Annals of Pure and Applied Mathematics Vol. 11, No. 2, 2016, 109-116 ISSN: 2279-087X (P), 2279-0888(online) Published on 8 June 2016 www.researchmathsci.org

Mean Cordial Labeling of Tadpole and Olive Tree

Ujwala Deshmukh¹ and Vahida Y Shaikh²

¹Department of Mathematics Mithibai College, Vile Parle (W) Mumbai 400056, Maharashtra, India Email: ujwala_deshmukh@rediffmail.com ²Department of Mathematics Maharashtra College of Arts, Science & Commerce Mumbai 400008, Maharashtra, India Email: vahida286@yahoo.com

Received 24February2016; accepted 15 March 2016

Abstract. Let f be a map from V(G) to $\{0,1,2\}$. For each edge uv assign the label

 $f^*(uv) = \left[\frac{f(u)+f(v)}{2}\right]$. f is called as a mean cordial labeling if $|v_f(i) - v_f(j)| \le 1$ and $|e_{f^*}(i) - e_{f^*}(j)| \le 1$, i, $j \in \{0,1,2\}$ where $v_f(x)$ and $e_{f^*}(x)$ denote the number of vertices and edges respectively labelled with x (x=0,1,2). A graph with mean cordial labeling is called mean cordial. In this paper, we prove the graphs Tadpole and Olive tree are mean cordial graphs.

Keywords: Mean cordial labeling, tadpole, olive tree

AMS Mathematics Subject Classification (2010): 05C78

1. Introduction

All graphs in this paper are finite, simple and undirected. The vertex set and edge set of a graph are denoted by V(G) and E(G) respectively. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. A useful survey on graph labeling by J. A. Gallian (2014) can be found in [2]. The concept of cordial labeling was introduced by Cahit in the year 1987 in [1]. Here we introduce the notion of mean cordial labeling. We investigate the mean cordial labeling of Tadpole and Olive tree.

Definition 1.1. Let f be a map from V(G) to {0,1,2}. For each edge uv assign the label $f^*(uv) = \left[\frac{f(u)+f(v)}{2}\right]$. f is called as a mean cordial labeling if $|vf(i) - vf(j)| \le 1$ and $|ef^*(i) - ef^*(j)| \le 1$; i, $j \in \{0,1,2\}$ where vf(x) and $ef^*(x)$ denote the number of vertices and edges respectively labelled with x(x=0,1,2). A graph with mean cordial labeling is called a mean cordial graph.

Definition 1.2. Tadpole T(n,l) is a graph in which Path P_l is attached to any one vertex of cycle C_n .

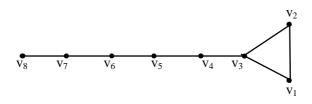


Figure 1: Tadpole (3,6)

Definition 1.3. Olive tree (T_k) is a rooted tree consisting of k branches where the ith branch is a path of length "i".

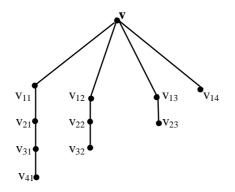


Figure 2: Olive tree T₄

2. Results

Theorem 2.1. Tadpole T(n,l) admits a mean cordial labeling except for $n+l \equiv 1 \pmod{3}$ where (n+l-1)/3 < n. **Proof:** Let v_1, v_2, \ldots, v_n be vertices of cycle C_n and $v_n, v_{n+1}, \ldots, v_{n+l-1}$ be vertices of path

P_1

Then, |V(T(n,l))| = n+l-1 and |E(T(n,l))| = n+l-1

 $\begin{array}{ll} \textbf{Case 1: } n+l \equiv \textbf{0} \ (\textbf{mod3}) \\ \text{Let } n+l = 3t, & t = 1,2,\dots \\ \text{Define } f: V(G) \rightarrow \{0,1,2\} \text{ as follows:} \\ f(v_i) = 0 & 1 \leq i \leq t \\ & = 2 & t+1 \leq i \leq 2t \\ & = 1 & 2t+1 \leq i \leq 3t\text{-}1 \\ \text{Define induced edge labelling } f^*: E(G) \rightarrow \{0,1,2\} \text{ as follows:} \end{array}$

 $\begin{array}{ll} f^{*}\left(v_{i}v_{i+1}\right)=0 & 1\leq i\leq t\text{-}1 \\ f^{*}(v_{i}v_{t+1})=1 & \\ f^{*}(v_{i}v_{i+1})=2 & t\text{+}1\leq i\leq 2t \\ f^{*}(v_{i}v_{i+1})=1 & 2t\text{+}1\leq i\leq 3t\text{-}2 \\ f^{*}(v_{n}v_{1})=0 & \text{if} \quad n\leq (n\text{+}1)/3 \\ =1 & \text{if} \quad n>(n\text{+}1)/3 \end{array}$

Mean Cordial Labeling Of Tadpole and Olive Tree

 $\begin{array}{lll} \underline{Subcase 1}: & n \leq (n+l)/3 \\ \hline \text{Then,} & \\ v_{f}(0) = t, & v_{f}(1) = t-1, & v_{f}(2) = t \\ e_{f^{*}}(0) = t, & e_{f^{*}}(1) = t-1, & e_{f^{*}}(2) = t \\ \hline \text{Thus,} & \\ |v_{f}(i) - v_{f}(j)| \leq 1 & \forall i, j \in \{0, 1, 2\} \\ |e_{f^{*}}(i) - e_{f^{*}}(j)| \leq 1 & \forall i, j \in \{0, 1, 2\} \\ \hline \text{Hence f is a mean cordial labeling of } T(n,l) \end{array}$

<u>Subcase 2</u>: n > (n+l)/3

Then, $v_f(0) = t$, $v_f(1) = t-1$, $v_f(2) = t$ $e_{f^*}(0) = t-1$, $e_{f^*}(1) = t$, $e_{f^*}(2) = t$ Thus, $|v_f(i) - v_f(j)| \le 1 \quad \forall i, j \in \{0, 1, 2\}$ $|e_{f^*}(i) - e_{f^*}(j)| \le 1 \quad \forall i, j \in \{0, 1, 2\}$ Hence f is a mean cordial labeling of T(n,l)

Case 2: $n+l \equiv 2 \pmod{3}$

Let n+1=2+3t, t=1,2,...Define f: $V(G) \rightarrow \{0,1,2\}$ as follows: $f(v_i) = 0$ $1 \le i \le t+1$ $t+2 \leq i \leq 2t+1$ = 2= 1 $2t+2 \leq i \leq 3t+1$ Define induced edge labeling $f^*: E(G) \rightarrow \{0,1,2\}$ as follows: $f^*(v_i v_{i+1}) = 0$ $1 \le i \le t$ $f^*(v_{t+1}v_{t+2}) = 2$ $t+2 \leq i \leq 2t+1$ $f^{*}(v_{i}v_{i+1}) = 1$ $2t+2 \leq i \leq 3t$ $f^{*}(v_{n}v_{1}) = 0$ if n < l= 1 if n≥l

Subcase 1: n < l

 $\begin{array}{ll} \text{Then,} & \\ v_f(0) = t + 1, & v_f(1) = t, & v_f(2) = t \\ e_{f^*}(0) = t + 1, & e_{f^*}(1) = t, & e_{f^*}(2) = t \\ \text{Thus,} & \\ |v_f(i) - v_f(j)| \leq 1 & \forall \ i, j \in \{0, 1, 2\} \\ |e_{f^*}(i) - e_{f^*}(j)| \leq 1 & \forall \ i, j \in \{0, 1, 2\} \\ \text{Hence } f \text{ is a mean cordial labeling of } T (n, l). \end{array}$

 $|\mathbf{e}_{f^*}(\mathbf{i}) - \mathbf{e}_{f^*}(\mathbf{j})| \le 1 \quad \forall i, j \in \{0, 1, 2\}$ Hence f is a mean cordial labeling of T(n,l)

Case 3: $n+l \equiv 1 \pmod{3}$ where $(n+l-1)/3 \ge n$ Let n+l-1=3t Define $f: V(G) \rightarrow \{0,1,2\}$ as follows: $f(v_i) = 0$ $1 \le i \le t$ = 2 $t+1 \le i \le 2t$ = 1 $2t+1 \le i \le 3t$ Define induced edge labeling $f^*:E(G) \rightarrow \{0,1,2\}$ as follows: $1 \le i \le t-1$ $f^*(v_i v_{i+1}) = 0$ = 2 $t+1 \le i \le 2t$ = 1 $2t+1 \le i \le 3t-1$ $f^{*}(v_{n}v_{1}) = 0$ Then, $v_{f}(0) = t$, $v_{f}(1) = t$, $v_{f}(2) = t$ $e_{f^*}(0) = t$, $e_{f^*}(1) = t$, $e_{f^*}(2) = t$ Thus, $|v_{f}(i) - v_{f}(j)| \leq 1 \quad \forall i, j \in \{0, 1, 2\}$ $|e_{f^*}(i) - e_{f^*}(j)| \le 1 \quad \forall i, j \in \{0, 1, 2\}$ Hence f is a mean cordial labeling of T(n,l).

Case 4: $n+l \equiv 1 \pmod{3}$ where (n+l-1)/3 < n

 $\begin{array}{ll} Let \ n{+}l{-}1 = 3t \ , \ t = 1,2,\ldots.. \\ Then \ , \ |V(T(n,l))| \ = 3t \\ Hence, \\ v_f(0) = v_f(1) = v_f(2) = t \end{array}$

But then, $e_{f^*}(0) < t$ and hence $|e_{f^*}(0)-e_{f^*}(i)| > 1$ for some $i \in \{1,2\}$ Hence T(n,l) is not a mean cordial graph for $n+l \equiv 1 \pmod{3}$ where (n+l-1)/3 < n.

Illustration 2.2. Mean cordial labeling of T(3,8) is shown in Figure 3.

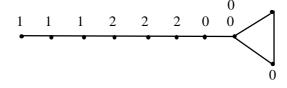


Figure 3: Mean cordial labeling of T(3,8) $(n+l \equiv 2 \pmod{3}, n < l)$

Mean Cordial Labeling Of Tadpole and Olive Tree

Illustration 2.3. Mean cordial labeling of T(4,4) is shown is shown in Figure 4

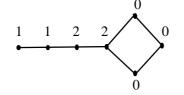


Figure 4: Mean cordial labeling of T(4,4)(n+l=2(mod3), n=l)

Illustration 2.4. Mean cordial labeling of T (4,5) is shown in Figure 5

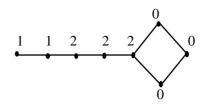


Figure 5: Mean cordial labeling of T(4,5) (n+l \equiv 0(mod3), n > (n+l)/3)

Illustration 2.5. Mean cordial labeling of T(3,7) is shown in Figure 6

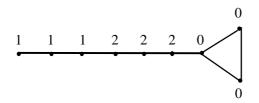


Figure 6: Mean cordial labeling of T(3,7) ($n+l \equiv 1 \pmod{3}$, (n+l-1)/3 = n)

Illustration 2.6. Mean cordial labeling of T(3,10) is shown in Figure 7

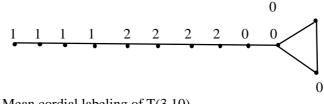


Figure 7: Mean cordial labeling of T(3,10) (n+l \equiv 1(mod3), (n+l-1)/3 > n)

Theorem 2.7. An olive tree T_n admits a mean cordial labeling for $n \ge 2$ **Proof: Case 1:** n=2, Let $V(T_2) = \{v, v_{11}, v_{12}, v_{21}\}$ and $E(T_2) = \{vv_{11}, vv_{12}, v_{11}v_{21}\}$ Define f: $V(T_2) \rightarrow \{0, 1, 2\}$ as follows :

f(v) = 1, $f(v_{11}) = 0$, $f(v_{21}) = 0$, $f(v_{12}) = 2$ Define induced edge labeling $f^*: E(T_2) \rightarrow \{0,1,2\}$ as follows: $f^*(vv_{11}) = 1$, $f^*(vv_{12}) = 2$, $f^*(v_{11}v_{21}) = 0$ Then, $v_{f}(0) = 2$, $v_{f}(1) = 1$, $v_{f}(2) = 1$ $e_{f^*}(0) = 1$ $e_{f^*}(1) = 1$ $e_{f^*}(2) = 1$ Thus $|v_{f}(i) - v_{f}(j)| \leq 1$ $\forall i, j \in \{0, 1, 2\}$ $|e_{f^*}(i) - e_{f^*}(j)| \le 1 \quad \forall i, j \in \{0, 1, 2\}$ Hence f is a mean cordial labelling. Case 2: n =3 Let V (T₃) = {v, v_{11} , v_{12} , v_{13} , v_{21} , v_{22} , v_{31} } $E(T_3) = \{vv_{1j}: 1 \le j \le 3\} \cup \{v_{11}v_{21}, v_{21}v_{31}, v_{12}v_{22}\}$ Define f: V (T₃) \rightarrow {0,1,2} as follows : f(v) = 1, $f(v_{11}) = 0$, $f(v_{21}) = 0$, $f(v_{31}) = 0$, $f(v_{12}) = 1$, $f(v_{13}) = 2$, $f(v_{22}) = 2$ Define induced edge labeling f^* : E (T₃) \rightarrow {0,1,2} as follows: $f^*(vv_{11}) = 1$, $f^{*}(vv_{12}) = 1, \quad f^{*}(v_{11}v_{21}) = 0$ $f^*(v_{12}v_{22}) = 2, \quad f^*(v_{21}v_{31}) = 0$ $f^*(vv_{13}) = 2$, Then, $v_{f}(0) = 3$, $v_{f}(1) = 2$, $v_{f}(2) = 2$ $e_{f^*}(0) = 2$ $e_{f^*}(1) = 2$ $e_{f^*}(2) = 2$ Thus

 $\begin{aligned} |\mathbf{v}_{\mathbf{f}}(\mathbf{i}) - \mathbf{v}_{\mathbf{f}}(\mathbf{j})| &\leq 1 & \forall i, j \in \{0, 1, 2\} \\ |\mathbf{e}_{\mathbf{f}^*}(\mathbf{i}) - \mathbf{e}_{\mathbf{f}^*}(\mathbf{j})| &\leq 1 & \forall i, j \in \{0, 1, 2\} \\ \text{Hence f is a mean cordial labelling.} \end{aligned}$

 $\begin{array}{ll} \textbf{Case 3:} \quad n \geq 4 \\ \text{Let } V(T_n) = \{v, v_{ij} : 1 \leq i \leq n, \ 1 \leq j \leq n+1-i\} \\ \quad E(T_n) = \{vv_{1j} : 1 \leq j \leq n; \ v_{ij}v_{i+1,j} : 1 \leq j \leq n, \ 1 \leq i \leq n-j\} \\ \text{Then,} \\ |V(T_n)| = n \ (n+1)/2 \ +1, \quad E(T_n) = n(n+1)/2. \end{array}$

Subcase 1: $n \equiv 0, 2 \pmod{3}$

Mean Cordial Labeling Of Tadpole and Olive Tree

 $\begin{array}{ll} \text{Then} & \\ v_{f}(0) = 1 + t, \quad v_{f}(1) = t, \quad v_{f}(2) = t \\ e_{f^{*}}(0) = t, \quad e_{f^{*}}(1) = t, \quad e_{f^{*}}(2) = t \\ \text{Thus,} & \\ |v_{f}(i) - v_{f}(j)| \leq 1 \quad \forall \ i, j \in \{0, 1, 2\} \\ |e_{f^{*}}(i) - e_{f^{*}}(j)| \leq 1 \quad \forall \ i, j \in \{0, 1, 2\} \\ \text{Hence f is a mean cordial labeling of } T_{n}. \end{array}$

Illustration 2.8. Mean cordial labeling of T_{10} is shown in Figure 8.

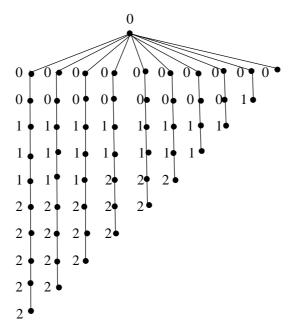


Figure 8: Mean cordial labeling of T₁₀

Subcase 2: $n \equiv 1 \pmod{3}$ Let t = (n(n+1)-2)/6 and $r_{ij} = n(i-1) + j - \sum_{1}^{i-2} r$. Define f: $V(T_n) \rightarrow \{0,1,2\}$ as follows: f(v) = 0 $f(v_{ij}) = 0$ $1 \le r_{ij} \le t$ = 1 $t{+}1 \leq \ r_{ij} \leq \ 2t{+}1$ = 2 $2t+2 \le r_{ij} \le 3t+1$ Define induced edge labeling $f^*: E(T_n) \rightarrow \{0,1,2\}$ as follows: $f^{*}(vv_{1j}) = 0$ 1≤ j≤n $f^*(v_{ij} v_{i+1,j}) = 0$ $n{+}1 \leq r_{i{+}1,j} {\,\leq\,} t$ = 1 $t{+}1 \leq r_{i{+}1,j} \leq 2t{+}1$ = 2 $2t+2 \le r_{i+1,j} \le 3t+1$ Then $v_{f}(0) = t+1,$ $v_{f}(1) = t+1$, $v_{f}(2) = t$ $e_{f^*}(1) = t+1,$ $e_{f^*}(0) = t$, $e_{f^*}(2) = t$

Thus,

$$\begin{split} |v_{f}(i) - v_{f}(j)| &\leq 1 & \forall i, j \in \{0, 1, 2\} \\ |e_{f^{*}}(i) - e_{f^{*}}(j)| &\leq 1 & \forall i, j \in \{0, 1, 2\} \\ \text{Hence } f \text{ is a mean cordial labeling of } T_{n} \\ \text{Hence Olive tree } T_{n} \text{ is a mean cordial graph.} \end{split}$$

REFERENCES

- 1. I. Cahit, A weaker version of graceful and harmonious graph, *Ars Combin.*, 23 (1987) 201-207.
- 2. J. A. Galian, A dynamic survey of Graph Labeling, *Electronic Journal of combinatorics*, (2014) 244.
- 3. R.Ponraj, M.Shivkumar and M.Sundaram, Mean cordial labeling of graphs, *Open Journal of Discrete Mathematics*, 2 (2012) 145-148.
- 4. M.Sundaram, R.Ponraj and S.Somosundram, Product cordial labeling of graphs, *Bulletin of Pure and Applied Science*, 1 (2004) 155-162.
- 5. A.William, I.Raja Singh and S.Roy, Mean cordial labeling of certain graphs, *J. Comp* and Math.Sci., 4 (2013) 274-281.
- 6. S.K.Vaidya and N.H.Shah, Some star related divisor cordial graphs, *Annals of Pure and Applied Mathematics*, 3(1) (2013) 65-67.
- K. Thirusangu, P.P. Ulaganathan and P. Vijayakumar, Some cordial labeling of duplicate graph of ladder graph, *Annals of Pure and Applied Mathematics*, 8(2) (2014) 43-50.
- 8. R.Govindarajan and V.Srividya, Odd graceful labeling of cycle with parallel P_k chords, *Annals of Pure and Applied Mathematics*, 8 (2) (2014) 123 129.
- 9. K.Sutha, K.Thirusangu and S.Bala, Some graph labelings on middle graph of extended duplicate graph of a path, *Annals of Pure and Applied Mathematics*, 8 (2) (2014) 169-174.
- 10. L. Girija and A.Elumalai, Edge magic total labeling of the cycle C_n with P₃ chords, *Annals of Pure and Applied Mathematics*, 8 (2) (2014) 175-181.
- D.Ramya and P.Jeyanthi, Mean labeling of some graphs, SUT J.Math., 47(2) (2011) 129 - 141
- 12. M.Andar, S.Boxwala and N.B.Limaye, Cordial labelings of some wheel related graphs, J. Combin. Math. Combin. Comput., 41 (2002) 203 208.
- 13. M.Sundaram, R.Ponraj and S.Somasundram, Prime cordial labeling of graphs, J. Indian Acad. Math., 27 (2) (2005) 373 390.
- 14. S.K.Vaidya and N.H.Shah, Somse new families of prime cordial graphs, J. of Mathematics research, 3 (4) (2011) 21- 30
- 15. S.K.Vaidya and Lekha Bijukumar, Some new families of mean graphs, *Journal of Mathematics Research*, 2 (3) (2010) 169 176