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Abstract. For connected graph G, of order n and degree d, the Acharya Polynomial is 

defined as ( )∑
≤≤
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,),( λµλ , where ( )Gd,µ  denotes pair of vertices of 

degree d at distance k and p is diam(G). In the present paper some elementary properties 
of Acharya polynomial are studied and compute it for some common graphs. We given 
relation between Hosoya polynomial and Acharya polynomial of common graphs.  
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1. Introduction 
The graphs in this paper  are taken as finite and connected. The degree of a vertex v in G 
is the number of edges incident to vertex v. A vertex of  degree  1 is called terminal 
vertex. d(u,v)  denote the distance between u and v in graph G. [1] Wiener index was first 
proposed by Harold Wiener as an aid to determining the boiling point of paraffin. Since 
then, the index has been used to build a correlation model between the chemical 
structures of various chemical compounds. Wiener index is the most celebrated 
topological index that identifies the characteristics chemical compounds.  

In June 2013 at ICDM -2013, B. D. Acharya, in discussion with the first author 
defined the distance degree parameter, Acharya Index and Acharya polynomial. Here we 
find the polynomial for Acharya index as Acharya polynomial and discussed for class of 
graphs [2]. 

 
Definition 1.1. [3] The Wiener index is a graph invariant based on distance in graphs. It 
is denoted by W(G) and defined as sum of distances of all pair of vertices in G: 
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Definition 1.2. [4] The Hosoya polynomial of graph is a polynomial introduced by 
Hosoya [5] in 1988. Hosoya polynomial (also called Wiener polynomial) of G is defined 
as 
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where d(G,k) is the number of pair of vertices of G that at a distance k and λ  is a 
parameter. 

It is clear that, W(G) = 1at ),( =λλ
λ

GH
d

d
. 

Definition 1.3. [5] The Terminal Wiener index is denoted by TW(G) and defined as sum 
of distances between all pair of terminal vertices in G.  
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Definition 1.4. [6] The Terminal Hosoya Polynomial of graph G is defined as, 

∑
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The first derivative of Terminal Hosoya Polynomial of a graph G is Terminal Wiener 
index of a graph. 

 
Definition 1.5. [7] Let G be a connected graph of order n and degree d, the Acharya 
Index AIλ(G) of a graph G as the sum of the distance between all pair of degree d 
vertices, denote as  
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where ( )Gd,µ  denotes pair of vertices of degree d at distance k, p=diam(G).  
When λ=1 then the above index reduces to Terminal Wiener index i.e. AIλ(G)=TW(G) 
 
Theorem 1.6. For a connected graph G, )()()( GWGAIGTW ≤≤ λ  

 
Theorem 1.7. [7] Following are the Acharya indices of common graphs,  
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2. If  G be a r-regular graph then AIr(G)=W(G) 

 
3. AI3(P)=W(P)= 75, where P is Petersen graph  

 

4. AIn-1(Kn)=W(Kn)= 








2

n
 

 
5. AIλ (K1,n)=TW(K1,n) 

 
6. AIλ (Km,n) = m2+n2-m-n,   m ≠ n 

 
7. AIλ (Kn,n) = 3n2-2n 

 
8. AI2 (C2n)=W(C2n) = (2n)3/8 
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9. AI2 (C2n+1)= W(C2n+1)=(2n+2)(2n+1)(2n)/8 
 
 
2. Main results 
Let Acharya Polynomial AP(G,λ ) is defined as follows 
Definition 2.1. Let G be a connected graph of order n and degree d, the Acharya 

Polynomial AP(G, λ ) of a graph G is defined as ( )∑
≤≤

−≤≤
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, λµ , where ( )Gd,µ  

denotes pair of vertices of degree d at distance k and p is diam(G). 
 
Theorem 2.2. The Acharya polynomial satisfies the following conditions 

1. ),(deg λGAP  equals to the diameter of a graph G 
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Example 1. In order to illustrate, we show how the Acharya Polynomial computed for 
following graph, V1={ v1, v2 ,v4 ,v3}, V2 = φ , V4 = φ , V3={ v5, v6 ,v7 ,v8} 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 1: 

 
 
 For the graph in Figure 1. 
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Theorem 2.3. If G is a regular graph then ),(),( λλ GHGAP =  

Corollary 2.4. For a complete graph G on n vertices  
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Corollary 2.5. For a cycle on n vertices  
i) nn

nn nnCHCAP λλλλλλ ++⋅⋅⋅++== − ))(2(),(),( 12
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Corollary 2.6. If P is Petersen graph. Then 
23015),(),( λλλλ +== PHPAP  

Theorem 2.7. If  nmKG ,=  is bipartite graph with nm≠ , then Acharya Polynomial 
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Proof: Let V1={u1, u2,…….. um} and V2={v1, v2,…….. vn} are the set of vertices of nmK ,  

such that VVV =∪ 21 . Then deg(V1)= n, 1Vui ∈∀  and deg(V2)= m, 2Vv j ∈∀ . Therefore 

there are no vertices at distance and diam( nmK , )= 2. Hence number of vertices at distance 

2 are 
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. Thus Acharya polynomial of bipartite graph is given by 
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Theorem 2.8. If   nmKG ,=  is bipartite graph with nm= , then Acharya Polynomial 
222
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Proof: Consider the set of vertices as in the previous theorem with m = n, then  the 
distance between vertices of V1 and V2 is 1, which are n2 in number. And the distance 

between the vertices of V1 or V2 is 2. The number of vertices at distance 2 are 
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Thus Acharya polynomial of bipartite graph is given by  
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Theorem 2.9. For Path on n vertices, 
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Example 2. 
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Theorem 2.10. If Wn and Qn are the wheel and hypercube graphs then 
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Proof: (i) From definition of wheel 11 −∨= nn CKW , then the degree of all vertices of Cn-

1 is 3 and the degree of vertex K1 is n-1. Hence Acharya index is calculated only for 
vertices of cycle Cn-1 the first result. 
(ii )From definition of cube, its 3 regular graph. Hence the second result direct from 
theorem 2. 
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