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Abstract. Let G be a connected graph with vertex ¥€B) and edge sé(G). The first
and second multiplicativeK Banhatti indices of a graphc are defined as

BII,(G) = [][ds (u)+ds (e)] and BII,(G)=[7]d;(u)d; (e), where ue means that the

vertex u and edgee are incident inG. The first and second multiplicatiié hyper-
Banhatti indices o6 are

HBII, (G) = |‘| [dg (u)+d, (¢)]" and HBII,(G) = 7 (ds (u)ds (¢))

ue

respectively. In this paper, we determine multgiiee K Banhatti indices ofV-
Phenylenic nanotub&g”HX[m, n] andV-Phenylenic nanotorddPHY[m, n] (¥m, n 0 A~
{1}). We also compute multiplicativeK hyper-Banhatti indices ofV-Phenylenic
nanotube®/PHX [m, n] andV-Phenylenic nanotordgPHY[m, n] (¥ m, n O ~V— {1}).

Keywords: Multiplicative K Banhatti indices, multiplicativek hyper-Banhatti indices,
V-Phenylenic nanotube¥;Phenylenic nanotorus
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1. Introduction

By a graph, we mean a finite, connected, undireatéithout loops, multiple edges and
isolated vertices. LeB be a graph withn vertices andn edges with vertex s&(G) and
edge seE(G). Any undefined term in this paper may be foun&idli [1].

The degreels(v) of a vertexv is the number of vertices adjacentvtor he edge
connecting the verticasandv is denoted byv. Let ds(€) denote the degree of an edge
in G, which is defined byls(e) = dg(u) + dg(v) — 2 withe = uv. The vertices and edges of
a graph are called its elements.

A molecular graph is a graph such that its vesticerrespond to the atoms and
the edges to the bonds. Chemical graph theory lwanch of mathematical chemistry
which has an important effect on the developmemhefchemical sciences.
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In Chemical Science, physico-chemical propertieghemical compounds are
often modeled by means of molecular graph basedtate descriptors, which are also
referred to as topological indices, see [2].

The first and second Banhatti indices of a graph are defined as

B,(G)= %[de (u)+d; (e)]
5,(6)= 2. ()4 (9

whereue means that the vertexand edge are incident irG.

The K Banhatti indices were introduced by Kulli in [3]eéently many other
indices were studied, for example, in [ 4, 5, 68,7, 10 ].

The multiplicative version of firsK Banhatti index was introduced by Kulli in
[11]. The first multiplicativek Banhatti index of5 is defined as

BIl, (G) = |‘| [ds (u)+dq (¢) ]

The multiplicative version of secodBanhatti index was introduced by Kulli in
[12]. The second multiplicativié Banhatti index ofs is defined as

BiI, (G) = [ d (u)d (¢).
The first and seconid hyper-Banhatti indices of a graghare defined as

1 (6) =k (1), (9]
HB, (G) = Z(de (u)ds (e))2 :

TheK hyper-Banhatti indices were introduced by Kull{1r3].
In [14], Kulli introduced the multiplicative vei@ns ofK hyper-Banhatti indices.
The first and second multiplicative hyper-Banhatti indices ab are defined as

HBII, (G) = |‘| [de (u)+ds (¢)]°

HBII, (G) = [ (ds (u)ds (€)'

ue

Chemical structure®¥-Phenylenic nanotubes andPhenylenic nanotorus are
widely used in medical science and pharmaceutiel. fThus we study multiplicativi€
Banhatti indices and multiplicative&k hyper-Banhatti indices of these molecular
structures. In this paper, we consider the strastafV-Phenylenic nanotubagHPX[m,

n] and V-Phenylenic nanotorus/PHY[m, n] (¥ mnOA~{1}) and compute their
multiplicative K-Banhatti indices and also their multiplicatigkenyper-Banhatti indices.

2. Results
Molecular graphsV-Phenylenic nanotube¥PHX[m, n] and V-Phenylenic nanotorus

VPHY[m, n] (+ m, n O V- {1}) belong to two different families of nanosttures whose

structures are made up of cycles with length feix,and eight. Molecular graphs @f
Phenylenic nanotubad”HX[m, n] andV-Phenylenic nanotorddPXY[m, n] (¥ m, nOON —
{1}) are shown in Figures 1 and 2 respectively.
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Figure 1:

Feae

Figure2:

2.1. V- Phenylenic nanotubes
We consider the structure of molecular grapRhenylenic nanotubes and compute their
multiplicative K Banhatti indices and multiplicativ€ hyper-Banhatti indices.

Theorem 1. Let G beV-Phenylenic nanotub&4HX[m, n] (¥ m, n O &V —{1}). Then
) BIIL(G) = (5)"" x (6™ x (7)),

BlIy(G) = (6)™ x (9™ x (12f™°"=3),
HBIIy(G) = (5™ x (6™ x (7)™,
HBII(G) = (6™ x (9 x (7)™~
Proof: Let G be V-Phenylenic nanotubed”HX[m, n] wherem andn are the number of
hexagons in the first row and caino in G, see Figure 1. By algebraic method, we get
V(G)| = nn and E(G) | = 9mn — m. We have two partitions of the vertex 86G) as
follows:

Vo={vOV(G):ds(V) =2},  Vo|=2m

Vs ={vOV(G) : ds(V) = 3}, V3| = 6nn— 2m.

~ o~
A WN
N
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Also we have two partitions of the edge B@B) as follows:
Es=Es={uE(G) : d(u) = 2,ds(V) = 3}, [Es| = E ¢l = 4m
Es=E o= {uWE(G) : dg(u) = 3,de(v) =3}, [Es| =Es| = 9 —5m
The edge degree partition @fis given in Table 1.

Table 1.
(ds(u), da(V)\ e=uv [0 E(G) (2, 3 3,3
ds(€) 3 4
Number of edge am 9mn — 5m
Now

1B, (G) = |u_e| [dg (u)+dg (e)]

- eﬂ&[ds (u)+ds (€) ][ dg (V) +dq (e)]xe:m& [ (u) + g (€) [ ds (v) + g (€)]
=(2+9 " x(3+ 9 x( 3+ 47 x(3 J

= (5)""x(6)"x 7.

(2)BI1,(G) = M (u)dg (e

= [, [ (e)d (@) (v ()] [ [ (0} (&) (v (4]
:(2x3)4mx(3x 34mx(3< 4)9"“‘5"x( % 49’m—5n
(6)4mx(9)4mx(12)2m(9n—3 .

(3)HBII,(G) = |‘| [dq (u)+dg ()]
= T, [ (0t (] [t ()t (e T, Tl ()t (o [ (). (4

-7y T (o472 4T
()m (8" x(9""
(4) HBII, n(dG(u )

u

uvDEe[ s (U)ds ][de )dG(e)]er:m [ (u)dG(e)]z[dG(v)dG(e)]z

zxsm ST 4T 4T
6)"" x(9)™" x(12 "9 .

2.2. V- Phenylenic nanotorus
We consider the structure of molecular grapRhenylenic nanotorus and compute their
multiplicative K Banhatti indices and multiplicativ€ hyper Banhatti indices.

-9
=(
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Theorem 2. Let G; beV-Phenylenic nanotorddPHY[m, n] (¥ m, n 0 N— {1}). Then,
(1) Blly(Gy) = (7)1&m
(2) Bll> (Gy) = (12)°™.
(3) HBIIy(Gy) = (7)™
(4) HBII(Gy) = (12)3°™,
Proof: Let G; beV-Phenylenic nanotordgPHY[m, n] (* m, n 0 N - {1}), wherem and

n are the number of hexagons in the first row andiroal in G;, see Figure 2. By
algebraic method, we gé&f({51)| = @nn and E(G;)| = 9nn. We have only one partition of
the vertex se¥(G,) as follows:

V,={vOV(G,):dg (v) =3}, Vsl =6m.

Also we have only one partition of the edgeE(&,) as follows :
E, =E, ={wDE(G,):dy (u) =ds (v) =3, |E| =|Es| =9mn.
Clearly, d, (e) =4, for every edgein G,.

Now

L BIL(G)=[][ds (u)*+ds (¢)]

1
—_ —

w
+
>
©
3
X
—_
w
>
©
3
=

7).
(2) BIl,(G,) = D dg (u)dg (e)
= ezluv_lgeg[del (u)dg, (e)][dGl (v)dg, (e)]
_ (3>< 4)9mn x(3>< 4)9rm
=(12)"™".
(3)  HBIL(G,)=[][ds (u)+ds ()]
=[], [0 () 0 (&) [, () (6

:|:(3+4)2:|9mn x[(3+ 4)2:|9n‘n

(@) HBIL(G,)=[][ds (u)ds (¢)]
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(o< ] x{(> 4]

=(12)"™.
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REFERENCES

V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga,
India (2012).

I.Gutman and N.Trinajstj Graph theory and molecular orbitals. Totaélectron
energy of alternant hydrocarbo@hem. Phys. Lett., 17, (1972) 535-538.

V.R.Kulli, On K Banhatti indices of graphdpurnal of Computer and Mathematical
Sciences, 7(4) (2016) 213-218.

M.H.Khalifeh, H.Yousefi-Azari and A.R.Ashrafi, Théirst and second Zagreb
indices of some graph operatiofsscrete Appl. Math. 157, (2009) 804-811.
V.R.Kulli, On K indices of graphsinternational Journal of Fuzzy Mathematical
Archive, 10(2) (2016) 105-109.

V.R.Kulli, On K coindices of graphsJournal of Computer and Mathematical
Sciences, 7(3), (2016) 107-112.

V.R.Kulli, On K edge index and coindex of grapfhsternational Journal of Fuzzy
Mathematical Archive, 10(2), (2016) 111-116.

V.R.Kulli, The first and second, indices and coindices of graphs, International
Journal of Mathematical Archive, 7(5), (2016) 71-77

S.Nikoli¢, G.Kov&evi¢, A.Mili ¢evic and N.Trinajstt, The Zagreb indices 30 years
after, Croatica Chemica Acta CCACAA 76(2), (2003) 113-124.

B.Zhou and |.Gutman, Further properties of Zagrelicdces MATCH Commun. Math.
Comput. Chem. 54, (2005) 233-239.

V.R.Kulli, First multiplicative K Banhatti index and coindex of graptismnals of
Pure and Applied Mathematics, 11(2), (2016) 79-82.

V.R.Kulli, Second multiplicativek Banhatti index and coindex of graptsurnal of
Computer and Mathematical Sciences, 7(5), (2016) 254-258.

V.R.Kulli, On K hyper-Banhatti indices and coindices of graph#grnational
Research Journal of Pure Algebra, submitted.

V.R.Kulli, Multiplicative K hyper-Banhatti indices and coindices of graphs,
submitted.

V.R.Kulli, On K Banhatti andK hyper-Banhatti indices df-Phenylenic nanotubes
and nanotorus, submitted.

150



