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Abstract. Most of our traditional tools in descriptive and inferential statistics is based on
crispness (preciseness) of data, measurements, random variable, hypotheses, and so on.
By crisp we mean dichotomous that is, yes-or-no type rather than more-or-less type.  But
there are many situations in which the above assumptions are rather non-realistic such
that we need some new tools to characterize and analyze the problem.  By introducing
fuzzy set theory, different branches of mathematics are recently studied.  But probability
and statistics attracted more attention in this regard because of their random nature.
Mathematical statistics does not have methods to analyze the problems in which random
variables are vague (fuzzy).

In this regard, a simple and new technique for testing the hypotheses under the
fuzzy environments is proposed.  Here, the employed data are in terms of trapezoidal
fuzzy numbers (TFN) which have been transformed into interval data using α-cut
interval method and on the grounds of the transformed fuzzy data, the one-factor
ANOVA test is executed and decisions are concluded.  This concept has been illustrated
by giving two numerical examples.

Keywords: Fuzzy set, α-cut, Trapezoidal fuzzy number (TFN), Test of hypotheses, One-
factor ANOVA model, Upper level data, Lower level data.
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1. Introduction
Fuzzy set theory [35] has been applied to many areas which need to manage uncertain
and vague data.  Such areas include approximate reasoning, decision making,
optimization, control and so on.

In traditional statistical testing [17], the observations of sample are crisp and a
statistical test leads to the binary decision.  However, in the real life, the data sometimes
cannot be recorded or collected precisely.  The statistical hypotheses testing under fuzzy
environments has been studied by many authors using the fuzzy set theory concepts
introduced by Zadeh [35].
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The application by using fuzzy set theory to statistics has been widely studied in
Manton et al. [22], Buckley [8] and Viertl [29].  Arnold [6] proposed the fuzzification of
usual statistical hypotheses and considered the testing hypotheses under fuzzy constraints
on the type I and type II errors.  Saade [27], Saade and Schwarzlander [26] considered the
binary hypotheses testing and discussed the fuzzy likelihood functions in the decision
making process by applying a fuzzified version of the Baye’s criterion.  Grzegorzewski
[14], Watanabe and Imaizumi [31] proposed the fuzzy test for testing hypotheses with
vague data and the fuzzy test produced the acceptability of the null and alternative
hypotheses.  The statistical hypotheses testing for fuzzy data by proposing the notions of
degrees of optimism and pessimism was proposed by Wu [34].  Viertl [29] investigated
some methods to construct confidence intervals and statistical tests for fuzzy data.  Wu
[33] proposed some approaches to construct fuzzy confidence intervals for the unknown
fuzzy parameter.  Arefi and Taheri [5] developed an approach to test fuzzy hypotheses
upon fuzzy test statistic for vague data.  A new approach to the problem of testing
statistical hypotheses is introduced by Chachi et al. [9].  Mikihiko Konishi et al. [25]
proposed a method of ANOVA for the fuzzy interval data by using the concept of fuzzy
sets.  Hypothesis testing of one factor ANOVA model for fuzzy data was proposed by
Wu [32] using the h-level set and the notions of pessimistic degree and optimistic degree
by solving optimization problems. Dubois and Prade [12] defined any of the fuzzy
numbers as a fuzzy subset of the real line. Chen and Chen [11] presented a method for
ranking generalized trapezoidal fuzzy numbers.  The symmetric triangular approximation
was presented by Ma et al. [20].  Chanas [10] derived a formula for determining the
interval approximations under the Hamming distance.  The trapezoidal approximation
was proposed by Abbasbandy et al. [1-3].  Grzegorzewski et al. [15] proposed the
trapezoidal approximation of a fuzzy number, which is considered as a reasonable
compromise between two opposite tendencies: to lose too much information and to
introduce too sophisticated form of approximation from the point of view of computation.

In this paper, we propose a new statistical fuzzy hypothesis testing of ANOVA
model for finding the significance among more than two population means when the data
of their samples are in terms of trapezoidal fuzzy data.  We provide the decision rules
which are used to accept or reject the fuzzy null and alternative hypotheses.  In the
proposed technique, we convert the given fuzzy hypothesis testing of one factor ANOVA
model with fuzzy data into two hypothesis testing of one factor ANOVA models with
crisp data namely, upper level model and lower level model then, we test the hypothesis
of each of the one factor ANOVA models with crisp data and obtain the results and then
we obtain a decision about the population means on the basis of the proposed decision
rules using the results obtained.  In the decision rules of the proposed testing technique,
we are not using degrees of optimism, pessimism and h-level set which are used in Wu
[32].  In fact we would like to counter an argument that α-cut interval method is general
enough to deal with one-factor ANOVA method under fuzzy environments which fits
better when compared to the similar problems involved under non-fuzzy data.  For better
understanding, the proposed fuzzy hypothesis testing technique of ANOVA model for
fuzzy data is illustrated with numerical examples.
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2. Preliminaries
Definition 2.1. (Generalized fuzzy number) A generalized fuzzy number A is

described as any fuzzy subset of the real line  , whose membership function   A
μ x

satisfies the following conditions:

i.   A
μ x is a continuous mapping from  to the closed interval

 0, ω ,  0 ω 1  ,

ii.     A
μ x  = 0, for all x - , a  ,

iii.    Lμ x L x is strictly increasing on  a, b ,

iv.     A
μ x ω,  for all b, c ,  as ω is a constant and 0 < ω 1  ,

v.    Rμ x R x is strictly decreasing on  c, d ,

vi.     A
μ x 0,  for all x d,   .

where a, b, c, d are real numbers such that a < b c < d .

Throughout this paper,  stands for the set of all real numbers,  F  represents the set

of fuzzy numbers, A expresses a fuzzy number and   A x its membership function

x  .

Definition 2.2. A fuzzy set A is called normal fuzzy set if there exists an element

(member) ‘x’ such that   A
μ x 1 . A fuzzy set A is called convex fuzzy set if

          1 2 1 2A A A
μ αx + 1 - α x min μ x , μ x where  1 2x , x X and α 0, 1  . The

set     α
A

A x X μ x α   is said to be the α - cut of a fuzzy set A .

Definition 2.3. A fuzzy subset A of the real line  with membership function   A
μ x

such that     A
μ x : 0, 1 , is called a fuzzy number if A is normal, A is fuzzy

convex,   A
μ x is upper semi-continuous and  Supp A is bounded, where

     A
Supp A cl x : μ x 0   and ‘cl’ is the closure operator.

It is known that for fuzzy number A , there exists four numbers a, b, c, d
and two functions        A A

L x ,  R x : 0, 1 , where      A A
L x  and R x are non-

decreasing and non-increasing functions respectively.  Now, we can describe a
membership function as follows:

        A A A
μ x L x  for a x b;  1 for b x c; R x  for c x d; 0 otherwise.      

The functions   A
L x and   A

R x are also called the left and right side of the fuzzy

number A respectively ([12, 13]).
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In this paper, we assume that   A x dx < +




 and it is known that the α - cut of a

fuzzy number is       α
A

A x μ x α ,  for α 0, 1    and  
 

0 α
α 0, 1

A = cl A


 
  
 
 ,

according to the definition of a fuzzy number, it is seen at once that every α - cut of a

fuzzy number is a closed interval.  Hence, for a fuzzy number A , we have
        L UA α A α ,  A α   
where       L

A
A α inf x :  μ x α   and       U

A
A α sup x :  μ x α   .

The left and right sides of the fuzzy number A are strictly monotone, obviously, LA and


UA are inverse functions of   A
L x and   A

R x respectively.

Another important type of fuzzy number was introduced in [7] as follows:

Let a, b, c, d such that a < b c < d .  A fuzzy number A defined as

    A
μ x :  0, 1 ,

  
n n

A

x - a d - xμ x for a x b; 1 for b x c;  for c x d; 0 otherwise.
b - a d - c
            
   

where n > 0, is denoted by   nA a, b, c, d .

And  
n

x - a
L x

b - a
   
 

,  
n

d - x
R x

d - c
   
 

can also be termed as left and right spread of

the TFN [Dubois and Prade in 1981].

If   nA a, b, c, d , then

            n n
α L UA A α ,  A α a + b - a α,  d - d - c α ;  α 0, 1        .

When n = 1 and b = c , we get a triangular fuzzy number.  The conditions
r = 1, a = b and c = d imply the closed interval and in the case

r = 1, a = b = c = d = t (some constant), we can get a crisp number ‘t’.  Since a
trapezoidal fuzzy number is completely characterized by n = 1 and four real numbers

a b c d   , it is often denoted as   A a, b, c, d .  And the family of trapezoidal

fuzzy numbers will be denoted by  TF  .

Now, for n = 1 we have a normal trapezoidal fuzzy number   A a, b, c, d and

the corresponding α - cut is defined by       αA a + α b - a ,  d - α d - c ;  α 0, 1    .

Now, we need the following results which can be found in [17, 19].
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Result 2.1. Let   D = a, b ,  a b and a, b  , the set of all closed, bounded

intervals on the real line  .

Result 2.2. Let    A = a, b  and B = c, d  be in D . Then A = B if a = c and b = d .

Result 2.3. If 2s is the variance of a sample of size ‘n’ drawn from the population with

variance 2σ , then
2

2ns
E σ

n - 1

 
 

 
, that is

2ns

n - 1
is an unbiased estimator of 2σ .

3. One-Factor ANOVA Model
The Analysis of Variance (ANOVA) is a powerful statistical tool for tests of significance.
The term “Analysis of Variance” was introduced by Prof. R. A. Fisher in 1920’s to deal
with problems in the analysis of agronomical data.  Variation is inherent in nature.  The
total variation in any set of numerical data is due to a number of causes which may be
classified as (i) Assignable causes and (ii) Chance causes.

The variation due to assignable causes can be detected and measured whereas the
variation due to chance is beyond the control of human hand and cannot be traced
separately.  In general, ANOVA studies mainly the homogeneity of populations by
separating the total variance into its various components.  That is, this technique is to test
the difference among the means of populations by studying the amount of variation
within each of the samples relative to the amount of variation between the samples.
Samples under employing in ANOVA model are assumed to be drawn from ‘normal
populations of equal variances’.  The variation of each value around its own grand mean
should be independent for each value.  A one-factor ANOVA is used when the analysis
involves only one factor with more than two levels and different subjects in each of the
experimental conditions.

Let a sample of N values of a given random variable X drawn from a normal

population with variance 2σ which is subdivided into ‘h’ classes according to some
factor of classification with which the classes are homogeneous, that is, there is no
difference between various classes.

Now, let iμ be the mean of thi population class.  The test of hypotheses are:  Null

hypothesis: 0 1 2 hH : μ μ   =μ   against Alternative hypothesis:

A 1 2 hH : μ μ   μ    .

Let ijx be the value of the thj member of the thi class, which contains in

members.  Let the general mean of all the N values be x and the mean of in values in the
thi class be ix . Now,
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          22 2 2

i iij ij i ij i
i j i j i j i

2 1

x x x x x x x x n x x

Q + Q

        



   

where  2i1 i
i

Q n x x  is the sum of the squared deviations of class means from the

general mean (variation between classes) and  2i2 ij
i j

Q x x  is the sum of the

squared deviations of variates from the corresponding class means (variation within
classes).  Q is total variation.

Now, it is known from the theory of estimation that
2ns

n-1

 
 
 

is an unbiased estimate of

2σ , where 2s is the variance of a sample of size ‘n’ drawn from a population with

variance 2σ . That is,  2 2E ns / n-1 σ . Since the items in the thi class with variance

 
in 2

iij
j = 1i

1
x x

 n
 may be considered as a sample of size i n drawn from a population

with variance 2σ . That is,  
in 2

2i
iij

j = 1i i

 n 1
E x x σ

 n 1  n

 
    
 .

       
h2

2 2 22
iij i 2

i j i =1

Q
i.e. E x x  n 1 σ  i.e. E Q N - h  i.e. σ E σ .

N - h

         
  

 

Hence, 2Q

N - h
is an unbiased estimate of 2σ with  N - h degrees of freedom.

Let us consider the entire group of N items with variance  2ij
i j

1
x x

N
 as

the sample of size N drawn from the same population.  Now,

 2 2
ij

i j

N 1
E x x σ

 N 1  N

 
    
 .That is, 2Q

E σ
 N 1
    

, this states that
Q

 N 1

is an unbiased estimate of 2σ with   N 1 degrees of freedom. Now,

         2 2
1 2E Q E Q E Q  N 1 σ  N h σ      21Q

E σ
h - 1
   
 

.

Thus, 1Q

h - 1
is also an unbiased estimate of 2σ with  h - 1 degrees of freedom. If we

assume that the sample drawn from a normal population, then the estimates 1Q

h - 1
and
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2Q

N - h
are independent and hence the ratio

 
1

2

Q
h - 1

Q
 N h

follows F-distribution with

 h - 1,  N h degrees of freedom.  Choosing the ratio which is greater than one, we

employ the F-test.  For simplicity, let us choose, 1
1

Q
M

h - 1
 and 2

2

Q
M

N - h
 .

Aggregating the above results, the ANOVA table for one factor classification is given
below([16, 28]):

The decision rules of F-test are given below:

(i) If 2 1M < M and 1
t

2

M
F = F

M
 where tF is the tabulated value of F with

 h - 1,  N h degrees of freedom at ‘k’ level of significance, then we accept the

null hypothesis 0H , otherwise the alternative hypothesis AH is accepted.

(ii) If 1 2M < M and 2
t

1

M
F = F

M
 where tF is the tabulated value of F with

 N h,  h - 1 degrees of freedom at ‘k’ level of significance, then we accept the

null hypothesis 0H , otherwise the alternative hypothesis AH is accepted.

Note that here we use the notation for level of significance is to be “k” instead of “ α ”
so as to avoid confusion with ‘ α - cut ’ value that can be seen in trapezoidal fuzzy
numbers (TFN). For simplicity of calculations, the following formulae for Q , 1Q and

2Q are used:
2

2
ij

i j

T
Q = x

N
 where ij

i j

T = x ;
2 2
i

1
i i

T T
Q  =

n N

 
 

 
 where i ij

j

T  = x
and 2 1Q  = Q - Q .

Source of
Variation

(S.V.)

Sum of
Squares

(S.S.)

Degrees of
freedom (d.f.)

Mean Square
(M.S.)

Variance Ratio
(F-value)

Between
Classes 1Q h - 1  

1
1

Q
M

h - 1


1

1

2

M
F =

M


 
 
 

Within Classes 2Q N - h  
2

2

Q
M

N - h


Total Q N - 1 --
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4. One-Factor ANOVA model with TFNs using α - cut method
The fuzzy test of hypotheses of one-factor ANOVA model where the sample data are
trapezoidal fuzzy numbers is proposed here.  Using the relation, we transform the fuzzy
ANOVA model to interval ANOVA model.  Fetching the upper limit of the fuzzy
interval, we construct upper level crisp ANOVA model and considering the lower limit of
the fuzzy interval, we construct the lower level crisp ANOVA model.  Thus, in this
proposed approach, two crisp ANOVA models are designated in terms of upper and
lower levels.  Finally, we analyse lower level and upper level model using crisp one-
factor ANOVA technique.

Let there be N values of samples for a given random variables ‘X’ which are
subdivided into ‘h’ classes according to some kind of classification.  Then the lower
level data and upper level data for given trapezoidal fuzzy numbers using α - cut
method can be assigned as follows:

Lower level data:

Upper level data:

The one-factor ANOVA formulae using α - cut can be tabulated as follows:

 11 11 11a + α b  - a  12 12 12a + α b  - a …  1j 1j 1ja + α b  - a

 21 21 21a + α b  - a  22 22 22a + α b  - a …  2 j 2j 2ja + α b  - a
…

 i1 i1 i1a + α b  - a  i2 i2 i2a + α b  - a …  ij ij ija + α b  - a
where 0 i h, 0 j n   

 11 11 11d - α d  - c  12 12 12d - α d  - c …  1j 1j 1jd - α d  - c

 21 21 21d - α d  - c  22 22 22d - α d  - c …  2j 2j 2jd - α d  - c
…

 i1 i1 i1d - α d  - c  i2 i2 i2d - α d  - c …  ij ij ijd - α d  - c
where 0 i h, 0 j n   

Lower level model Upper level model

 
22

L
ij ij ij

i j

 T
Q  = a  + α b  - a

N
   

where 0 i h, 0 j n    .

 i ij ij ij
j

T a  + α b  - a    ; i =1, 2, …, h.

And
h

r
r = 1

T = T ,
2 2

L i
1

i i

T  T
Q

n N
 

L L L
2 1Q  = Q  - Q

 
22

U
ij ij ij

i j

 T
Q  = d  - α d  - c

N
   

where 0 i h, 0 j n    .

 i ij ij ij
j

T d  - α d  - c    ; i = 1, 2, ..., h

And
h

r
r = 1

T = T ,
2 2

U i
1

i i

T  T
Q

n N
 

U U U
2 1Q  = Q  - Q
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Let ‘k’ be the level of significance.
Now, the null hypothesis:    

0 1 2 hH : μ μ μ    against the alternative hypothesis:

   
A 1 2 hH : μ μ μ   

    
0 1 2 hH : μ μ μ                 against    

A 1 2 hH : μ μ μ                 .

 L U L U L U L U
0 0 1 1 2 2 h hH ,  H : μ ,  μ  μ ,  μ   = μ ,  μ                 against

L U L U L U L U
A A 1 1 2 2 h hH ,  H : μ ,  μ  μ ,  μ   μ ,  μ                 

 The following two sets of hypotheses can be obtained.

(i) The null hypothesis L L L L
0 1 2 hH : μ μ μ    against the alternative

hypothesis L L L L
A 1 2 hH : μ μ μ    .

(ii) The null hypothesis U U U U
0 1 2 hH : μ μ μ    against the alternative

hypothesis U U U U
A 1 2 hH : μ μ μ    .

Decision rules:
(i) If L

tF F at ‘k’ level of significance with  N - h,  h - 1 degrees of

freedom then the null hypothesis L
0H is accepted for certain value of

 α 0, 1 , otherwise the alternative hypothesis L
AH is accepted.

(ii) If U
tF F at ‘k’ level of significance with  N - h,  h - 1 degrees of

freedom then the null hypothesis U
0H is accepted for certain value of

 α 0, 1 , otherwise the alternative hypothesis U
AH is accepted.

Example 4.1. A food company wished to test four different package designs for a new
product.  Ten stores with approximately equal sales volumes are selected as the
experimental units.  Package designs 1 and 4 are assigned to three stores each and
package designs 2 and 3 are assigned to two stores each.  We cannot record the exact
sales volume in a store due to some unexpected situations, but we have the fuzzy data for
sales volumes.  The fuzzy data are given below [32]:

Package design (i)
Store (Observation j)

1 2 3

1  9,  10,  12,  13  14,  15,  17,  18 --

2  11,  13,  16,  19  10,  14,  16,  20  11,  12,  14,  15

3  15,  17,  19,  21  14,  16,  19,  20  17,  20,  21,  23

4  15,  18,  21,  23  21,  23,  25,  27 --
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We test the hypothesis whether the fuzzy mean sales are same for four designs of

package or not.  Let  iμ be the mean sales for the thi design.  Then the null hypothesis

    
0 1 2 3 4H : μ μ μ μ   against the alternative hypothesis     

A 1 2 3 4H : μ μ μ μ   .

Now, the interval model for the given trapezoidal fuzzy number using α - cut method is:

Now, the ANOVA tables for “lower level α - cut interval” and “upper level α - cut
interval” are given below:

Lower level model:

The null hypothesis L L L L L
0 1 2 3 4H : μ μ μ μ   against the alternative hypothesis

L L L L L
A 1 2 3 4H : μ μ μ μ   .

Upper level model:

Package design (i)
Store (Observation j)

1 2 3

1  9 + α, 13 - α  14 + α, 18 - α --

2  11+ 2α, 19 - 3α  10 + 4α, 20 - 4α  11 + α, 15 - α

3  15 + 2α, 21 - 2α  14 + 2α, 20 - α  17 + 3α, 23 - 2α

4  15 + 3α, 23 - 2α  21 + 2α, 27 - 2α --

Package design (i)
Store (Observation j)

1 2 3

1  9 + α  14 + α --

2  11+ 2α  10 + 4α  11 + α

3  15 + 2α  14 + 2α  17 + 3α

4  15 + 3α  21 + 2α --

Package design (i)
Store (Observation j)

1 2 3

1  13 - α  18 - α --

2  19 - 3α  20 - 4α  15 - α

3  21 - 2α  20 - α  23 - 2α

4  23 - 2α  27 - 2α --
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The null hypothesis U U U U U
0 1 2 3 4H : μ μ μ μ   against the alternative hypothesis

U U U U U
A 1 2 3 4H : μ μ μ μ   .

The ANOVA table for lower level model:

Here, N = 10 and in  2, 3, 3, 2 for the package designs 1, 2, 3, 4 respectively.

T = 137 + 21α ;
2

2i

i i

T 1
283α + 3540α + 11755

n 6
    and

  2
2

ij ij ij
i j

a + α b - a 53α + 584α + 1995    L 21
Q 89α + 86α + 1181

10
    ;

L 2
1

1
Q 184α + 876α + 4936

60
    and

L 2
2

1
Q 350α - 360α + 2150

60
    .And L 2

1

1
M 184α + 876α + 4936

180
    ;

L 2
2

1
M 350α - 360α + 2150

360
    and

2
L
C 2

4 46α + 219α + 1234
F

5 35α - 36α + 215
         

where

0 α 1  and L
CF is the calculated value of ‘F’ at lower level model. Now, the tabulated

value of ‘F’ at k = 5% level of significance with    h - 1,  N - h 3,  6 degrees of

freedom is  t at 5%F 4.76 . Here, L
C tF F  at α = 0.1 and L

C tF  > F  for 0.2 α 1  .

Hence, the null hypothesis L
0H is rejected at 5% level of significance for 0.2 α 1  .

Source of
Variance

(S.V.)

Sum of
Squares

(S.S.)

Degrees of freedom
(d.f.)

Mean Square
(M.S.)

F-ratio

 L
CF

Between
Classes

L
1Q  h - 1 = 4 1 3 

L
L 1
1

Q
M

3
 L

L 1
C L

2

M
F

M


Within Classes L
2Q  N - h = 10 4 6 

L
L 2
2

Q
M

6

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The ANOVA table for upper level model:

Here, N = 10 and in  2, 3, 3, 2 for the package designs 1, 2, 3, 4 respectively.

T = 199 - 19α ;
2

2i

i i

T 1
238α - 4580α + 24407

n 6
    and

  2
2

ij ij ij
i j

d - α d - c 45α - 782α + 4107   

U 21
Q 89α - 258α + 1469

10
    ; U 2

1

1
Q 107α - 214α + 3232

30
    and

U 2
2

1
Q 32α - 112α + 235

6
    . And U 2

1

1
M 107α - 214α + 3232

90
    ;

U 2
2

1
M 32α - 112α + 235

36
    and

2
U
C 2

2 107α - 214α + 3232
F

5 32α - 112α + 235
         

where

0 α 1  and U
CF is the calculated value of ‘F’ at upper level model. Now, the tabulated

value of ‘F’ at k = 5% level of significance with    h - 1,  N - h 3,  6 degrees of

freedom is  t at 5%F 4.76 . Here, U
C tF  > F  for all α where 0 α 1  .

Hence we reject the null hypothesis U
0H at 5% level of significance for all α

 0 α 1  . Thus, the rejection level of null hypotheses for lower and upper level data

are given below:

L
0H is rejected for all α;  0.2 α 1  and U

0H is rejected for all α;  0 α 1  .

Therefore, we accept the alternative hypothesis AH of the fuzzy ANOVA model.

Conclusion 4.1. The factor level fuzzy means  iμ are not equal.  Hence, we conclude that

there is a relation between package design and sales volumes.

Remark 4.1. In this proposed method, the notions of pessimistic degree and optimistic
degree are not used.  The whole calculation technique is fully based on α - cut interval

Source of
Variance

(S.V.)

Sum of
Squares

(S.S.)

Degrees of freedom
(d.f.)

Mean Square
(M.S.)

F-ratio

 U
CF

Between
Classes

U
1Q  h - 1 = 4 1 3 

U
U 1
1

Q
M

3
 U

U 1
C U

2

M
F

M


Within Classes U
2Q  N - h = 10 4 6 

U
U 2
2

Q
M

6

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method [4].  And the decision obtained in the proposed fuzzy hypothesis testing using
α - cut interval ANOVA method for example-1 fits better when compared with Wu
[32].

Example 4.2. In order to determine whether there is significant difference in the
durability of 3 makes of computers, samples of size 5 are selected from each make and
the frequency of repair during the first year of purchase is observed.  The results are
obtained in terms of fuzzy data due to different kinds of maintenance and usage.  The
results are as follows:

In view of the above data, the testing procedure is proposed to check “is there any
significant difference in the durability of the 3 makes of computers?”

We test the hypothesis whether the fuzzy means of the 3 makes of computers
differ or not.

Here, the null hypothesis    
0 1 2 3H : μ μ μ  against the alternative hypothesis

   
A 1 2 3H : μ μ μ  .

Now, the ANOVA model using α - cut interval method for given fuzzy data is tabulated
below:

The ANOVA tables for “Lower level α - cut interval” and “Upper level α - cut
interval” are given below:

Makes
A B C

 3, 5, 7, 8  6, 8, 10, 13  4, 6, 8, 9

 4, 6, 9, 10  8, 9, 11, 12  2, 4, 5, 7

 6, 8, 10, 11  9, 11, 13, 15  2, 5, 7, 9

 8, 10, 12, 14  9, 12, 14, 15  2, 5, 8, 10

 5, 7, 9, 12  2, 4, 6, 9  1, 2, 4, 7

Make
Sample (Observation j)

1 2 3 4 5
A 3+2, 8- 4+2, 10- 6+2, 11- 8+2, 14-2 5+2, 12-3

B 6+2, 13-3 8+, 12- 9+2, 15-2 9+3, 15- 2+2, 9-3

C 4+2, 9- 2+2, 7-2 2+3, 9-2 2+3, 10-2 1+, 7-3
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Lower level α - cut interval:

The null hypothesis L L L L
0 1 2 3H : μ μ μ  against the alternative hypothesis

L L L L
A 1 2 3H : μ μ μ  .

Upper level α - cut interval:

The null hypothesis U U U U
0 1 2 3H : μ μ μ  against the alternative hypothesis

U U U U
A 1 2 3H : μ μ μ  .

The ANOVA table for lower level model:

Here, N = 15 and in  5, 5, 5 for the makes A, B, C respectively.

T = 71 + 31α ;
2

2i

i i

T 1
321α + 1442α + 1953

n 5
    and

  2
2

ij ij ij
i j

a + α b - a 69α + 292α + 445   
L 21

Q 74α - 22α + 1634
15
    ; L 2

1

1
Q 2α - 76α + 818

15
    and

Make
Sample (Observation j)

1 2 3 4 5
A 3+2 4+2 6+2 8+2 5+2

B 6+2 8+ 9+2 9+3 2+2

C 4+2 2+2 2+3 2+3 1+

Make
Sample (Observation j)

1 2 3 4 5
A 8- 10- 11- 14-2 12-3
B 13-3 12- 15-2 15- 9-3
C 9- 7-2 9-2 10-2 7-3

S.V. S.S. d.f. M.S. F-ratio  L
CF

Between Classes L
1Q  h - 1 = 3 1 2 

L
L 1
1

Q
M

2
 L

L 1
C L

2

M
F

M


Within Classes L
2Q  N - h = 15 3 12 

L
L 2
2

Q
M

12

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L 2
2

1
Q 24α + 18α + 272

5
    . And L 2

1

1
M 2α - 76α + 818

30
    ;

L 2
2

1
M 24α + 18α + 272

60
    and

2
L
C 2

2α - 76α + 818
F

12α + 9α + 136
 
  
 

where 0 α 1  and L
CF

is the calculated value of ‘F’ at lower level model. Now, the tabulated value of ‘F’ at
k = 5% level of significance with    h - 1,  N - h 2,  12 degrees of freedom is

 t at 5%F 3.88 . Since,    L
C t at 5%F  > F α, 0 α 1   , we reject the null hypothesis L

0H .

There is a significant difference in the durability of the 3 makes of computers at
lower level of α - cut .

The ANOVA table for upper level model:

Here, N = 15 and in  5, 5, 5 for the makes A, B, C respectively.

T = 161 - 28α ;
2

2i

i i

T 1
264α - 3000α + 8885

n 5
    and

  2
2

ij ij ij
i j

d - α d - c 62α - 596α + 1829   
U 21

Q 146α + 76α + 1514
15
    ; U 2

1

1
Q 8α + 16α + 734

15
    and

U 2
2

1
Q 46α + 20α + 260

5
    . And U 2

1

1
M 8α + 16α + 734

30
    ;

U 2
2

1
M 46α + 20α + 260

60
    and

2
U
C 2

8α + 16α + 734
F

23α + 10α + 130
 
  
 

where 0 α 1  and

U
CF is the calculated value of ‘F’ at upper level model. And the tabulated value of ‘F’ at

k = 5% level of significance with    h - 1,  N - h 2,  12 degrees of freedom is

 t at 5%F 3.88 . Here,    U
C t at 5%F  > F α, 0 α 1   , we reject the null hypothesis U

0H .

There is a significant difference in the durability of the 3 makes of computers at
upper level of α - cut .

S.V. S.S. d.f. M.S. F-ratio  U
CF

Between Classes U
1Q  h - 1 = 3 1 2 

U
U 1
1

Q
M

2
 U

U 1
C U

2

M
F

M


Within Classes U
2Q  N - h = 15 3 12 

U
U 2
2

Q
M

12

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5. Conclusion
Therefore, the null hypotheses L

0H and U
0H are rejected  α, 0 α 1   .  We conclude

in general that there is a significant difference between in the durability of the 3 makes of
computers.
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