GQ)@, �∗(�?GO)@) = �?GP)@, 
�∗(�?GP)@) = �∗(�?GR)@) = �∗(�?GS)@) = �?G)@, �∗(�?GT)@) = 	∅�.	Taking, 
�?G6)@	.�/	�?GO)@, �∗��?G6)@� ∩ �∗��?GO)@� = ∅)		and �∗?�?G6)@@ ∪ �∗��?GO)@� =
�?G)@. Therefore, (�?G)@, �∗) is disconnected. 
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Definition 3.19. Let (�), �)	.�/	(G), �∗) are two Soft Čech closure spaces over X and Y 
respectively. For - ∈ � and  : 0 → 1, a map ": (�), �) → (G), �∗) is said to be 
morphism if c23(�(��))	⊂	�∗�c23(��)�, for every soft subset �� ∈ dd(�, 0). 
 
Theorem 3.20. The image of a connected soft Čech closure space under morphism need 
not be connected. 
Proof. Let us consider the soft subsets of �� that are given in example 3.7. An operator 
�: �(���) → �(���)is defined from soft power set �(���) to itself over X as follows. 
�(�6�) = �6�, �(�L�) = �(�U�) = �6L�, �(�P�) = �P�, �(�Q�) = �(�T�) = �6P�,	 
�(�O�) = �(�R�) = �(�6V�) = �(�66�) = �(�6L�) = �(�6O�) = �(�6P�) = �(��) =
��, �(�S�) = �S�, 	�(∅�) = ∅�.	Then, (�), �) is soft Čech closure space. 
Let the initial universe set e = Jf6, fLM and N = J-6, -L, -OM be the parameters.                             
Let 1 = J-6, -LM ⊆ Nand �, = J(-6, Jf6, fLM), (-L, Jf6, fLM)M.Then ���gh

� are                
�6, = J(-6, Jf6M)M, �L, = J(-6, JfLM)M, �O, = J(-6, Jf6, fLM)M, �P, = J(-L, Jf6M)M,                               
�Q, = J(-L, JfLM)M, �R, = J(-L, Jf6, fLM)M, �S, = J(-6, Jf6M), (-L, Jf6M)M,	 
�T, =	 J(-6, Jf6M), (-L, JfLM)M, �U, = J(-6, JfLM), (-L, Jf6M)M, 
�6V, = J(-6, JfLM), (-L, JfLM)M, �66, = J(-6, Jf6M), (-L, Jf6, fLM)M, 
�6L, = J(-6, JfLM), (-L, Jf6, fLM)M, �6O, = J(-6, Jf6, fLM), (-L, Jf6M)M, 
�6P, = J(-6, Jf6, fLM), (-L, JfLM)M, �6Q, = ��, �6R, = ∅�. 
 
An operator �∗: ���gh

� → ���gh
�	is defined from soft power set �(�gh

) to itself over Y 
as follows. 
�∗(�6,) = �∗(�Q,) = �T,, �∗(�L,) = �O, , �∗(�O,) = �∗(�U,) = �∗(�6O,) = �6O,, 
�∗(�P,) = �P, , �∗(�R,) = �∗(�T,) = �∗(�66,) = �66,, �∗(�S,) = �S,, 
�∗(�6V,) = 	�6P,, �∗(�6L,) = �∗(�6P,) = �∗(�,) = �, , �∗(∅,) = ∅, . 
Here, (�i, �∗) is the soft Čech closure space. 
Let " ∶ (�), �) → (�i, �∗)	and  : 0 → 1 are the map defined in such a way that              
"(K6) = fL; "(KL) = f6 and  (-6) = -L;	 (-L) = -6. Therefore, " ∶ (�), �) → (�i, �∗) 
is morphism. Taking, the connected soft subset �6L� = J(-6, JKLM), (-L, JK6, KLM)M , we 
get the image �6O, = J(-6, Jf6, fLM), (-L, Jf6M)M. But "(�6L�) = �6O, is disconnected. 
Therefore, image of a connected soft Čech closure space under morphism need not be 
connected. 
 
Definition 3.20. Each soft point (-, K) ∈ 	�� belongs to a unique soft component of ��, 
called the soft component of (-, K). A soft component N� of a soft Čech closure space 
(�), �) is a maximal soft connected subset of �� ; that is, N� is soft connected and N� is 
not a proper soft subset of any soft connected subset of ��. Clearly, N� is non-empty. The 
central facts about the soft components of a space are contained in the following theorem. 
 
Theorem 3.21. Let the soft components of a soft Čech closure space (�), �) form a 
partition of ��, then every soft connected subset of �� is contained in some soft 
component. 
Proof. The proof  of the theorem shows in the following example. 
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Example 3.22. Let us consider the soft subsets of �� that are given in example 3.7. An 
operator �: �(���) → �(���) is defined from soft power set �(���) to itself over X as 
follows. 
�(�6�) = �(�Q�) = �T�, �(�L�) = �O�, �(�P�) = �P�, �(�S�) = �S�, 
�(�O�) = 	�(�U�) = �(�6O�) = �6O�, �(�6V�) = �6P�, 	�(∅�) = ∅�, 
�(�R�) = �(�T�) = �(�66�) = �66�, �(�6L�) = �(�6P�) = �(��) = ��. 
The soft components of �� are �(�P�) and �(�6V�). Any other soft connected subset of 
�� , such as J(-6, JK6, KLM)M is contained in �(�6V�).   
 
4. Local soft connectedness 
In this section, we devoted to study and characterize local soft connectedness in soft Čech 
closure space. 

    
Definition 4.1. A soft Čech closure space (�), �) is said to be locally soft connected at 
(-, K) if for every soft neighbourhood �� of (-, K), there is a soft connected 
neighbourhood B� of (-, K) contained in ��. If �� is locally soft connected at each of its 
soft points, then �� is said to be locally soft connected.     
 
Example 4.2. Let us consider the soft subsets of �� that are given in example 3.7. An 
operator �: �(���) → �(���) is defined from soft power set �(���) to itself over X as 
follows. 
�(�6�) = �6�, �(�L�) = �L�, �(�O�) = �O�, �(�P�) = �P�, �(�Q�) = �Q�, �(�R�) = �R�, 
�(�S�) = �S�, �(�T�) = �T�, �(�U�) = �U�, �(�6V�) = �6V�, �(�66�) = �66�, 
�(�6L�) = �6L�	, �(�6O�) = �6O�, �(�6P�) = �6P�, �(��) = ��, 	�(∅�) = ∅�. 
For if (-, K) ∈ �� , then J(-, K)M is a soft open connected set containing (-, K) which is 
contained in every soft open set containing (-, K). Therefore, (�), �) is locally soft 
connected. 
 
Result 4.3. The following example shows that a locally soft connected Čech closure 
space (�), �) is need not imply soft connectedness. 
 
Example 4.4. In example 4.2, the discrete soft Čech closure space (�), �) is locally soft 
connected but not soft connected. 
 
Theorem 4.5. Every soft open subspace of a locally soft connected Čech closure space 
(�), �) is locally soft connected. 
Proof. Let (��, �∗) be the soft open subspace of a locally soft connected Čech closure 
space (�), �). Let (k, K) ∈ �� be arbitrary, then (k, K) ∈ ��. Let �� be a soft �∗-open 
neighbourhood of (k, K), then �� be the soft �-open neighbourhood of (k, K) in ��. Also 
�� is locally soft connected. Hence, there exist soft connected soft �-open neighbourhood 
B� of (k, K) such that (k, K) ∈ B� ⊂ ��. Consequently, (��, �∗) is locally soft connected 
at (k, K). 
 
Theorem 4.6. A soft Čech closure space (�), �) is locally soft connected if and only if 
the soft components of every soft open subspace of �) are soft open in �).   
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Proof. Let (��, �∗) be a soft open subspace of (�), �). Let N� ⊂ �� be any component of 
��, then N� is maximal soft connected set in (��, �∗). Since, �� ⊂ �� . Then, N� is also 
maximal soft connected in (�), �). Let (�), �) be locally soft connected. It is enough to 
show that, N� is soft open in (�), �). Let (k, K) ∈ N� be arbitrary, then (k, K) ∈ �� ⊂ �� 
or (k, K) ∈ ��. Since, (�), �) is locally soft connected this implies given any soft �-open 
neighbourhood �� of (k, K), there exist soft connected soft �-open neighbourhood B� 
such that (k, K) ∈ B� ⊂ ��. (k, K) ∈ N� is maximal soft connected and (k, K) ∈ B� is soft 
connected. This implies, B� ⊂ N�. Thus, given any (k, K) ∈ N�, there exist a soft �-open 
neighbourhood B� such that (k, K) ∈ B� ⊂ N�. This implies, N� is soft open in (�), �). 
Conversely, Let N� be soft open in (��, �∗), then N� is soft open in (�), �).                            
Let (k, K) ∈ N�. Now, (k, K) ∈ N� ⊂ ��, where N�, �� are soft �-open in (�), �). Also, 
N� is soft connected. This implies that (�), �) is locally soft connected at (k, K). From 
this the required result follows.      
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