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Abstract. The vertices and edges of a gr&phre called the elements @f If e= uvis an
edge ofG, then the vertexi and edgee are incident as are ande. For a (molecular)
graph, the first multiplicativék Banhatti index Bll,(G) is equal to the product of the
sums of degrees of the pairs of incident elemefit$s.0Also we define the first
multiplicative K Banhatti coindex of graphs. In this paper, we atitia study of the first
multiplicative K Banhatti index of graphs.
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1. Introduction

By a graph, we mean a finite, undirected, withadpls, multiple edges and isolated
vertices. LeiG be a graph witm vertices andn edges with vertex s&fG) and edge set
E(G). Any undefined term in this paper may be foun#ini [1].

The degreals(v) of a vertexv is the number of vertices adjacentvtol he edge
connecting the verticasandv is denoted byv. If e =uv is an edge o, then the vertex
u and edgee are incident as areande. Let dg(e) denote the degree of an edgm G,
which is defined byls(€) = dg(u) + dg(v) — 2 withe = uv.

The vertices and edges of a graph are calledeitsents.

The firstK Banhatti index is defined as the sum of the suntbefiegrees of the
pairs of incident elements:

B, (G)=2[ ds (u) + s (e

whereue means that the vertexand edge are incident irG.
The firstK Banhatti coindex is defined as the sum of the sofrike degrees of
the pairs of nonincident elements:

B/(6)= X[ (u) +de (6]
whereu* e means that the vertexand edges are nonincident iG.
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The firstK Banhatti index and coindex were introduced by Kiull[2]. Recently
many other indices and coindices of graphs weriedy for example, in [3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13].

In this paper, we consider the multiplicative aats of the firsK Banhatti index
and the firstK Banhatti coindex of graphs. Recently many othertiplidative indices
and coindices of graphs were studied, for exanmp|&4, 15, 16, 17, 18, 19].

2. First multiplicative K Banhatti index
We introduce the first multiplicativ& Banhatti index of a graph in terms of incident
vertex-edge degrees.

Definition 1. The first multiplicativeK Banhatti index of a grap® is defined as
BII,(G)=11[ds(u) +ds (€)]
whereue means that the vertexand edge are incident irG.

Proposition 2. LetC, be a cycle witm=3 vertices .Then

BIl,(C,)=4""
Proof: Let C, be a cycle witm=3 vertices. TherC, hasn edges. Every edge &, is
incident with exactly two vertices. Consider

BIl(C,)=11[d, (u)+d (e)]=!

n
I

(2+2)° = 4"

Proposition 3. LetK, be a complete graph withvertices andn edges. Then
BIl, (K,)=(3n-5)"""

Proof: LetK, be a complete graph withvertices andm= edges. Every edge

n(n-1)
2
of K, is incident with exactly two vertices. Consider

Bl (K,)=11[d (u)+d, (e)]= ([(n-1)+(2n- 4T
=(3n-5""=(;-5"""

Proposition 4. LetK,, , be a compete bipartite graph. Then

BIl(Km ) = (Mm+2n = 2)™ (2m+n — 2)™.
Proof: Let K., be a complete bipartite graph withtn vertices,mn edges, \{;|=m,
[V2|=n, V(Kn) = V10 V,. Every edge oK,,, is incident with one vertex &f; and another
vertex ofV,. LetV; = {vy, Vo,....Vm} and Vo = {wy, Wy, ..., Wy}. Clearly every vertex; of
V; is incident withe; edgesj = 1, 2, ...,n and every vertew; of V, is incident withe;,
edgesj =1, 2, ....m. Consider

BIl, (Kpy ) = LL[de (u)+d,, ()]
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= Vllgk,l[de,n (v)+d, (qj )]W]IEINZ[de (WJ ) +de (qj )]
= mIq[n+(m+ n—Z)}inln[m+(m+ n-2)]
=(m+2n-2"(2m+n-2J".
Corollary 5. LetK,, , be a complete bipartite graph. Then
Bl (K,,)=(3n-2)" .
Corollary 6. LetK; , be a star. Then
BIl, (K,,)=(2n-1)"n".

Theorem A[1, p, 13]. Let G be anr-regular graph withm vertices. Thei hasn—2r edges.

Theorem 7. Let G be anr-regular graph witim vertices. Then
BIl,(G)=(3r-2)".
Proof: Let G be anr-regular graph witm vertices. By Theorem AG hasn—zr edges.

Every edge o6 is incident with exactly two vertices. Consider

nr

BII,(G) = 11 [ dg (u) +dg (€)] = ﬁ[r +(2r-2)T
=(3r-2"2=(a-2"

3. First multiplicative K Banhatti coindex

We define the first multiplicativé& Banhatti coindex of a graph in terms of nonincident

vertex edge degrees.

Definition 8. The first multiplicativeK Banhatti coindex of a grapghis defined as
BI14(6) =11 [da (u) +de (¢)]
whereu* e means that the vertexand edges are nonincident i®.
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