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Abstract. For any connected graph G degree sum matrix is a matrix having sum of 
degrees of a pair of   vertices. The degree sum energy is absolute sum of degree sum 
eigenvalues of G which are simply eigen values of degree sum matrix. In this paper we 
deal with degree sum energy of some graphs. 
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1. Introduction 
Let G be a simple graph with ‘n’  vertices & ‘m’ edges. Let the vertices of G be labeled as  ��, ��, ��… . . ��. The degree of a vertex v in a graph G, denoted by d(v) is the number of 
edges incident to v. If all the vertices of a graph G have the same degree equal to r, then 
G is called r-regular graph. 
 The adjacency matrix A(G) of a graph G is a square matrix of order n whose (i,j) 
entry is equal to unity if the vertex vi is adjacent to vj,  and is equal to zero otherwise. The 
eigen values of an adjacency matrix A(G) are denoted by 	�, 	�, 	�…… . 	�..	The energy 
or adjacency energy of G is defined as,  � = �
��� = ∑ |	�|���� .A book which covers all 
its aspects is [7]. The spectra connection with connectivity of graph is discussed in [8]. 
           This definition of energy was motivated by large number of results for the Huckel 
molecular orbital total �-electron energy [5]. In [9,10], authors obtained bounds for the 
distance eigen values and distance energy, corresponding to distance matrix of a graph. 
Motivated by work on Maximum Degree Energy of a Graph [2], in [1] Ramane  et al. 
introduced the concept of degree sum matrix associated with a graph and studied some 
bounds for its eigenvalues as well as degree sum energy. For a brief recent survey on 
various types of energy defined on a graph one can refer [3]. 
           The degree sum matrix of a simple graph G is denoted as DS (G) is defined as 

DSM (G) = [ ijd ]  where ijd  = di + dj  when  i ≠ j and  0 otherwise. The degree sum 

polynomial of G is  the characteristic polynomial of DSM(G) denoted by 
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]:)([ γψ GDSM .Since DSM(G) is a real symmetric matrix its eigen values ��, ��, ��……�� can be ordered as �� ≥ �� ≥ ��…… ≥ ��.Analogues to adjacency 
energy, degree sum energy of a graph denoted by EDS (G) =∑ |��|�� .Degree sum 
polynomial of graph valued functions on regular graphs are available in [4].It’s obvious 
that two non isomorphic graphs with same degree sum matrix will have same degree sum 
energy. Such graphs can be called degree sum equi energetic. Already on such family is 
available in [1]. Graphs with different degree sum matrix but same degree sum energy are 
interesting. Concept of sum distance in fuzzy graphs is available in [6]. 
        We denote wheel graph of order n as Wn  and a path of order n by Pn . We also 
consider a family of graphs called Tadpole Graphs( or Lollipop Graphs) as a graph of 
order n +k obtained by joining a cycle Cn to a path Pk+1 of  order  k+1(length k) and is 
denoted by Tn, k.  

Example:  T5, 4   

  

 

Figure 1: 

         For two graphs G and H, HG∪ denotes the disjoint union of G and H. The 

Dumbbell graph cbaD ,, consists of two vertex-disjoint cycles ba CC , and a path 

)1(3 −≥+ cPc joining them having only its end vertices in common with the cycles. It has 

a+ b+ c+ 1 vertices and a+b+c+2 edges.   

                                                                                  c +1 

 

 

Figure 2: 

For adjacency spectral characterization of the Lollipop and dumbbell graph one can refer 
[11,12]. 

Coalescence: Let H1 & H2 be graphs on disjoint sets of vertices respectively. Suppose U 
= {u1, u2…..ut } is a clique in H1 and W ={w1,w2…..wt} is a clique in H2.Let G be a graph 
obtained from H1 and   H2 by identifying (coalescence into a single vertex) ui and wi , 

1≤ i ≤ t. Then G is an overlap of H1and H2 in Kt. It may be viewed as generalized 
coalescence denoted by H1 o	H2.This operation is often taken to compute the chromatic 
polynomials of graphs [13]. In particular for t =1 we call it as coalescence on a vertex or 
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overlap denoted by H1 Ov H2 .Similarly for t =2 we call it as edge coalescence denoted by 
H1 Oe  H2. 

2. Results   
Here we obtain degree sum energy of Wheel, Path Tadpole graph and Dumbbell graph. 

Theorem 2.1.  The degree sum energy of wheel graph of order n Wn , is given by,   

           EDS (Wn) = 6(n–2) +2 √�� + 12�� − 36� + 32 

Proof: With pertinent labeling the degree sum matrix of  Wn   is  given by, 
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The degree sum polynomial then becomes, 

Ψ%"#$�&��: γ' = /
/

γ

γ
γ

γ

LL

MOMMM

L

L

L

6)2(

66)2(

66)2(

)2()2()2(

−+−

−+−
−+−

+−+−+−

n

n

n

nnn

/
/
 

																										0� + � + 2� 0�		1 = 2,……… . . � 

                            =
/
/
/

γγγ

γγγ

γγγ

γ

γ
γ

γ

222

222

222

)2()2()2(

)2()2()2(

)2()2()2(

660

66

660

)2()2()2(

+++

+++

+++

−−−−−

−−−−−
−−−−−

+−+−+−

nnn

nnn

nnn

nnn

L

MOMMM

LM

L

L

/
/
/
 

                              = � //
abb

bab

bba

L

MOMM

L

L

//=		��2 − 3��4�%2 + �� − 2�3' 



S.R.Jog and Raju Kotambari 

20 

 

                               = ��� + 6��4� 5� − ��6��78 − �� − 2�	6 + ��6��789999999999999: 
												Ψ%"#$�&��: γ' 		=			(�+6)(n-2)	%�� − 6�� − 2�� − �� − 1��� + 2��'. 
 On computing eigen values and adding their absolute values theorem follows. 

Theorem 2.2  The degree sum energy of path Pn, is given by   

                       EDS(Pn) = 4n-10 + 2√4�� − 10� + 13 

Proof:  With pertinent labeling the degree sum matrix of Pn is given by, 

                           DSM [Pn]=  	
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The degree sum polynomial is 
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∴ 				=%"#$�>��: �' = Eγ + 4F��4��Eγ + 2FGγ � − 2�2� − 5�γ − 2�5� − 6�I 
On calculating eigen values and adding their absolute values theorem follows. 

Theorem 2.3. The degree sum energy of tadpole graph Tn,k is given by  

  sqpknknTDSE +++−+= )3(4],[   where p,q,s are the roots of the equation, 

          ]}565648[]523434[)3(4{ 23 knknkn −−+−+−−+− γγγ =0 

 Proof: With pertinent labeling the degree sum matrix of Tn,k is  given by, 
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The rest of the proof follows on similar lines as in the proof of the previous theorem. 

Corollary 2.4. Two non-isomorphic Tadpole graphs having same n + k, have same 
degree sum energy. Such graphs are called degree sum equienergetic graphs.                    

Theorem 2.5. The degree sum energy of dumbbell graph  Da,b,c  is given by , 

                       
]1)(22)(422)(4[][ 2

,, −++++++−++= cbacbacbaDE cbaDS  

  Proof: With pertinent labeling the degree sum matrix of   Da,b,c is  given by, 

     DSM [Da,b,c] =  	
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The rest of the proof follows on similar lines as in proof the previous theorem. 

Corollary  2.6. From the expression for energy ][ ,, cbaDS DE given above it’s clear that 

two non-isomorphic Dumbbell graphs having same a+b+c have same degree sum 
energy.  

3.  Degree sum energy for Coalescence of graphs 
In this section we discuss the degree sum energy of coalescence regular graphs, complete 
graphs and cycles.  

Theorem 3.1. The degree sum energy of the vertex coalescence of two r-regular graphs 
of ��&��of order  ��, �� respectively is given by �KL���°M��� = 2N%�� + �� − 3 +O��� + ��� + 3�� + 2���� − 6�� − 9	'  
Proof: The degree sum of the coalescence	��o	�� has the form , 
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Degree sum polynomial is then given by  
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 As the lower triangular block is 0, expanding directly gives, 

= �� + 2N��74��� + 2N��Q4�%�� − 2N��� + �� − 3�� − 9N���� + �� − 2�' 
          = �� + 2N��76�74�%�� − 2N��� + �� − 3�� − 9N���� + �� − 2�' 
 So that calculating eigen values we get degree sum energy of coalescence as, 

�KL���°M��� = 2N%��� + �� − 3� + O��� + ��� + 3�� + 2���� − 6�� − 9] 
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Example: Let r = 2, G1≃C3,   G2≃C4 so that n1= 3   n2 = 4 gives    

�KL���°��� =47.241    

Note: Irrespective of the structure, the degree sum energy of vertex coalescence of two 
regular graphs of same regularity remains same. Hence we have another family of degree 
sum equienergetic graphs 

Theorem 3.2 If G1 and G2 are r- regular graphs of order n1 and n2 respectively then 
degree sum energy of   edge coalescence G1oeG2 is  �KL���°S��� = 2�3N − 1���� +�2−5+4N−2+2  where a ={(4r–2)+(3r–1)(n1 +  n2 –5)}2 +8(3r–1)2(n 1+ n2 –4)– 4(4r–2)(3r–1) 
(n1 +  n2 –5) 

Proof: The degree sum matrix of the coalescence	��	oT�� has the form  
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Degree sum polynomial is then given by   
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Performing   0�−0�, 1 = 4,… . �� + �� − 2 
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Performing ?� +∑ ?��Q6�74�U  
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Ψ%"#���oT���: 	' = 

 �� + 3N − 1��Q6�74V	�γ+ 4r − 2�%γ � − {�4N − 2� + �3N − 1���� + �� − 5�}γ+ 

�4N − 2��3r − 1���� + �� − 5� − 2�3N − 1����� + �� − 4�'        
Hence the theorem. 

Example: Let r = 2, G1≃C3,   G2≃C4 then ��ZA�� is   �KL���oT��� = 38.5764 

 

 

 

 

Figure 3: 

Theorem 3.3. Degree sum energy of vertex coalescence of two cycles Cm, and  Cn is      

given  by, EDS[Cm ov Cn] )2(4)2(9)3(4 2 −++−++−+= nmnmnm  

 Proof: Let Cm and Cn  be the two cycles of order m ,n respectively. The degree sum 
matrix of vertex coalescence is given by DSM [Cm ov Cn]  
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     DSM [Cm ov Cn]=
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The rest of the proof follows on similar lines as in proof the previous theorem. 

 Theorem 3.4 Degree sum energy of edge coalescence of two cycles Cm,and Cn is given 

by,    EDS[Cm oe Cn] 4182020442)722(2 22 ++−−++−+= mnnmnmnm  

 Proof: The degree sum matrix of edge coalescence of cycles Cm & Cn   is given by, 

DSM [Cm oe Cn]  =  
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 The rest of the proof follows on similar lines as in proof the previous theorem. 
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