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Abstract. Several variants of the concept of domination in graphs have been introduced 
and investigated. Power domination is a recently introduced variant in the study of 
modelling by graphs, the problem of monitoring  the state of an electric power system.  
On the other hand coloring of graphs which has many applications, has also been 
extensively investigated. The authors introduced the concept of power dominator 
coloring requiring each vertex of a graph to power dominate an entire color class and also 
the associated  power dominator chromatic number which is the minimum cardinality of 
such sets of vertices in a graph. In this paper we find the power dominator chromatic 
number for certain special classes of graphs. 
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1. Introduction 
Haynes et al. [4] introduced the concept of power domination in a graph while dealing 
with the problem of modelling by graphs, the activity of monitoring the state of an 
electric power system.  In the study of coloring of graphs, the concept of dominator 
coloring considered in [2] assigns a proper coloring to the vertices, requiring every vertex 
to dominate a color class which consists of all the vertices with the same color.  
Combining the notions of power domination and dominator coloring, a new notion, called 
power dominator coloring which requires every vertex to power dominate all vertices in a 
color class was introduced in [11]. The power dominator chromatic number )(Gpdχ ,  for 

a given graph G  is the minimum cardinality of such color classes.  Certain properties of 
)(Gpdχ  were derived in [11], besides computing this number for certain classes of 

graphs. Here we compute )(Gpdχ  for certain special kinds of graphs that are of interest 

in various contexts  in the study of different properties of graphs.  
 
2. Basic definition 
We recall some notions on graphs needed in the subsequent sections. We are concerned 
here with only simple, undirected graphs. We refer to [1] for basic concepts in graph  
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theory. 
 
Let ),( EVG  be a graph. A subset VS ⊆ is a dominating set [5] of G  if every vertex in 

SV − has at least one neighbor in S . A subset VS ⊆  is a power dominating set [4,5] of 

),( EVG  if all the vertices of V  can be observed recursively by the following rules: (i) 

all vertices in [ ]SN  are observed initially and (ii) if an observed vertex u  has all its 
neighbors observed except one non-observed neighbor v , then v  is observed (by u ). We 
then say that S power dominates the vertices of the graph .G  
 
A power dominator coloring [8] of a graph ),( EVG  is a proper coloring of G  such that 

every vertex of V  power dominates all vertices of at least one color class of G . The 
power dominator chromatic number )(Gpdχ  is the minimum number of colors required 

for a power dominator coloring of .G  
We give an example graph in Fig. 1 with )(Gpdχ = 4. The numbers indicated in the 

vertices stand for the colors assigned to the vertices. The vertices y, z, r power dominate 
the color class {x}. In fact y dominates (and hence power dominates)  the color class {x} 
and so the vertex z  power dominates the color class {x}.  Likewise, the vertices u, v, p, q 
power dominate the color class {w}.  The vertex w power dominates itself and x also 
dominates itself. It can be seen with a little reflection that  )(Gpdχ  cannot be less than 4. 

 
 
 
 
 
 
 
 
 
 
 
 
We now recall certain special kinds of graphs. 
Definition 1.  (i) [6] Given a path nP  on n  vertices nuu ,,1 L ,  centipede is a graph 

obtained from nP  adding n  new vertices nvv ,,1 L    and joining ui  with vi,  for  

.1 ni ≤≤  

(ii) [3,6]  The �-barbell graph �(��, ��) is a simple graph obtained by connecting two 
copies of the complete graph �� by an edge joining any one vertex in one copy with any 
other vertex in the other copy. 
(iii) [6] The �-sunlet graph �� is a graph on 2n  vertices with a cycle 	� and each vertex 
of the cycle being joined to a new pendant vertex.  
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Figure 1: A graph G with   
��() = 4 
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(iv) [6, 9] The crown graph ��� for an integer � > 2 is the graph with the vertex set 
{��, ��, … , ��, ��, ��, … , ��} and the edge set {��� , ���: 1 ≤ !, " ≤ �	, ! ≠ "	} 
 

v) [9] The windmill graph ��
(%) is the graph obtained by taking & copies of the complete 

graph ��	with a vertex in common. 

3.  Power dominator chromatic number of special graph classes 

We compute the power dominator chromatic number of the special graphs described in 
Definition 1. 

Theorem 1.   For a centipede G,  
��() = �,  � > 1. 

Proof: Let the vertices of the path nP  in G, be  nuu ,,1 L  in this order with 1u  and nu   as 

the ends of the path and the remaining n vertices be nvv ,,1 L .  Assign color 1 to the 

vertices nvv ,,1 L ,  and  color 2 to 1u  and .nu   Assign a distinct color i+1  to the vertex  

.12, −≤≤ nivi  Due to power domination, the vertices 1u  and 1v  power dominate the 

color class { 2u } while  nu   and  nv   power dominate  the color class { 1−nu }. The vertex 

iv  power dominates the color class { iu }, for  2 ≤ ! ≤ �-1.  Also, each  iu , 2 ≤ ! ≤ �-1 

power dominates itself.  Note that the number n of colors cannot be reduced. Hence 

��() = �. 

Remark.  (i)  Note that for  the centipede  , the dominator chromatic number 
�() =
� + 1  [6]  while 
��() = �.  (ii)  A centipede graph G with 
��() = 4  is shown in 
Fig. 2. The numbers in brackets are the colors assigned to the vertices. 

 

 

 

 

  

 

 
Theorem 2.  For the �-barbell graph �(��, ��), � > 1, 
��(�(��, ��)) = �. 
Proof:  Let ( = {��, ��, … , ��} be the vertex set of one copy X of  �� and ) =
{��, ��, �*, … , ��} be the vertex set of another copy Y of   �� .  Let e  be the edge 
joining a vertex  ��  with  �� .  We note that the power dominator chromatic number of 
��  is n  [11].  So we color the vertices of X as well as the vertices of Y with colors  
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Figure 2: A Centipede Graph G  with  
,�() = 4 
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1, 2, … , �  so that   ��  and  �� receive different colors. Note that only one of the vertices 
of Y is adjacent to only one of the vertices of  X .  Also there will be a vertex in X  , say 
�- , which will have the color assigned to  �� .	 Likewise there will be a vertex in Y  , say 
�/ , which will have the color assigned to �� .  Now each vertex of X  power dominates 

the color class  },{ jk wv while each vertex of Y  power dominates the color class 

},{ li wv . Hence 
��(�(��, ��)) = �. 

Remark:  (i)  Note that for  �-barbell graph �(��, ��), the dominator chromatic number 

�(�(��, ��) = � + 1  [6]  while 
��(�(��, ��)) = �. 

(ii)  A  barbell graph �(�+, �+), with 
����(�+, �+)� = 4  is shown in Fig. 3. 

 

 

 

 

 

 

Theorem 3.  For �- sunlet graph ��,			� ≥ 3, 
��(��) = � + 1. 
Proof:  Let the vertices in cycle 	�	 of the �-sunlet graph ��	be  ��, ��, … , ��  and  the 
remaining n pendant vertices be ��, ��, … , ��  with  �� 	 adjacent to   ��.  Assign color 1 to 
all the vertices ��, ��, … , ��		and assign a distinct color i +1  to the vertex  �� 	, 1 ≤ ! ≤ �  
in the cycle.  The vertex  �� 	 power dominates the color class  �� , 1 ≤ ! ≤ � . Each  
�� , 1 ≤ ! ≤ � power dominates itself. Hence 
��(��) = � + 1. 

Remark: A sunlet graph �+,  with 
��(�+) = 5  is shown in Fig. 4. 

 

 

 

 

 

 

 

 

Figure 3: A Barbell Graph	�(�+, �+	) with  
,�(�(�+, �+	)) = 4 
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Figure 4:  A Sunlet Graph with  
,�(��) = 5 
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Theorem 4. Let ��� be a crown graph. Then 
��(���) = 4, where � ≥ 4. 
Proof: Let the vertices of the  crown graph  ��� be ��, ��, … , ��, ��, ��, … , ��.  Each  �� 
is adjacent to all the vertices  �� , " ≠ !.  Assign  color 1 to ��, �*, … , �� and color the 
vertex �� by  2. Now assign color 3  to the vertices  ��, �*, … , �� and color the vertex �� 
by 4.  It can be seen that every vertex power dominates at least one color class.  Hence 

�����

�� = 4 when � ≥ 4. 

Remark. (i) Note that the dominator chromatic number is 4  for the crown graph �*
�, 

while the power dominator chromatic number 
����*
�� = 2,  although for � ≥ 4, both are 

equal. (ii) A crown Graph with  
,�  ���
3 � = 4 is shown in Fig.5 

 

 

 

 

 

 

Theorem 5. Let   = ��
�%�  be a windmill graph. Then 
���� = � 

Proof: Let  �  be the common vertex of the & copies �� of the windmill graph. Assign 
color 1 to �  and use � − 1 distinct colors for a proper coloring of vertices in each copy.  

The vertex �  power dominates itself.  Every other vertex in  being adjacent to � power 
dominates the color class {�}.  Hence  
���� = �. 

4. Conclusion 
The study of domination in graphs has been of great interest  (see, for example, 
[4,5,7,8,10] ).  The notion of power dominator coloring of a graph was introduced in [11] 
and this number  
����  is computed here for several kinds of graphs G. It remains to 
explore other properties of 
����.   
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