
Annals of Pure and Applied Mathematics 
Vol. 11, No. 1, 2016, 9-15 
ISSN: 2279-087X (P), 2279-0888(online) 
Published on 1 January 2016 
www.researchmathsci.org 
 

9 
 

Annals of 

Alternative Approach to Evaluation of Absorption 
Correction Factor for Cylinder using Generalised 

Gaussian Quadrature Rule 
K.T. Shivaram1 and  S.Kiran2 

1 Department of Mathematics, Dayananda Sagar College of Engineering           
Bangalore, India  E-mail: shivaramktshiv@gmail.com 

2 Department of Mathematics, Saptageri College of Engineering 
Bangalore, India E-mail: kir_keerthi@yahoo.co.in 

Received 11 November 2015; accepted 1 December 2015 

Abstract. This paper presents Numerical evaluation of Absorption correction factor for 
cylinder by using Generalised Gaussian quadrature rule. The new formula increases the 
accuracy in comparison with the original Gauss-Legendra quadrature rules and 
Simpson’s method  which were recently applied by Maslen(1999) and Takashi Ida(2010) 
et al. results obtained with the Generalised Gaussian quadrature method are compared 
with the existing formulae. It is shown that the Generalised Gaussian quadrature method 
has higher accuracy than the existing formulae. 
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1. Introduction 
The path traversed by a monochromatic beam of intensity I0 through a homogeneous 
isotropic material of linear absorption coefficient µ. Then reduced intensity in the beam is 
given by  
                                                            � = ������                                                           (1) 
The path length T of the beam in the material (crystal) varies as the shape of the crystal. 
Therefore this equality can also be considered for the X-ray absorption for the crystalline 
solids whose absorption does not depend on the arrangement of the atoms in the unit cell. 
If the crystalline solid have a definite shape then different paths have different lengths T,  
then we have        

      � = 	 �	��
 	                                                                                                             (2)                                   
 Where v is the volume of the  crystal the expression for the transmission coefficient is  

given by    � = �

 	 ��	����	��	
                   (3) 

This formula above  Eq. (3) was formulated for the estimation of transmission factor in 
crystals of uniform cross-section as A depends on the thickness, the shape of the crystal 
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through which the beam has traversed and the Braggs angle θ, the angle of orientation 
with respect to incident and diffracted beams, A is termed as function of µ and θ   i.e. 
A(µ, θ) where µ is linear absorption coefficient and the reciprocal of total over all 
absorption coefficient is called absorption correction factor A* 
       In the past claasen solved the absorption coefficient A by geometrical construction 
for the cylindrical samples (tungsten) by graphical integration and later on as a result a 
table listing absorption correction factor A* where tabulated in International tables for X-
ray crystallography(1959) as a function of Braggs angle θ and ��, where R is the radius 
of the cylinder. which have a maximum error of one percent. This tabled numerical 
values can also be considered as absorption for single crystal circular cylinder samples 
provided the beam is perpendicular to the axis of the cylinder and later on Maslen (1999)  
tabled the numerical values of Absorption correction factor �∗���, �� for cylinder in 
International tables for  crystallography Vol. C (1975) by solving integral  

�∗���, �� = 4	� � ��	����
�

�

��

�
− ��{ 1 − ��"#$��� − %�&� �' 							

+  1 + ��"#$��� − %�&� �' }�		cosh�2��	�	"#$�	"#$%�	��	�% 
                                                                                             (4) 
Proposed by Dwiggins (1975) using Simpsons numerical integration. Due to the 

existence of the singularity in the integrant at  x = 1  and  ∅ = �
� − �  the formula was 

not favorable for the application of numerical integration. Thorkildsen and Larsen 
(1998a,b) proposed another formula  

      ����, �� = �
�012�3 	 	 ��� 4���50126	789	�:�3�

;<03 =���3��3� sin�� + %� sin�� − % +
2�����%          
                     (5) 
Takashi ida (2010) applied Gauss-Legendere quadrature formula to solve the above Eq. 
(5) over the range 0≤ μ� ≤2.5 and 0 ≤ � ≤ 90� and achieved much more accuracy in 
the numerical values then Simpsons method applied to Diwiggins Eq. (4) 
In this paper we have applied General Gaussian Quadrature rule to calculate �∗���,��		the absorption correction factor using C.W. Dwiggins two-dimension integral formula 
Eq. (4), this method  will improve the accuracy and efficiency of the finite element 
approach and make it more competitive with other Numerical methods like Gauss 
Legendre quadrature and Simpson’s methods. It is easily recognized that in this approach 
the computational  convenience, speed and accuracy  are enhanced many fold.  
 
2.   Generalised  Gaussian  quadrature 
Let us consider the integral of the form  	 D���	∅����� =	∑ FG�2�	∅��G2�2GH�IJ                                   (6)  
                           

with  �G2 ∈  L, M& and FG�2� ∈ � for all N = 1,2,3, − − −, $. The points �G2 and 

coefficients FG�2�
 are referred to as sampling points  and weights coefficients. 
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The quadrature formula given in Eq.(6) is said to be Generalized Gaussian quadrature 

rule with respect to the functions   {∅G}GH��2  , if it integrals exactly all the 2N functions. 
The Generalized Gaussian quadrature rule with respect  to the system of function defined 

as {1, ln �, �, � ln �	, ��, �� ln �, �Q, �Q ln � , − − −, �2��, �2�� ln �} on [0, 1] for     
N = 5,10,15, 20, 40 are given in Table 1 ( J. Ma. et al., 1996).  we shall be using these 
sampling points and its weights in the product of polynomial and logarithmic function in 
this paper 
 
3. Numerical method 
The integral of the Eq. (4) can be transformed to  square region {(	R, S) / 0 ≤ R ≤ 1, 0 ≤ S ≤ 1},  the mathematical transformation is  � = 	R			and   % = 	�� 	S                                                          (7)                                                                                                                          

We have  �∗�μR, θ� = V
W 	 	 XY��R	, S�, %�R	, S�Z	[�R�S����                                                        (8)                                     

Where J	�R	, S� is the Jacobians of the transformation  

	[�R	, S� = \]^]_]^]`
			 a]b]_]b]`

\ = �
� a  

From Eq. (8) , we can write as 

�∗�μR, θ� = V
W 	 	 X cR, �

� 	Sd	�� 	�R	�S����   

         										= V
W ∑ ∑ �

� 		e1ef	X��YR1 	, SfZ	, %YR1	, SfZ�2fH�g1H�                                      (9) 

where  R1	,	Sf  are sampling points and  e1, ef	 are corresponding weights. We can rewrite 
Eq. (9) as �∗�μR, θ� = V

W ∑ FGX��G , %G�hHg×2G                 (10)                                                                                

where    FG = �
� 		e1	ef	                                                (10a) 

 �G = 	R ,                                                             (10b) 

 %G = �
� 	S  ,                                                                    (10c)                                                                            

 if  N = 1,2,3, …	  ,  #, k = 1,2,3,…	 
we present the following algorithm to calculate sampling points and weights as  
 lmno	p.			N → 1 lmno	s.			# = 1,t lmno	u.			k = 1, $ 

              FG = �
� 		e1	ef	 ,  �G = 	R1 ,  %G = �

� 	Sf 

               N = N + 1 lmno	v.			wxt�yz�	"z��	3 lmno	{.			wxt�yz�	"z��	2 
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to computed the sampling points and corresponding weights  based on the above 
algorithm for  order N = 5, 10, 15, 20 and are listed in table 1 
 
        k 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

 

�G 
0.005652228 
0.073430372 
0.284957404 
0.619482264 
0.915758083 
0.005652228 
0.073430372 
0.284957404 
0.619482264 
0.915758083 
0.005652228 
0.073430372 
0.284957404 
0.619482264 
0.915758083 
0.005652228 
0.073430372 
0.284957404 
0.619482264 
0.915758083 
0.005652228 
0.073430372 
0.284957404 
0.619482264 
0.915758083 

 

%G 
0.008878499 
0.008878499 
0.008878499 
0.008878499 
0.008878499 
0.115344158 
0.115344158 
0.115344158 
0.115344158 
0.115344158 
0.447610044 
0.447610044 
0.447610044 
0.447610044 
0.447610044 
0.973080465 
0.973080465 
0.973080465 
0.973080465 
0.973080465 
1.438469433 
1.438469433 
1.438469433 
1.438469433 
1.438469433 

 

FG 
0.000695822 
0.004321186 
0.009577693 
0.011578448 
0.006887316 
0.004321186 
0.026835388 
0.059479296 
0.071904369 
0.042771545 
0.009577693 
0.059479296 
0.131832889 
0.159372441 
0.094800992 
0.011578448 
0.071904369 
0.159372441 
0.192664936 
0.114604677 
0.006887316 
0.042771545 
0.094800992 
0.114604677 
0.068171366 

 

 
Table 1: Generalised Gaussian quadrature rule of order N = 5 
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�� Exact Dwiggins 
et. al  

Maslen et al Order Computed  value  

 
0.1 
 
 
 
 
0.5 
 
 
 
 
 
1.0 
 
 
 
 
 
1.5 
 
 
 
 
2.1 
 
 
 
 
 
2.5 

 
1.18432 
 
 
 
 
2.29961 
 
 
 
 
 
5.09098 
 
 
 
 
 
10.74774 
 
 
 
 
24.42587 
 
 
 
 
 
40.09687 

 
1.1843 
 
 
 
 
2.2996 
 
 
 
 
 
5.0907 
 
 
 
 
 
10.7461 
 
 
 
 
24.4137 
 
 
 
 
 
40.0598 

 
1.1843 
 
 
 
 
2.2996 
 
 
 
 
  
5.0907 
 
 
 
 
 
10.746 
 
 
 
 
24.41 
 
 
 
 
 
40.06 

N=5 
N=10 
N=15 
N=20 

 
 

N=5 
N=10 
N=15 
N=20 

 
N=5 
N=10 
N=15 
N=20 

 
 

N=5 
N=10 
N=15 
N=20 

 
N=5 
N=10 
N=15 
N=20 

 
 

N=5 
N=10 
N=15 
N=20 

 

1.1845194836 1.1843662195 1.1843273883 1.1843273942 
 2.2990541915 2.2996721602 2.2996132835 2.2996132774 

 5.0905632101 5.0906423155 5.0909877128 5.0909870547 
 10.717315508 10.747033755 10.747740901 10.747740988 
 24.413544120 24.429115796 24.425806331 24.425878213 
 
 40.093367137 40.096510969 40.096531445 40.096874421 
 

 
Table 2:  Values of A*  for cylinder at  � = 0 
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�� Exact Dwiggins et. al  Maslen et al Order Computed      
      Value 

0 
 
 
 
 
 

15 
 
 
 
 
 

30 
 
 
 
 

45 
 
 
 
 

60 
 
 
 
 

75 
 
 
 
 
 

90 

5.09098 
 
 
 
 
 

4.93242 
 
 
 
 
 

4.54397 
 
 
 
 

4.10228 
 
 
 
 

3.72865 
 
 
 
 

3.47912 
 
 
 
 
 

3.38875 

5.0907 
 
 
 
 
 

4.9323 
 
 
 

 
 

4.5439 
 
 
 

 
4.1022 

 
 
 
 

3.7286 
 
 
 
 

3.4790 
 
 
 
 
 

3.3886 
 
 

5.9356 
 
 
 
 
 

4.9323 
 
 
 
 
 

4.5439 
 
 
 
 

4.1022 
 
 
 
 

3.7286 
 
 
 
 

3.4790 
 
 
 
 
 

3.3886 

N=5 
N=10 
N=15 
N=20 
 
N=5 
N=10 
N=15 
N=20 
 
 
N=5 
N=10 
N=15 
N=20 
 
N=5 
N=10 
N=15 
N=20 
 
 
N=5 
N=10 
N=15 
N=20 
 
N=5 
N=10 
N=15 
N=20 
 
 
N=5 
N=10 
N=15 
N=20 

5.0917550823 5.0903521761 5.0909809533 5.0909807315 
 4.9321135091 4.9324844063 4.9324648967 4.9324254079 

 4.5437653242 4.5439456271 4.5439773164 4.5439760213 
 4.1029754431 4.1022555764 4.1022887210 4.1022886500 
 3.7281742193 3.7280321167 3.7286509350 3.7286506541 
 3.4796452313 3.4791453709 3.4791220902 3.4791220993 
 3.3876409521 3.3884200166 3.3887576218 3.3887547425 
 

    

Table 3:  Values of A*  for cylinder at  �� = 1 
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4. Conclusion 
 Numerical integration approach for evaluating Absorption correction factor A* using 
Generalized Gaussian quadrature rule is presented in detail, the results obtained are in 
excellent agreement with exact value, the good results shows that further developments 
of the present procedure for finding  A* 
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