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Abstract. In this paper, we consider a path algebra and discuss about matrices over path
algebra. Some investigations on transitivity over path algebra are performed. Some
properties and characterization for permanent of matrices over path algebra are
established. Several inequalities over permanent are discussed. Also the adjoint matrix
over path algebra are studied.
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1. Introduction

Path algebras are useful in many areas such as design of switching circuits, automata
theory, information system, dynamic programming and decision theory. For further
examples [3, 8]. Boolean matrix, incline matrix [13] are the prototypical examples of
matrices over path algebra. In 1999, Golan [4] worked on semirings and matrices over
semirings. Transitive matrices are important type of matrices. Since the beginning of
1980s, many authors have studied this types for some special cases of path algebra e.g.
[5]. In [3], Hasimoto considered transitivity of matrices over a general path algebra. A
large number of work on permanent theory have been published [12, 13].

2. Preliminaries
In this section, we present some definitions and examples of algebraic structures of
semiring. We support these definitions by some examples.

Definition 2.1. Let S be a non empty set with two binary operations + and . . Then the
algebraic structure (S; +, .) is called a semiring iff Va,b,ceS,

(1) (S; +) is monoid with identity element 0.
(i) (S; +) is commutative.
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(iii)  (S; .) is monoid with identity element 1.
(iv) a (btc)=ab+acand (btc)a=b.a+c.a.
(v) 0.a=0.a=0and 0=#1.

Example 2.1(a). (B = {0,1}, +, .) is a semiring, where + and . are defined by

+] 0|1 .10 1
0 0|1 010 0

Example 2.1(b). (1=[0,1]; +, .) is a semiring, where order in [0,1] is usual < and
+ and . are defined as follows:
a + b = max{a,b}, a.b = min{a,b}.
Example 2.1(c). (L={1,2,3,4,6,8, 12,24}, | , +,.) is a semiring, where
a+b=Ilcm{a, b}, ab=gcd{a, b}.
Definition 2.2. Let (S; +, .) be a semiring. Then S is called commutative iff
VX, Y €S, X.y=Y.X

Example 2.2(a). Ry ={xeR:x>0},Z, ={xe€Z:x>0}, Q; ={xeQ:x>0}are
commutative semirings .

Definition 2.3. Let (S; +,.) be a commutative semiring. It is called Boolean semiring
iff VxeS§,
XX = X.

Example 2.3(a).
(i) (B={0,1}; +,.) isa Boolean semiring, where + and . are defined in Example 2.1(a).
(ii) (1 =[0,1]; +, .) is a Boolean semiring, where order in [0,1] is usual < and + and . are
defined as follows:

a + b = max{a,b}, a.b = min{a,b}.

(i) Let X #gand P(X) is power set of X. + and . are defined by A+B=AUB
and A.B = AN B; VA, B € P(X). Then (P(X); +, .) is a Boolean semiring, where ¢ and
X are zero and identity of P(X) respectively.

3. Transitive matrix over path algebra
In this section, we discuss path algebra, incline and some elementary properties of
transitivity of matrices over path algebra.

Definition 3.1. Let (S; +,.) be asemiring. Then S is called path algebra iff
X+X=X;VXxeSs.

Example 3.1(a).
(1) (B={0, 1}; +,.) isa path algebra, where + and . are defined in Example 2.1(a).
(2) The fuzzy algebra (F =[0.1];v,T) ; where v=max and T is a t-norm is a path

algebra.
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(3) Every bounded distributive lattice is a path algebra.

Definition 3.2. Let (S; +,.) be a path algebra. Then S is called commutative path
algebra iff
Xy=yX;VXyeS.

Example 3.2(a).

(1) (B={0, 1}; +,.) is acommutative path algebra, where + and . are defined in
Example 2.1(a).

(2) The fuzzy algebra (F =[0.1];Vv,T) ; where v=max and T isa t-norm s a
commutative path algebra.

(3) Every bounded distributive lattice is commutative path algebra.

Definition 3.3. Let (S; +, .) be asemiring. Then S is called an incline iff
X+1=1;VxeS.

Example 3.3(a). The fuzzy algebra (F =[0.1];v,T) ; where v=maxand T is a
t-norm is an incline.
Proposition 3.4. Any incline is a path algebra.
Proof : Let (S; +,.) be anincline.
Thenl+1=1.
Now VxeS,
Xx=x.1

=X.(1+12)

=X+X
So X+X=X; VXxeSs,
Hence S is a path algebra. A

Remark 3.4(a). Forany a,beS;a<b<a+b=h.
Definition 3.5. Let (S; +,.) be apathalgebraand X € S. Then X e S s called

transitive element iff
X2 < X.

Proposition 3.6. . Let (S; +,.) be an incline. Then every element in S is transitive.
Proof : Let (S; +,.) be anincline.
Then X.+1=1;VxeS,

Now X* +X =X (X+1)

=x.1
=X
Therefore x? < X.
Hence S is transitive. A

Definition 3.7. Let (S; +,.) be a commutative path algebraand A€ M, (S). Then Ais
said to be almost periodic if 3k, d € Z* such that A* = A,
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The least positive integer Kk is called the index and the least positive integer d is called the
period of A. It is denoted by k(A) and d(A).

Definition 3.8. Let (S; +,.) be a commutative path algebraand A€ M, (S). Then A
is called transitive element iff A < A

Definition 3.9. Let (S; +, .) be a path algebra and Ae M _(S). Then A is called

invertible matrix iff 3G e M, (S)such that AG =GA=1_, where |, stands for
identity matrix of order n.

Definition 3.10. Let (S ; +,.) be a path algebra and A€ M (S). Then A is called a

permutation matrix if every element of A is either 0 or 1 and each row and each column
contains exactly one 1.

0
0
Example 3.10(a). A= 1

o o =
o O o

0
1. : .
0 IS a permutation matrix.

0 01 0
Remark 3.10(b). A permutation matrix A€ M (S) is clearly invertible over S and

AT isinverse of A.

From Example 3.10(a), A=

= o o
O O - o

AT =

O 0o o kR, O o orF
- O O O O
o okr or © 0o
o o o

Clearly ATA=AA" =1

Therefore AT is inverse of A.

Proposition 3.11. Let (S; +, .) be a path algebraand A€ M (S). Then
(1) Ais transitive iff a, a,; <a; forall i, ,ke{,2,3,......... N}

(2) Ais transitive iff PAP " is transitive for any nxn permutation matrix P.
Proof:

(1) Let A be transitive.

Then A < A

= AA<A
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= Z a, 8, <(a;) ;where i, j, ke{L2,3.... n}
k=1
= (a)(@y) < (&)
Conversely suppose
(& )(@y) < (a;)

n
Now AA = z a;, a < (aik )(akj) < (aij ) =A

k=1

Hence A* < A.

(2) Let A be transitive.

Then A*<A

Now (PAPT)? = (PAP")(PAPT)
= (PA)(P'P)(AP")
= (PA)In(APT)
=P(Al A) PT
=P(AA)PT
= PA’PT

Hence (PAPT)? < PAPT

Conversely

(PAPT)? < PAPT
Then (PAPT)(PAPT) < PAPT
= (PA)(P"P)(APT) < PAPT
= (PA)I, (AP") < PAP'
= P(AI, A)P" < PAP’
= PA’P" < PAP’'
= PTPA’P'P<PTPAP'P
= (P"P)A*(P"P) < (PTP)A(P'P)
=1 A’ <1 Al
= A’ <A
Hence A is transitive. A

4. Permanent and adjoint of matrix over path algebra
In this section, we discuss permanent and adjoint of matrices over path algebra. Some
properties also established.

Definition 4.1. Let Let (S; +, .) be a path algebraand A€ M (S). Then the permanent
of A denoted by perA is defined as:
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perA = Zalcr(l) 8r0(2) Bag(z)eereee Qo)
oes,
Where S, denotes the symmetric group of the set i €{1,2,3,......... N}.

Remark 4.2. The partial relation < over M, (S) is defined as:
A<B & g Sbij Vi, ]
A<B< A+B=B.
Proposition 4.3. Let (S; +, .) be a commutative path algebraand A,B € M, (S). Then

per(AB) > per(A).per(B).

n n n
Proof: per (AB)= > (D aubi gD 8Dy e > a,:bom)
ceS, ¢é=1 é=1 =
= 2 (2 aa 8 b b b e b, o)
11 e én oeS,
2 Zsl(ain(l)azz(aasﬁ(s) --------- a,.m ZSbzt(l)o‘(l)bzr(Z)a(Z)b/r(3)a(3) --------- B, o)
= ) By @ar () Bana) oo 2, Per(B)
meS,
= per(A). per(B)
Hence per(AB) > per(A).per(B). A

Definition 4.4. Let (S; +, .) be a commutative path algebraand Ae M (S). Then A is
called idempotent iff A% = A

Proposition 4.5. Let (S; +,.) be a commutative path algebraand Ae M (S). If Alis
idempotent with per(A) >1, then per(A) is idempotent.

Proof : Since A is idempotent, so AZ = A
By Proposition 4.3 we get
per(AB) > per(A).per(B). (i)
Putting A for B in (i)
per(AA) > per(A).per(A)
= per(A*) > (per(A))*
= per(A) > (per(A))*

= (per(A))* < per(A) ....(ii)
We have
per(A) >1
= per(A)per(A) > per(A)
= (per(A))* > per(A) ....(iii)

From (ii) and (iii) we get
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(per(A))? = per(A). A
Definition 4.6. Let (S; +,.) be a commutative path algebraand Ae M (S). Then A'is
said to be nilpotent matrix if 3k € Z* such that A“ =0.

Definition 4.7. Let (S; +,.) be a commutative path algebraand A€ M, (S). Then A
is called irreflexive element iff a; =0 ; where i €{1,2,3,......... N}.

Proposition 4.8. Let (S; +,.) be a commutative path algebraand Ae M (S).

(i) If (A%), =0, forall i, ke{,2,3,......... ,n}, then A is nilpotent.

(i) If Ais irreflexive and transitive, then A is nilpotent.
Proof : Trivial.

Definition 4.9. Let (S; +,.) be a commutative path algebra and Ae M, (S) ;n>2.
The matrix B is said to be adjoint matrix of matrix A if bij = ‘Aji‘; 1<i,j<n, where
A,; is matrix of order n—1formed by delating row j and column i from A.

It is denoted by adj(A).

Proposition 4.10. Let (S; +,.) be a commutative path algebraand A,B € M (S) and
B < A.Then (1) adjB < adjA
(2) if A'is nilpotent then B is nilpotent and h(B) < h(A).
Proof: (1)
Let ABeM, (S)and B<A.

Then (perB(i| )., < (perAG|i)T .,

= adjB < adjA
(2) Let A be nilpotent.
So 3k € Z* suchthat A“ =0.
Let
I <k.
Since B< A, so
B' < A
=B'<0
=B'=0.
Hence B is nilpotent.
Again
B' < A
= (Bl)ij < (Ak)
From this we get

nilpotent index of B < nilpotent index of A
= 1(B) <k(A)

;where 1, j, kK, e{,,2,3,........ N}

ij
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= h(B) <h(A). A
Proposition 4.11. Let (S; +,.) be a commutative path algebra and A,B € M (S). Then
(1) adj(A) +adj(B) <adj(A+ B)
(2) (adj(A))" =adj(A").
Proof:
(1) Wehave A<A+B and B<A+B.
By Proposition 4.10 (1), we get

adj(A) <adj(A+B) ()
and adj(B) <adj(A+ B) ...(ii)
From (i) and (ii) we get

adj(A) +adj(B) <adj(A+B).

(2) Itis obvious. A

Definition 4.12. Let (S; +,.) be a commutative path algebraand Ae M (S). Then A
is called symmetric iff AT = A,

Definition 4.13. Let (S; +,.) be a commutative path algebraand A,B,C € M, (S).
Then

AoB=Ciff c;=]] (a, +by) forany i, je{l,2,3,....... n}.

k=1

Proposition 4.14. Let (S; +, .) be a path algebraand A,B,C,D € M (S). Then
(i) (BoC)' =CT 0BT
(i) If A<B then Do A<DoB and AcC<BoC.
Proof: (i) BoC=]] (b, +c).
k=1
For i=1,2,....m
i=1,2, ...

©0) =(] (o +o,)"
= ﬁ (cy +by)

Now C' =c;, B" =hy
CToB" =¢, ohy

= H (cy +by)
k=1
Therefore (BoC)" =C" o B" A
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(i) Let
A<B.

Then q; <b;; fori=1,2,...m

j=L2,....n
DOA:H (dti +aij)S];[ (dti +bij)

Therefore Do A< DoB.

Again

A-C = ll! (a; +¢y) < ll! (by +Cy)
Therefore AcC < Bo C.Ji } A
Definition 4.15. Let (S; +,.) be a commutative path algebraand A€ M_(S). Then A
is called reflexive element iff a, =1 ;where i €{,,2,3,......... N}

Definition 4.16. Let (S; +,.) be a commutative path algebraand A€ M_(S). Then A

is called weekly reflexive element iff a;, >a, ;where i, j€{1,2,3,......... N}

ij
Definition 4.17. Let (S; +,.) be a commutative path algebraand A€ M_(S). Then A
is called nearly irreflexive element iff a; <a; ; where ,Lje{l,2,3........ N}

Proposition 4.18. Let (S; +, .) be a path algebraand A€ M (S) . If A'is nearly
irreflexive and symmetric, then
(1) AcA<A
(2) Ao A is symmetric and nearly irreflexive.
(3) A? is weekly reflexive.
Proof : (1) Let
T=A-A
Then

n

ty =] | (@i +ay) (1)
k=1

< (2, +3;)
< aij
Hence Ao A<A.
(2) Now
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n
=T 1(ag +ay) [ -+ Ais Symmetric]
k=1
n
= H (aik + akj)
k=1
Hence T is symmetric.
Again
n
t; = (aik + ak|)
k=1
n
= (aik + a.k)
k=1
n
= H Qi
k=1
n
< (aik + akj)
k=1
=t;
Hence Ao A is nearly irreflexive.
(3) Let S =A%
n
Then s; =Y a,ay
k=1
n
= Z QA Ay
k=1
n
= Z Qi
k=1
n
> a,ay
k=1
>S.
ij
Hence A? is weekly reflexive. A

Proposition 4.19. Let (S; +, .) be a path algebraand Ae M (S) . If Alis nearly

irreflexive and symmetric, then Ao AT is symmetric and nearly irreflexive.
Proof : Let S = Ao A",
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Hence Ao AT is nearly irreflexive.

By Proposition 4.14, (Ao A")' =(AT)" o AT = Ao A", A

Proposition 4.20. Let (S; +,.) be a path algebraand A€ M, (S) . If Ais irreflexive and
transitive, then (1) Ao AT =0

(2 AToA=0

Proof : Let S = Ao AT

n

Then s; =] [ (ay +a;) <(a; +a;)(a; +a;) =a;a; <a; =0

k=1

Hence Ao A" =0.
The proof of (2) is similar.
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