Annals of Pure and Applied Mathematics Vol. 11, No. 2, 2016, 7-10 ISSN: 2279-087X (P), 2279-0888(online) Published on 10 March 2016 www.researchmathsci.org

Average Harmonious Graphs

N. Adalin Beatress¹ and P.B. Sarasija²

¹Department of Mathematics, All Saint College of Education, Kaliyakkavilai Tamil Nadu. E-mail:adalinkamal@yahoo.in

²Department of Mathematics, Noorul Islam Centre for Higher Education Kumaracoil, Tamil Nadu. E-mail: <u>sijavk@gmail.com</u> ²Corresponding author

Received 9 January 2016; accepted 4 March 2016

Abstract. Let G(V,E) be a graph with *n* vertices and *m* edges. In this paper, we have introduced and developed the concept of an Average Harmonious Labeling of graphs. A graph G(n,m) is said to be Average harmonious if there exists an injection $f: V \to \{0, 1, 2, ..., m+n\}$ and the induced function $f^*: E \to \{0, 1, ..., (m-1)\}$ defined as

$$f^{*}(uv) = \begin{cases} \frac{f(u) + f(v) + 1}{2} \pmod{m} & \text{if } f(u) + f(v) \text{ is odd} \\ \frac{f(u) + f(v)}{2} \pmod{m} & \text{if } f(u) + f(v) \text{ is even} \end{cases}$$

is bijective, the resulting edge labels should be distinct. A graph which admits an Average harmonious labeling is called Average harmonious graph. In this paper we proved that the graph P_n , the graph $C_3 \cup P_n^2$, Y-tree graph, the graph $P_n \odot K_1$ ($n \ge 1$), the star graph , the graph $C_3 \cup P_n$, the bistar graph $B_{n,n}$, triangular snake graph T_n , and the complete bipartite graph $K_{n,n}$ are Average Harmonious Labeling of graphs.

Keywords: Harmonious labeling, bistar, complete bipartite graph.

AMS Mathematics Subject Classification (2010): 05C78

1. Introduction

In this paper, we consider finite, undirected, simple connected graphs. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. Harmonious graphs naturally arose in the study by Graham and Sloane [2] of modular versions of additive base problems. Odd and even harmonious graphs were introduced in [3,6]. For a detailed survey on graph labeling we refer to Gallian [1]. We also refer [4, 5, 7,8].

Definition 1.1. A function f is called an Average harmonious labeling of a graph G(V, E) with n vertices and m edges if $f: V \rightarrow \{0, 1, 2, ..., m+n\}$ is injective and the induced function $f^*: E \rightarrow \{0, 1, ..., (m-1)\}$ is defined as

N.Adalin Beatress and P.B.Sarasija

$$f^{*}(uv) = \begin{cases} \frac{f(u) + f(v) + 1}{2} \pmod{m} & \text{if } f(u) + f(v) \text{ is odd} \\ \frac{f(u) + f(v)}{2} \pmod{m} & \text{if } f(u) + f(v) \text{ is even} \end{cases}$$

is bijective, the resulting edge labels should be distinct. A graph which admits an average harmonious labeling is called an Average harmonious graph.

In this paper we proved the graph P_n , the graph $C_3 \cup P_n^2$, the graph $P_n \odot K_1$ ($n \ge 1$), Y-tree graph, the star graph, the graph $C_3 \cup P_n$, the bistar graph $B_{n,n}$, triangular snake graph T_n , and complete bipartite graph are Average Harmonious Labeling of graphs.

2. Main results

Theorem 2.1. The path graph P_n ($n \ge 1$) is an Average harmonious graph. **Proof:** Let P_n be a path graph with n vertices and m = n-1 edges. Let $V(P_n) = \{v_i : 1 \le i \le n\}$ and $E(P_n) = \{v_i v_{i+1} : 1 \le i \le n-1\}$. Define an injective function $f : V(P_n) \rightarrow \{0, 1, 2, ..., m+n\}$ by $f(v_i) = i - 1$, $1 \le i \le n$. Then f induces a bijection $f^* : E(P_n) \rightarrow \{0, 1, 2, ..., m-1\}$. Hence the graph P_n graph is an Average harmonious graph.

Theorem 2.2. The graph $C_3 \cup P_n^2$ ($n \ge 4$) is Average harmonious. **Proof:** Let C_3 be a cycle graph with 3 vertices and 3 edges and the graph P_n^2 with n vertices and 2n - 3 edges. Let $V(C_3 \cup P_n^2) = \{v_1, v_2, v_3, u_i, 1 \le i \le n\}$ and $E(C_3 \cup P_n^2) = \{v_1 v_2, v_2 v_3, v_3 v_1, u_i u_{i+1}, 1 \le i \le n-1, u_i u_{i+2}, 1 \le i \le n-2\}$. $|V(C_3 \cup P_n^2)| = n+3$ and $|E(C_3 \cup P_n^2)| = m=2n$ Define an injective function $f: V(C_3 \cup P_n^2) \rightarrow \{0, 1, 2, ..., 3n + 3)\}$ by $f(v_1) = 0, f(v_2) = 2, f(v_3) = 4, f(u_i) = 2i+1, 1 \le i \le n$. Then f induces a bijection $f^*: E(C_3 \cup P_n^2) \rightarrow \{0, 1, 2, ..., 2n-1\}$. Hence the graph $C_3 \cup P_n^2$ graph is an Average harmonious graph.

Theorem 2.3. The graph Y-tree is Average harmonious. **Proof:** Consider the graph Y-tree with n vertices and m = n-1 edges. Let $V(Y) = \{v_1, v_2, ..., v_n\}$ and $E(Y) = \{v_{n-1}v_n, v_{n-2}v_n, v_nv_{n-3}, v_{n-3}v_{n-4}, ..., v_2v_1\}$. Define an injective function $f : V(Y) \rightarrow \{0, 1, 2, ..., m+n\}$ by $f(v_n) = 0, f(v_i) = (n-i), 1 \le i \le n-1$.

Then f induces a bijection f *: $E(Y) \rightarrow \{0, 1, 2, ..., n-2\}$. Therefore both edge and vertex labels are distinct. Hence the graph Y-tree is an Average harmonious graph.

Theorem 2.4. The comb graph $P_n \odot K_1$ ($n \ge 1$) is Average harmonious. **Proof:** Consider the comb graph with 2n vertices and m = 2 n-1 edges. Let $V (P_n \odot K_1) = \{ v_i, u_i; 1 \le i \le n \}$ and $E (P_n \odot K_1) = \{ v_i v_{i+1}, u_i v_i, 1 \le i \le n \}$ Define an injective function f: $V (P_{n \ O} K_1) \rightarrow \{ 0,1,2,\dots,m+n \}$ by $f (v_{2i-1}) = 4i-3$, $1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor$, $f (v_{2i}) = 4i-2$, $1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor$, $f (u_{2i-1}) = 4i - 4$, $1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor$, $f (u_{2i}) = 4i-1$, $1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor$ Average Harmonious Graphs

Then *f* induces a bijection $f^* : E(P_n \odot K_1) \to \{0, 1, 2, ..., m-1\}$. Hence we obtain the graph $P_n \odot K_1$ is an Average harmonious graph.

Theorem 2.5. The star graph S_n is an Average harmonious graph for all n. **Proof :** Let S_n be a star graph with n vertices and m = n-1 edges. Consider v as the center vertex. Let $V(S_n) = \{v, v_i : 1 \le i \le n - 1\}$ and $E(S_n) = \{vv_i : 1 \le i \le n-1\}$. Define $f: V(S_n) \rightarrow \{0, 1, 2, ..., m+n\}$ by $f(v) = 1, f(v_1) = 0, f(v_i) = 2i - 1, 2 \le i \le n-1$. Then f induces a bijection $f^*: E(S_n) \rightarrow \{0, 1, 2, ..., m-1\}$. Hence, the S_n graph is an Average harmonious graph.

Theorem 2.6. The graph $C_3 \cup P_n$ $(n \ge 2)$ is an Average harmonious graph. **Proof:** Let P_n be a path with n vertices and (n - 1) edges and C_3 be a cycle with 3 vertices and 3 edges. Let $V(C_3 \cup P_n) = \{v_1, v_2, v_3, u_i, 1 \le i \le n\}$ and $E(C_3 \cup P_n) = \{v_1, v_2, v_2, v_3, v_3, v_1, u_i, u_{i+1}, 1 \le i \le n-1\},$

$$|V(C_3 \cup P_n)| = n+3$$
 and $|E(C_3 \cup P_n)| = m = n+2$

Define an injective function $f: V (C_3 \cup P_n) \rightarrow \{0, 1, 2, ..., 2n + 3\}$ by $f(v_1) = 1$, $f(v_2) = 3$, $f(v_3) = 5$, $f(u_1) = 0$ $f(u_{2i}) = 2i$, $1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor$, $f(u_{2i+1}) = 2i+5$, $1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor$

Then f induces a bijection f^* : E(C₃ UP_n) \rightarrow {0, 1, 2,...,m-1}. Hence the C₃ U P_n graph is Average harmonious.

Theorem 2.7. The bistar graph $B_{n,n}$ is Average harmonious.

Proof: Let the bistar graph $B_{n,n}$ with 2 n + 2 vertices and 2 n + 1edges. Let $V (B_{n,n}) = \{ u, v, u_i, v_i, 1 \le i \le n, \}$ and $E (B_{n,n}) = \{ u_i u, v_i v, 1 \le i \le n, uv \}$ Define an injective function $f : V (B_{n,n}) \rightarrow \{0, 1, 2, ..., 4n+3\}$ by $f(u_1) = 1$, f(u) = 0, $f(u_i) = 4i - 1$, $2 \le i \le n$. f(v) = 3, $f(v_i) = 4i - 2$, $1 \le i \le n$ Then *f* induces a bijection $f^* : E(B_{n,n}) \rightarrow \{0, 1, 2, ..., m-1\}$. The edge labels are given below: $f^*(uu_1) = 1$, $f^*(u_i u) = 2i \pmod{2n+1}$, $2 \le i \le n$. $f^*(uv) = 2$, $f^*(v_i v) = (2i + 1) \pmod{2n+1}$ $1 \le i \le n$. Hence the bistar graph is an Average harmonious graph.

Theorem 2.8. A triangular snake T_n admits Average harmonious labeling. **Proof:** Let $V(T_n) = \{ u_i, 1 \le i \le n; v_i, 1 \le i \le n-1 \}$

Let
$$E(T_n) = \begin{cases} u_i u_{i+1} & \text{if } 1 \le i \le n-1 \\ u_i v_i & \text{if } 1 \le i \le n-1 \\ u_{i+1} & v_i & \text{if } 1 \le i \le n-1 \end{cases}$$

Define an injective function $f: V(T_n) \rightarrow \{0, 1, \dots, m+n\}$ by $f(u_i) = (i-1), 1 \le i \le n$, $f(v_i) = 2n + 3(i-1), 1 \le i \le n-1$.

The induced function $f^* : E(T_n) \rightarrow \{0,1,\ldots,m-1\}$ is a bijection. It can be observed that the triangle snake graph is Average harmonious graph.

Example 2.9. The following figure gives an Average harmonious labeling for the triangle snake T_{6} .

N.Adalin Beatress and P.B.Sarasija

Figure 1: Triangle snake graph

Theorem 2.10. The complete bipartite graph $K_{n,n}$ is an Average harmonious graph. **Proof:** A complete bipartite graph is a simple bipartite graph with bipartition of the vertex set V into X and Y in which each vertex of X is joined to each vertex of Y. Let the vertices of the set X be ui $, 1 \le i \le n$ and the vertices of the set Y be $v_i \ 1 \le i \le n$ The edges are $u_i v_i$, $1 \le i \le n$. Hence there are 2n vertices and n^2 edges. Define an injective function $f: V \to \{ 0, 1, ..., 4n \}$ by $f(u_i) = 2i-1$, $1 \le i \le n$, $f(v_1) = 0$ and $f(v_i) = 2(i-1) n$, $2 \le i \le n$.

The induced function $f^* : E(K_{n,n}) \rightarrow \{0,1,\ldots,n^2-1\}$ is a bijection. It can be observed that the complete bipartite graph $K_{n,n}$ is an Average harmonious graph.

REFERENCES

- 1. J.A.Gallian, A dynamic survey of graph labeling, *The Electronics J. Combinatorics*, 16 (2014).
- 2. R.L.Graham and N.J.A.Sloane, On additive bases and harmonious graphs, *SIAM J. Alg. Discrete Meth.*, 1 (1980) 382-404.
- 3. Z-H Liang and Z-L Bai, On the odd harmonious graphs with applications, J. Appl. Math. Comput., 29 (2009) 105-116.
- 4. B.Liu and X.Zhang, On harmonious labeling of graphs, *Ars. Combin.*, 36 (1993) 315 326.
- 5. N.Adalin Beatress and P.B.Sarasija, Even-odd harmonious graphs, *International Journal of Mathematics and Soft Computing*, 5(1) (2015) 23-29.
- 6. P.B.Sarasija and R.Binthiya, Even harmonious graphs with applications, *Intern. Journal of Computer Science and Information Security*, 9(7) (2011)161-163.
- 7. T.Tharmaraj and P.B.Sarasija, Adjacent edge graceful graphs, *Annals of Pure and Applied Mathematics*, 6(1) (2014) 25-35.
- 8. T.Tharmaraj and P.B.Sarasija, Some adjacent edge graceful graphs, *Annals of Pure and Applied Mathematics*, 6(2) (2014) 160-169.