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1. Introduction 
Zadeh [15] introduced the notion of fuzzy set. Atanssov [5] introduced the concept of 
Intuitionistic fuzzy metric spaces. Branciari [7] gave a fixed point result for a single 
mapping satisfying Banach's contraction principle for an integral type inequality. This 
result was further generalized by Alioche [3] ,Rhoades [11], Suzuki [13] shows that meir-
keeler contractions of integral type are still meir-keeler contraction. Hickes and Rhoades 
[9], Badshah and Pariya [6] gave the fact of symmetric spaces and proved some common 
fixed point theorems in symmetric spaces. Recently, Yaoyao [14] proved common fixed 
point theorems in intuitionistic fuzzy symmetric spaces under non linear contractive 
condition. 

2. Basic definitions and preliminaries 
We recall some definitions and known results in intuitionistic fuzzy metric spaces 

Definition 2.1. [12] A binary operation *:[0,1]x[0,1]→[0,1] is called a t-norm * satisfies 
the following conditions: 

i. * is continuous, 
ii.  * is commutative and associative, 
iii.  a * 1 =a for all a ∈ [0, 1], 
iv. a * b ≤ c * d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0,1]. 
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Example 2.1. a * b = ab and a * b=min{a, b}. 

Definition 2.2. [12] A binary operation ◊:[0,1]x[0,1]→[0,1] is said to be continuous  t-
conorm  if it satisfied the following conditions: 

i. ◊ is associative and commutative, 
ii. a ◊ 0 = a for all a ∈ [0,1], 
iii.  ◊ is continuous, 
iv. a ◊ b ≤ c ◊ d whenever a ≤ c and b ≤ d for each a, b, c, d ∈	[0,1]. 

Example 2.2.  a ◊ b  =  min(a+b , 1) and a ◊ b  =  max(a, b). 

Recall that a symmetric on X is a nonnegative real valued function d on � × � such that  

(I) ���, 
� = 0 if and only if � = 
, and  
(II)  ���, 
� = ��
, �� 

Definition 2.3. [8] A subset S of a symmetric space (X, d) is said to be d- closed if for a 
sequence ���� in S and a point � ∈ �, lim�→∞ ����, �� = 0	�������	� ∈ �. 
For a symmetric space (X, d), d- closedness implies ℑ���- closedness, and if d is a 
symmetric, the converse is also true. 

Yaoyao [14] gave intuitionistic fuzzy version of the definition of symmetric spaces. 

Definition 2.5. [14] A 3- tuple (X, M, N) is called intuitionistic fuzzy symmetric space if 
X is an arbitrary set and M, N are fuzzy sets on X²× �0, ∞� satisfying the following 
conditions: 

For all x, y, z, ∈ X and t, s > 0 
(IFSym-1)          M(x , y, t) + N(x, y, t) ≤ 1, 
(IFSym-2)          M(x, y, 0) > 0,  
(IFSym-3)          M(x, y, t) = 1 if and only if x=y, 
(IFSym-4)         ���, 
, �� = 	��
, �, ��,  
(IFSym-5)        ���, 
, ��: �0,∞� → �0,1]	is	continuous, 
(IFSym-6)        )��, 
, 0� < 	1, 
(IFSym-7)        )��, 
, �� = 	0	if and only if x = y, 
(IFSym-8)        )��, 
, �� = 	)�
, �, ��,	 
(IFSym-9)       )��, 
, . �: �0, ∞� → �0, 1]	is	continuous, 
Then (M, N) is called an intuitionistic fuzzy symmetric on X. The function M(x, y, t) and 
N(x, y, t) denote the degree of nearness and degree of non nearness between x and y with 
respect to t, respectively. 

Example 2.3. [14] Let d be a symmetric on X defined by for all �, 
 ∈ �, 
���, 
� = �|,-.| − 1. 

Let ���, 
, �� = 0
012�,,.� 	34�	)��, 
, �� = 2�,,.�

012�,,.� for all �, 
 ∈ �	34�	� > 0. 
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Then (X, M, N) is an intuitionistic fuzzy symmetric space induced by the symmetric d. It 
is obvious that )��, 
, �� = 1 − ���, 
, ��. 
Now consider an intuitionistic fuzzy symmetric space with the following two conditions: 

IFW.1. [14] Given  ����, x and y in X,     
                     			 lim�→6 ����, �, �� = 1,						 lim�→6 )���, �, �� = 0  
and lim�→∞����, 
, �� = 1,				 lim�→∞)���, 
, �� = 	0		 

����
		� = 
. 
 

IFW.2. [14] Given ����, �
�� and  � ∈ �,			 
 																			lim�→∞����, �, �� = 1,					lim�→∞)���, �, �� = 0  
and lim�→∞��
�	, ��, �� = 1,				 lim�→∞)�
�	, ��, �� = 0	 
����
		 lim�→∞��
� , �, �� = 1,			lim�→∞)�
�, �, �� = 0. 

Definition 2.6. [14] Let f and g be self – mappings of an intuitionistic fuzzy symmetric 
space (X, M, N). f and g are called compatible if  lim�	→∞��78��, 87��	, t� =1		and		lim4	→∞)78�4,	87�4	,t=0		 
 whenever   ���� is a sequence in X such that   lim�	→∞��7��, 
, t� = 1		and		 lim�	→∞)�7��, 
, t� = 0		 
and lim�	→∞��8��, 
, t� = 1		and		 lim�	→∞)�8��, 
, t� = 0		for some 
 ∈ �. 
 Definition 2.7. [14]  Let f and g be self mappings of an Intuitionistic Fuzzy symmetric 
space (X, M, N). f and g are said to be  weakly compatible if they commute at their 
coincidence points i.e.7; = 8;	7<=	�<��	; ∈ �. �ℎ�4	78; = 87;. 
Now we define occasionally weakly compatible in an intuitionistic fuzzy symmetric 
space as: 

 Definition 2.8. Self mappings f and g of an intuitionistic fuzzy symmetric space (X, M, 
N) is said to be occasionally weakly compatible (owc) if there exists a point � ∈ � which 
is a coincidence point of f and g at which f and g commute. 

Definition 2.9. [14] Let f and g be self mappings of an Intuitionistic Fuzzy symmetric 
space (X, M, N), we say that f and g satisfy the property (IFE.A.) if there exists a 
sequence ���� such that 	lim�	→∞��7��, 
, t� = 1		and		 lim�	→∞)�7��, 
, t� = 0		 
and lim�	→∞��8��, 
, t� = 1		and		 lim�	→∞)�8��, 
, t� = 0		for some 
 ∈ �. 
Remark 2.2.  It is clear from the above Definition 2.9 that two self mappings f and g of 
an intuitionistic fuzzy symmetric space (X, M, N) will be non – compatible if there exists 
at least one sequence ���� such that 	lim�	→∞��7��, 
, t� = 1		and		 lim�	→∞)�7��, 
, t� = 0		 
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and lim�	→∞��8��, 
, t� = 1		and		 lim�	→∞)�8��, 
, t� = 0		 
for some 
 ∈ �, ?ut 
 lim�	→∞��78�� , 87��	, t� ≠ 1		and		 lim�	→∞)�78�� , 87��	, t� ≠ 0		 
or do not exists. 

Clearly, two non – compatible self mappings of an intuitionistic fuzzy symmetric space 
(X, M, N) satisfy the property (IFE.A).  

Definition 2.10. [14] Let (X, M, N) be an intuitionistic fuzzy symmetric space, we say 
that (X, M, N) satisfies the property (IFAB) if given sequences ����,	 �
�� such that  																															lim�→∞����, �, �� = 1,					lim�→∞ )���, �, �� = 0  
and                       lim�→∞ ��
� , �, �� = 1,			 lim�→∞)�
�, �, �� = 0 ����
		that       lim�→∞��
�	, ��, �� = 1,				 lim�→∞)�
�	, ��, �� = 0	 
Lemma 2.1. [10] Let A and B be self maps on X and let A and B have a unique point of 
coincidence, w = Ax = Bx, then w is unique fixed point of A and B. 

 Definition 2.11. Let  ϕ, ψ: E1 → E1 are continuous, non – increasing, non – decreasing 
functions respectively satisfying the conditions , F�0� = 1, ϕ�t� > �, 34�	ψ�0� =0	, ψ�t� < �		7<=	�G�=
	t > 0. 

3. Main result 
Theorem 3.1. Let (X, M, N, *,◊) be a Intuitionistic fuzzy symmetric space that satisfy 
(IFW1), (IFW2), (IFAB), and let A, B, S, and T be self mapping of X such that 

(I) H��� ⊂ J���34�K��� ⊂ ����, 
(II)  L<=	3��	�, 
 ∈ �	, let  ϕ, ψ: E1 → E1 are continuous, non – increasing, non – 

decreasing functions respectively satisfying the conditions , F�0� = 1,ϕ�t� > �, 34�	ψ�0� = 0	, ψ�t� < �		7<=	�G�=
	t > 0 such that 

M φ�t�dtO�PQ,RS,T�
U ≥ ϕ WM φ�t�dtX�Q,S,T�

U Y 

and																																						Z φ�t�dt ≤\�PQ,RS,T�U  ψ ]Z φ�t�dt^�Q,S,T�U _ 

where φ: E1 → E1 is a lebesgue integrable mapping which is summable, non-
negative and such that Z φ�t�dt > 0	for	each	ε > 0εU  and 

���, 
, �� = min	�����, J
, ��, ��H�, ��, ��, ��K
, J
, ��, 12 e����, K
, ��
+ ��H�, J
, ��g� 

4��, 
, �� = max	�)���, J
, ��, )�H�, ��, ��, )�K
, J
, ��, 12 e)���, K
, ��
+ )�H�, J
, ��g� 

 �iii� Suppose that (B, T) satisfied property (IFE.A.)(respectively, (A, S) satisfies 
property (IFE.A.)) and 
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(IV)  the pairs (A, S) and (B, T) are occasionally weakly compatible. 

(V)  S(X) is a d- closed subset of X( resp., T(X) is a d- closed subset of X). 

Then A, B, S and T have a unique common fixed point in X. 

Proof: Since the pair (B, T) satisfies property (E.A.), so there exists a sequence ���� 
in X, and a point j ∈ � such that lim�→∞�� J��, 	j, �� = lim�→∞�� K��, 	j, �� = 1 
and lim�→∞)� J��, 	j, �� = lim�→∞)� K��, 	j, �� = 0 

From (I), K��� ⊂ ����, there exists a sequence �
��  in X such that B�� = �
� and 
hence lim�→∞�� �
�, 	j, �� = 1	34�	 lim�→∞)� �
�, 	j, �� = 0. 
By property (IFAB), lim�→∞�� K��, 	J��, �� = lim�→∞�� �
�, 	J��, �� = 1 
and lim�→∞)� K��, 	J��, �� = lim�→∞)� �
� , 	J��, �� = 0 
From (V), S(X) is a d- closed subset of X there exists a point ; ∈ �	�;kℎ	�ℎ3�	�; =j. 
Now we will prove that Au =Su. Suppose not then 

Z φ�t�dtl�mn,o,0�U = Z φ�t�dtpU  , where = = 	 lim�→∞��H;, K��, �� 
≥ ϕ WM φ�t�dtX�q,,r	,T�

U Y 

and Z φ�t�dts�mn,o,0�U = Z φ�t�dttU  where � = 	 lim�→∞ 4�H;, K��, �� 
≤ ψ WM φ�t�dt^�q,,r	,T�

U Y 

where 	lim�→∞ ��;, ��, �� = 		 lim�→∞��4� ���;, J��, ��, ��H;, �;, ��, 	��K��, J��, ��,u
v ����;, K��, �� + ��H;, J��, ���� 
and 	lim�→∞ 4�;, ��, �� = 		 lim�→∞�3�� )��;, J��, ��, )�H;, �;, ��, 	)�K��, J��, ��,u
v �)��;, K�� , �� + )�H;, J�� , ���� 
On using the property (IFAB), we get 

lim�→∞��;, ��, �� = 		 lim�→∞��4� 1, ��H;, j, ��, 	1, 12 �1 + ��H;, j, ���� 
and  

lim�→∞ 4�;, ��, �� = 		 lim�→∞�3�� 0, )�H;, j, ��, 	0, 12 �0 + )�H;, j, ���� 
we have 			Z φ�t�dt	l�mn,o,0�U ≥ ϕ ]Z φ�t�dtO�Pq,o	,T�U _                                                                                             

																																																			> Z φ�t�dtO�Pq,o	,T�U  

and           Z ∅�t�dt	s�mn,o,0�U ≤ ψ ]Z φ�t�dt\�Pq,o	,T�U _                                                                                             

																																																		< Z φ�t�dt\�Pq,o	,T�U  
which is contradiction. Hence Au = Su = z. 
Again by (I) H��� ⊂ J���, there exists a point x ∈ �	�;kℎ	�ℎ3�	H; = Jx. Now we 
will show that Jx = Bw. Suppose not, then by (II) we have 
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M φ�t�dtl�mn,{|,0�
U ≥ ϕ WM φ�t�dtX�q,|	,T�

U Y 

≥ ϕ }M φ�t�dtX~^	�O��q,�|	,T�,O�Pq,�q,T�,O�R�,��,T�,��eO��q,R�,T�1O�Pq,��,T�g�
U �

≥ ϕ }M φ�t�dtX~^	�u,u,O�R�,Pq,T�,���O�Pq,R�,T�1u��
U � 

≥ ϕ WM φ�t�dtO�Pq,R�,T�
U Y 

> M φ�t�dtO�Pq,R�,T�
U  

and  

M φ�t�dts�mn,{|,0�
U ≤ ψ WM φ�t�dt^�q,|	,T�

U Y 

≤ ψ }M φ�t�dtX�Q	�\��q,�|	,T�,\�Pq,�q,T�,\�R�,��,T�,��e\��q,R�,T�1\�Pq,��,T�g�
U �

≤ ψ }M φ�t�dtX�Q	�U,U,\�R�,Pq,T�,���\�Pq,R�,T�1U��
U � 

≤ ψ WM φ�t�dt\�Pq,R�,T�
U Y 

< M φ�t�dt
N�Au,Bw,t�

0
 

which is a contradiction. Hence Tw = Bw. 
Thus Au = Su = Tw = Bw = z. 
Now by (IV), (A, S) and (B, T) are occasionally weakly compatible, we have 
AAu = ASu =  SAu = SSu and BTw = TBw = TTw = BBw. 
Now we will show that Au = w. Suppose Au≠ x then by (II) 

M φ�t�dt
l�mn,mmn,0�

0
= WM φ�t�dt

l�AAu ,{|	,t�
0

Y 

≥ ϕ WM φ�t�dt
��Au,�	,t�

0
Y 

≥ ϕ }M φ�t�dt
min	�M�SAu,T|	,t�,M�AAu ,SAu,t�,M�Bw,Tw,t�,1

2
eM�SAu,Bw,t�1M�AAu ,Tw,t�g�

0
�

≥ ϕ WM φ�t�dt
min	�M�AAu ,Bw,t�,1,1,M�AAu ,Bw,t��

0
Y 

≥ ϕ WM φ�t�dt
M�AAu ,B�	,t�

0
Y 
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> M φ�t�dt
M�AAu ,B�	,t�

0
= M φ�t�dt

M�AAu ,Au	,t�
0

 

i.e. Z φ�t�dt
M�AAu ,Au	,t�

0
> 	 Z φ�t�dt

M�AAu ,Au	,t�
0

 

 and Z φ�t�dt
s�mn,mmn,0�

0
= Z φ�t�dt

s�AAu ,R�	,t�
0

 

≤ ψ WM φ�t�dt
��Au,�	,t�

0
Y 

≤ ψ }M φ�t�dt
max	�N�SAu,T�	,t�,N�AAu ,SAu,t�,N�Bw,Tw,t�,1

2
eN�SAu,Bw,t�1N�AAu ,Tw,t�g�

0
�

≤ ψ WM φ�t�dt
max	�N�AAu ,Bw,t�,0,0,N�AAu ,Bw,t�,�

0
Y 

≤ ψ WM φ�t�dt
N�AAu ,B�	,t�

0
Y 

< M φ�t�dt
N�AAu ,B�	,t�

0
= M φ�t�dt

N�AAu ,Au	,t�
0

 

i.e.   Z φ�t�dt
N�AAu ,Au	,t�

0
< Z φ�t�dt

N�AAu ,Au	,t�
0

 
which is a contradiction . Hence Au = Su = w. Similarly if Kx ≠ ;. 
we have a contradiction. Thus 	x = H; = �; = Kx = Jx = ;, so w = u is a 
common fixed point of A, B, S and T. 
For the uniqueness, let v be another common fixed point of A, B, S and T. 
If x ≠ G, then from (II) we have 

M φ�t�dt
l��,|,0�

0
= M φ�t�dt

l�m�,{|,0�
0

≥ ϕ WM φ�t�dt
��v,�	,t�

0
Y 

≥ ϕ }M φ�t�dt
min	�M�Sv,T�	,t�,M�Sv,Av ,t�,M�Bw,Tw,t�,1

2
eM�Sv,Bw,t�1M�Av,Tw,t�g�

0
� 

≥ ϕ WM φ�t�dt
min	�M�v,�	,t�,1,1,M�v,�	,t�	�

0
Y 

≥ ϕ WM φ�t�dt
M�v,�	,t�

0
Y 

> M φ�t�dt
M�v,�	,t�

0
 

and  

M φ�t�dt
s��,|,0�

0
= M φ�t�dt

s�m�,{|,0�
0

≤ ψ WM φ�t�dt
��v,�	,t�

0
Y 

≤ ψ }M φ�t�dt
max	�N�Sv,T�	,t�,N�Sv,Av ,t�,N�Bw,Tw,t�,1

2
eN�Sv,Bw,t�1N�Av,Tw,t�g�

0
� 

≤ ψ WM φ�t�dt
max	�N�v,�	,t�,0,0,N�v,�	,t�	�

0
Y 
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≤ ψ WM φ�t�dt
N�v,�	,t�

0
Y 

< M φ�t�dt
N�v,�	,t�

0
 

which is a contradiction. Hence w = v.  
This complete the proof. 

Corollary 3.1. Let (X, M, N, *,◊) be a Intuitionistic fuzzy symmetric space that satisfy 
(IFW1), (IFW2), (IFAB), and let A, B, S, and T be self mapping of X satisfy the 
conditions (I), (II), (III) and (V) and the pairs (A, S), (B, T) are weakly compatible then  
A, B, S and T have a unique common fixed point in X. 

Proof: Since weakly compatible mappings are occasionally weakly compatible mappings 
result follows from theorem 3.1.  

Corollary 3.2.  Let (X, M, N, *,◊) be a Intuitionistic fuzzy symmetric space that satisfy 
(IFW1), (IFW2), (IFAB), and let A, B, S, and T be self mapping of X such that 

(I) H��� ⊂ J���34�K��� ⊂ ����, 
(II)  L<=	3��	�, 
 ∈ �	, let  ϕ, ψ: E1 → E1 are continuous, non – increasing, non – 

decreasing functions respectively satisfying the conditions , F�0� = 1,ϕ�t� > �, 34�	ψ�0� = 0	, ψ�t� < �		7<=	�G�=
	t > 0 such that M�Ax, By, t� ≥ ϕ�m�x, y, t�� 
and																																						N�Ax, By, t� ≤ ψ�n�x, y, t�� 

where ���, 
, �� = min	�����, J
, ��, ��H�, ��, ��, ��K
, J
, ��, u
v e����, K
, �� +�H�,J
,�� 

and  4��, 
, �� = max	�)���, J
, ��, )�H�, ��, ��, )�K
, J
, ��, u
v e)���, K
, �� +)H�,J
,�� �iii� Suppose that (B, T) satisfied property (IFE.A.)(respectively, (A, S) satisfies 

property (IFE.A.)) and 
(IV)  the pairs (A, S) and (B, T) are occasionally weakly compatible. 
(V)  S(X) is a d- closed subset of X( resp., T(X) is a d- closed subset of X). 
Then A, B, S and T have a unique common fixed point in X. 

Proof: If we put ���� = 1 in theorem 3.1, the result follows. 
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