Annals of Pure and Applied Mathematics Vol. 11, No. 1, 2016, 79-83 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 January 2016 www.researchmathsci.org

# **On Edge Neighborhood Graphs**

V.R.Kulli

Department of Mathematics Gulbarga University, Gulbarga 585 106, India e-mail: vrkulli@gmail.com

Received 1 January 2016; accepted 10 January 2016

Abstract. Let G = (V, E) be a graph. The edge neighborhood graph  $N_e(G)$  of G is the graph with the vertex set  $E \cup S$ , where S is the set of all open edge neighborhood sets of edges of G and with two vertices u, v in  $N_e(G)$  adjacent if  $u \in E$  and v is an open edge neighborhood set containing u. In this paper, some properties of this new graph are established.

Keywords: open edge neighborhood set, edge neighborhood graph

## AMS Mathematics Subject Classification (2010): 05C72

## **1. Introduction**

All graphs considered in this paper are finite, undirected without loops and multiple edges. We denote by p the number of vertices and q the number of edges of such a graph. Any undefined term here may be found in Kulli [1].

Let G = (V, E) be a graph. For any edge  $e \in E$ , the open edge neighborhood N(e) of e is the set of edges adjacent to e. We call N(e) is the open edge neighborhood set of an edge e of G. Let  $E = \{e_1, e_2, \ldots, e_q\}$  and let  $S = \{N(e_1), N(e_2), \ldots, N(e_q)\}$  be the set of all open edge neighborhood sets of edges of G.

The neighborhood graph N(G) of a graph G = (V, E) is the graph with the vertex set  $V \cup S$  where S is the set of all open neighborhood sets of vertices of G and with two vertices  $u, v \in V \cup S$  adjacent if  $u \in V$  and v is an open neighborhood set containing u. This concept was introduced by Kulli in [2]. Many other graph valued functions in graph theory were studied, for example, in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

The degree of an edge uv is defined to be deg u + deg v - 2. An edge is called an isolated edge if deg uv = 0.

The following will be useful in the proof of our result.

**Theorem A** [1, *p*.66]. A nontrivial graph is bipartite if and only if all its cycles are even.

## 2. Edge neighborhood graphs

The concept of the neighborhood graph inspires us to introduce the edge neighborhood graph of a graph.

#### V.R. Kulli

**Definition 1.** Let G = (V, E) be a graph. The edge neighborhood graph  $N_e(G)$  of G is the graph with the vertex set  $E \cup S$  where S is the set of all open edge neighborhood sets of the edges of G and with two vertices u, v in  $N_e(G)$  adjacent if  $u \in E$  and v is an open edge neighborhood set containing u.

**Example 2.** In Figure 1, a graph *G* and its edge neighborhood graph  $N_e(G)$  are shown. For the graph *G* in Figure 1,  $N(e_1) = \{e_2, e_3\} N(e_2) = \{e_1, e_3, e_4\}, N(e_3) = (e_1, e_2, e_4\} N(e_4) = \{e_2, e_3\}$  are the open edge neighborhood sets of edges of *G*.





We note that the edge neighborhood graph is defined only if G has no isolated vertices.

**Theorem 3.** For any graph G without isolated vertices and without isolated edges,  $N_e(G)$  is bipartite.

**Proof:** By definition, no two vertices corresponding edges in  $N_e(G)$  are adjacent and no two vertices corresponding to open edge neighborhood sets in  $N_e(G)$  are adjacent. Thus  $N_e(G)$  has no odd cycles. Thus by Theorem A,  $N_e(G)$  is bipartite.

**Remark 4.** If *e* is an isolated edge of a graph, then *N*(*e*) is a null set.

**Theorem 5.** If G is a (p, q) graph without isolated vertices and without isolated edges, then the edge neighborhood graph  $N_e(G)$  of G has 2q vertices and  $\frac{1}{2} \left[ \sum d(e_i) + \sum d(N(e_i)) \right]$  edges.

**Proof:** Let *G* be a (p, q) graph without isolated vertices and without isolated edges. Then for each edge *e* of *G*, the open edge neighborhood set N(e) exists. Therefore *G* has *q* open edge neighborhoods sets. Since the vertex set of  $N_e(G)$  is the union of the set of edges and the set of open edge neighborhood sets of *G*, it implies that  $N_e(G)$  has 2q vertices.

In  $N_e(G)$ , the corresponding vertex  $v_i$  of the edge  $e_i$  of G contributes  $\sum d(e_i)$  edges and corresponding vertex  $N(v_i)$  of the open edge neighborhood set  $N(e_i)$  of G contributes  $\sum d(N(e_i))$  edges. Clearly  $\sum d(e_i) = \sum d(N(e_i))$ . Thus the number of edges in  $N_e(G)$ 

On Edge Neighborhood Graphs

$$=\frac{1}{2}\left[\sum d(e_i) + \sum d(N(e_i))\right].$$

**Theorem 6.** If  $C_p$  is a cycle with  $p \ge 3$  vertices, then  $N_e(C_p) = 2C_p$ , if p is even  $= C_{2p}$  if p is odd. **Proof:** Let  $E(C_p) = \{e_1, e_2, ..., e_p\}, p \ge 3$ . Let  $N_e(e_i) = Y_i, 1 \le i \ge p$ . Then  $V(N_e(C_p)) = \{e_1, e_2, ..., e_p, Y_1, Y_2, ..., Y_p\}$ . Consider  $Y_1 = N_e(e_1) = \{e_2, e_p\}$   $Y_2 = N_e(e_2) = \{e_1, e_3\}$   $Y_3 = N_e(e_3) = \{e_2, e_4\}$  ... ...  $Y_{p-1} = N_e(e_{p-1}) = \{e_{p-2}, e_p\}$  $Y_p = N_e(e_p) = \{e_{p-1}, e_1\}.$ 

In  $N_e(C_p)$ , no two corresponding vertices of  $e_1, e_2, ..., e_p$  are adjacent and no two corresponding vertices of  $Y_1, Y_2, ..., Y_p$  are adjacent. The adjacencies of the vertices in  $N_e(C_p)$  are

 $Y_1$  is adjacent with  $e_2$  and  $e_p$  $Y_2$  is adjacent with  $e_3$  and  $e_1$  $Y_3$  is adjacent with  $e_4$  and  $e_2$ ::::.:.: $Y_{p-1}$  is adjacent with  $e_{p-2}$  and  $e_p$  $Y_p$  is adjacent with  $e_{p-1}$  and  $e_1$ .

**Case 1.** Suppose *p* is even. Then the adjacent of vertices of  $N_e(C_p)$  is given below.  $Y_1 e_2 Y_3 e_4 \dots Y_{p-1} e_p Y_1$ 

and  $Y_2 e_3 Y_4 e_5 \dots Y_p e_{p-1} Y_2$ .

Since p is even,  $Y_1 e_2 Y_3 e_4 \dots Y_{p-1} e_p Y_1$  is a cycle with p vertices and  $Y_2 e_3 Y_4 e_5 \dots Y_p e_{p-1} Y_2$  is also a cycle with p vertices and they are disjoint. Thus  $N_e(C_p) = 2C_p$ .

**Case 2.** Suppose *p* is odd. Then the adjacency of the vertices of  $N_e(C_p)$  is  $e_1 Y_2 e_3 Y_4 e_5...$  $e_p Y_1 e_2 Y_3 e_4... Y_p e_1$ , which is a cycle with 2*p* vertices. Thus  $N_e(C_p) = C_{2p}$ . Therefore  $N_e(C_p) = 2C_p$ , if *p* is even  $= C_{2p}$ , if *p* is odd.

**Theorem 7.** If  $P_p$  is a path with  $p \ge 3$  vertices, then N(P) = 2P

 $N_e(P_p) = 2 P_{p-1}.$ 

**Proof:** We prove this result by induction on *p*. The result is true for p=3 or 4. Assume the result is true for p = r. We now prove the result is true for p=r+1. Let *G* be a path with r+1 vertices and  $v_{r+1}$  be an end vertex of *G*. Then  $G_1 = G - v_{r+1}$  is a path with *r* vertices and  $v_r$  is an endvertex of  $G_1$ . By hypothesis,  $Ne(G_1) = 2P_{r-1}$ . In *G*,  $e_r$  is an end edge. Then

#### V.R. Kulli

 $N(e_r) = e_{r-1}$ . Clearly, in  $N_e(G)$ , the corresponding vertex of  $N(e_r)$  is adjacent with the corresponding vertex of  $e_{r-1}$  in one component and the corresponding vertex of  $e_r$  is adjacent with the corresponding vertex of  $N(e_{r-1})$  in another component. Hence  $N_e(G) = 2P_r$ . Thus the result is true for p = r+1. This completes the proof.

**Theorem 8.**  $N_e(G) = \overline{K}_p$  if and only if  $G = pK_2, p \ge 1$ .

**Proof:** Suppose  $G = pK_2$ . Then each component of *G* is an edge *e*. By Remark 4, N(e) is a null set. Clearly  $N_e(G) = \overline{K}_p$ .

Conversely suppose  $N_e(G) = \overline{K}_p$ . We now prove that  $G = pK_2$ . Assume there exists a component of G which has at least 2 edges, say  $uv = e_1$ , and  $vw=e_2$ . Then  $N(e_1)$  and  $N(e_2)$  are nonempty open edge neighborhood sets of edges  $e_1$  and  $e_2$  respectively. Thus  $N_e(G)$  contains an edge. Thus  $N_e(G) \neq \overline{K}_p$ , which is a contradiction. Thus each component of G is an edge. Hence  $G = pK_2$ .

**Theorem 9.**  $N_e(G) = 2mP_2$  if and only if  $G = mP_3$ ,  $m \ge 1$ .

**Proof:** Suppose  $N_e(G) = 2mP_2$ ,  $m \ge 1$ . Now we prove that  $G = mP_3$ . Assume  $G \ne mP_3$ . We consider the following two cases.

**Case 1.** Suppose  $G = mP_2$ . Then  $N_e(G) = mP_1$ , which is a contradiction.

**Case 2.** Suppose  $G = mG_1$  where  $G_1$  is a component of G with at least 4 vertices. Then there exists at least one open edge neighborhood set N containing two or more edges of G. By definition, N will form a subgraph  $P_3$  in  $N_e(G)$ , which is a contradiction.

From the above two cases, we conclude that  $G = mP_3$ .

Conversely suppose  $G = mP_3$ . If m = 1, then  $G = P_3$ . Clearly each edge  $e_i$  forms an open edge neighborhood set  $\{e_i\}$ . Thus  $e_i$  and  $\{e_i\}$  are adjacent vertices in  $N_e(G_1)$ . Since  $G_1$  has 2 edges, it implies that  $N_e(P_3) = 2P_2$ . Hence if G has m components, each of which is  $P_3$ , then  $N_e(mP_3) = 2mP_2$ .

**Theorem 10.** If a graph G is r-regular, then  $N_e(G)$  is 2(r-1) -regular.

**Proof:** Suppose *G* is *r*-regular,  $r \ge 1$ . Let V(G) be the vertex set of *G*. Then the degree of each vertex is *r* and deg  $e = \deg u + \deg v - 2 = 2r - 2$ , where  $u, v \in V(G)$ . Thus in  $N_e(G)$ , deg  $e = \deg N(e) = 2r - 2$ . Hence  $N_e(G)$  is 2(r - 1)-regular.

#### REFERENCES

- 1. V.R.Kulli, *College Graph Theory*, Vishwa International Publications, Gulbarga, India (2012).
- 2. V.R.Kulli, The neighborhood graph of a graph, *International Journal of Fuzzy Mathematical Archive*, 8(2) (2015) 93-99.
- 3. V.R. Kulli, On the plick graph and the qlick graph of a graph, *Research Journal*, 1, (1988) 48-52.
- 4. V.R.Kulli, On line block graphs, *International Research Journal of Pure Algebra*, 5(4), (2015) 40-44.
- 5. V.R.Kulli, The block-line forest of a graph, *Journal of Computer and Mathematical Sciences*, 6(4) (2015) 200-205.

#### On Edge Neighborhood Graphs

- 6. V.R.Kulli, On block line graphs, middle line graphs and middle block graphs, *International Journal of Mathematical Archive*, 6(5) (2015) 80-86.
- 7. V.R. Kulli, On full graphs, *Journal of Computer and Mathematical Sciences*, 6(5) (2015) 261-267.
- 8. V.R. Kulli, The semifull graph of a graph, *Annals of Pure and Applied Mathematics*, 10(1) (2015) 99-104.
- 9. V.R. Kulli, On semifull line graphs and semifull block graphs, *Journal of Computer* and *Mathematical Sciences*, 6(7) (2015) 388-394.
- 10. V.R. Kulli, On full line graph and the full block graph of a graph, *International Journal of Mathematical Archive*, 6(8) (2015) 91-95.
- 11. V.R.Kulli, On qlick transformation graphs, *International Journal of Fuzzy Mathematical Archive*, 8(1) (2015) 29-35.
- 12. V.R. Kulli, On middle neighborhood graphs, International Journal of Mathematics and its Applications, 3(4-D) (2015) 79-83.
- 13. V.R.Kulli, On neighborhood transformation graphs, *Annals of Pure and Applied Mathematics*, 10(2) (2015) 239-245.
- 14. V.R.Kulli and N.S.Annigeri, The ctree and total ctree of a graph, *Vijnana Ganga*, 2 (1981) 10-24.
- 15. V.R.Kulli and B.Basavanagoud, On the quasivertex total graph of a graph, J. *Karnatak University Sci.*, 42 (1998) 1-7.
- 16. V.R. Kulli and M.S. Biradar, The line splitting graph of a graph, *Acta Ciencia Indica*, 28 (2001) 33-43.
- 17. V.R. Kulli and M.S. Biradar, The point block graph of a graph, *Journal of Computer* and Mathematical Sciences, 5(5) (2014) 476-481.
- 18. V.R.Kulli and M.S.Biradar, The middle blict graph of graph, *International Research Journal of Pure Algebra*, 5(7) (2015) 111-117.
- 19. V.R. Kulli and K.M.Niranjan, The semi-splitting block graph of a graph, *Journal of Scientific Research*, 2(3) (2010) 485-488.
- 20. V.R. Kulli and N.S. Warad, On the total closed neighbourhood graph of a graph, J. Discrete Mathematical Sciences and Cryptography, 4 (2001) 109-114.