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Abstract. The vertices and edges of a graph G are called the elements of G. If e = uv is an 
edge of G, then the vertex u and edge e are incident as are v and e. For a (molecular) 
graph, the first multiplicative K Banhatti index  BII1(G) is equal to the product of the 
sums of degrees of the pairs of incident elements of G. Also we define the first 
multiplicative K Banhatti coindex of graphs. In this paper, we initiate a study of the first 
multiplicative K Banhatti index of graphs. 
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1. Introduction 
By a graph, we mean a finite, undirected, without loops, multiple edges and isolated 
vertices. Let G be a graph with n vertices and m edges with vertex set V(G) and edge set 
E(G). Any undefined term in this paper may be found in Kulli [1]. 
 The degree dG(v) of a vertex v is the number of vertices adjacent to v. The edge 
connecting the vertices u and v is denoted by uv. If e = uv is an edge of G, then the vertex 
u and edge e are incident as are v and e. Let dG(e) denote the degree of an edge e in G, 
which is defined by dG(e) = dG(u) + dG(v) – 2  with e = uv. 
 The vertices and edges of a graph are called its elements. 
 The first K Banhatti index is defined as the sum of the sums of the degrees of the 
pairs of incident elements:  

( ) ( ) ( )1 G G
ue

B G d u d e=  +  ∑  

where ue means that the vertex u and edge e are incident in G. 
 The first K Banhatti coindex is defined as the sum of the sums of the degrees of 
the pairs of nonincident elements:  

( ) ( ) ( )1
*

G G
u e

B G d u d e=  +  ∑  

where u*e means that the vertex u and edge e are nonincident in G.  
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The first K Banhatti index and coindex were introduced by Kulli in [2]. Recently 
many other indices and coindices of graphs were studied, for example, in [3, 4, 5, 6, 7, 8, 
9, 10, 11, 12, 13]. 
 In this paper, we consider the multiplicative variants of the first K Banhatti index 
and the first K Banhatti coindex of graphs. Recently many other multiplicative indices 
and coindices of graphs were studied, for example in [14, 15, 16, 17, 18, 19]. 
 
2. First multiplicative K Banhatti index 
We introduce the first multiplicative K Banhatti index of a graph in terms of incident 
vertex-edge degrees. 
 
Definition 1. The first multiplicative K Banhatti index of  a graph G is defined as  

( ) ( ) ( )1 G G
ue

BII G II d u d e=  +    

where ue means that the vertex u and edge e are incident in G. 
 
Proposition 2. Let Cn be a  cycle with n≥3 vertices .Then  

( ) 2
1 4 .n

nBII C =  

Proof: Let Cn be a cycle with n≥3 vertices. Then Cn has n edges. Every edge of Cn is 
incident with exactly two vertices. Consider 

( ) ( ) ( ) ( )2 2
1 2 2 4 .

n n

n
n

n C C
ue

BII C II d u d e II = + = + =   

 
Proposition 3. Let Kn be a complete graph with n vertices and m edges. Then  

( ) ( ) ( )1

1 3 5 .
n n

nBII K n
−= −  

Proof: Let Kn be  a complete graph with n vertices and 
( )1

2

n n
m

−
=  edges. Every edge 

of Kn is incident with exactly two vertices. Consider  

( ) ( ) ( ) ( ) ( ) 2

1 1 2 4
n n

m

n K K
ue

BII K II d u d e II n n = + =  − + −     

 ( ) ( ) ( )2 1
3 5 3 5 .

m n n
n n

−= − = −  

  
Proposition 4. Let Km, n be a compete bipartite graph.  Then 

BII1(Km, n) = (m+2n – 2)mn (2m+n – 2)mn. 
Proof: Let Km,n be a complete bipartite graph with m+n vertices, mn edges, |V1|=m, 
|V2|=n, V(Km,n) = V1 ∪ V2. Every edge of Km,n is incident with one vertex of V1 and another 
vertex of V2. Let V1 = {v1, v2,…,vm} and V2 = {w1, w2, …, wn}. Clearly every vertex vi of 
V1 is incident with eij edges, j = 1, 2, …, n and every vertex wj of V2 is incident with eij, 
edges, i = 1, 2, …, m. Consider  

( ) ( ) ( )
, ,1 , m n m nm n K K

ue
BII K II d u d e = +   
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 ( ) ( ) ( ) ( )
, , , ,

1 2
m n m n m n m n

i j
K i K ij K j K ij

v V w V
II d v d e II d w d e
∈ ∈
   = + +      

 ( ) ( )2 2
mn mn

II n m n II m m n=  + + −   + + −      

 = (m + 2n – 2)mn (2m + n – 2)mn.   
 
Corollary 5. Let Kn, n be a complete bipartite graph. Then  

( ) ( )
22

1 , 3 2 .
n

n nBII K n= −  

 
Corollary 6. Let K1, n be a star. Then  

( ) ( )1 1, 2 1 .
n n

nBII K n n= −  

Theorem A[1, p, 13]. Let G be an r-regular graph with n vertices. Then G has 
2

nr
 edges. 

 
Theorem 7. Let G be an r-regular graph with n vertices. Then  

( ) ( )1 3 2 .
nr

BII G r= −  

Proof: Let G be an r-regular graph with n vertices. By Theorem A, G has 
2

nr
 edges. 

Every edge of G is incident with exactly two vertices. Consider  

( ) ( ) ( ) ( )
2 2

1 2 2

nr

G G
ue

BII G II d u d e II r r=  +  =  + −      

 ( ) ( )2. 23 2 3 2 .
nr nr

r r= − = −  

 
3. First multiplicative K Banhatti coindex 
We define the first multiplicative K Banhatti coindex of a graph in terms of nonincident 
vertex edge degrees.  
 
Definition 8. The first multiplicative K Banhatti coindex of  a graph G is defined as 

( ) ( ) ( )1
*

G G
u e

BII G II d u d e=  +    

where u*e means that the vertex u and edge e are nonincident in G. 
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