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Abstract. In this paper, we consider a path algebra and discuss about matrices over path 
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1. Introduction 

Path algebras are useful in many areas such as design of switching circuits, automata 

theory, information system, dynamic programming and decision theory. For further 

examples [3, 8].  Boolean matrix, incline matrix [13] are the prototypical examples of 

matrices over path algebra. In 1999, Golan [4] worked  on semirings and matrices over 

semirings. Transitive matrices are important type of matrices. Since the beginning of 

1980s, many authors have studied this types for some special cases of path algebra e.g. 

[5]. In [3], Hasimoto considered transitivity of matrices over a general path algebra. A 

large number of work on permanent theory have been published [12, 13].  

 

2. Preliminaries  

In this section, we present some definitions and examples of algebraic structures of 

semiring. We support these definitions by some examples.  

 

Definition 2.1. Let S be a non empty set with two binary operations +  and .  . Then the  

algebraic structure (S;  +, .) is called a semiring iff  Scba  ,, , 

(i) (S; +) is monoid with identity element 0. 

(ii) (S; +) is commutative.  
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  (iii)       (S;  .) is monoid with identity element 1. 

(iv)       a. (b+c) = a.b + a.c and  (b+c).a = b.a + c.a. 

(v)        0. a = 0. a = 0 and 10  . 

 

Example 2.1(a). (B = {0,1}, +, .) is a semiring, where + and . are defined by 

 

 

 

 

 

Example 2.1(b).   (I =[0,1]; +, .) is a semiring, where order in [0,1] is usual    and  

+  and . are defined as follows: 

a + b = max{a,b}, a.b = min{a,b}. 

Example 2.1(c).   (L = {1, 2, 3, 4, 6, 8, 12, 24};│, +, .) is a semiring, where  

a + b = lcm{a , b}, a.b = gcd{a , b}. 

Definition 2.2. Let  (S; +, .) be a semiring. Then S is called commutative iff   

                                                 ...,, xyyxSyx   

Example 2.2(a). 
0 { : 0}x x     ,

0 { : 0}x x     , 
0 { : 0}x x     are 

commutative semirings . 

Definition 2.3.  Let  (S;  +, .) be  a commutative semiring. It is called Boolean semiring 

iff ,Sx  

.. xxx   

Example 2.3(a).  
(i)  (B = {0,1}; +, .)  is a  Boolean semiring, where + and . are defined in Example 2.1(a). 

(ii) (I =[0,1]; +, .) is a Boolean semiring, where order in [0,1] is usual    and  +  and . are 

defined as follows: 

a + b = max{a,b}, a.b = min{a,b}. 

 

(iii)    Let X and  P(X) is power set of  X. +  and . are defined by BABA   

and A.B ).(,; XPBABA   Then (P(X); +, .) is a Boolean semiring, where   and 

X are zero and identity of  P(X) respectively. 

 

3. Transitive matrix over path algebra 

In this section, we discuss path algebra, incline and some elementary properties of  

transitivity of matrices over path algebra. 

Definition 3.1.  Let  (S;  +, .) be  a semiring. Then S is called path algebra iff   

                                 .; Sxxxx   

Example 3.1(a).  

(1)  (B={0, 1}; +, . )  is a  path algebra, where + and . are defined in Example 2.1(a). 

(2)  The fuzzy algebra ),;]1.0[( TF   ; where = max and T is a t-norm is a  path 

algebra. 

+ 0 1 

0 0 1 

1 1 1 

. 0 1 

0 0 0 

1 0 1 
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(3)  Every bounded distributive lattice is a  path algebra. 

Definition 3.2. Let  (S;  +, .) be  a path algebra. Then S is called commutative path 

algebra iff   

                                 .,;.. Syxxyyx   

Example 3.2(a).  

(1)  (B={0, 1}; +, . )  is a commutative path algebra, where + and . are defined in 

Example 2.1(a). 

(2)  The fuzzy algebra ),;]1.0[( TF   ; where = max and T is a t-norm is a 

commutative path algebra. 

(3)  Every bounded distributive lattice is commutative path algebra. 

 

Definition 3.3.  Let  (S; +, .) be  a semiring. Then S is called an incline  iff   

                                 .;11 Sxx   

Example 3.3(a).  The fuzzy algebra ),;]1.0[( TF   ; where = max and T is a 

 t-norm is an incline. 

Proposition 3.4.  Any incline is a path algebra. 

Proof : Let  (S;  +, .) be  an incline. 

Then 1 + 1 = 1. 

Now  ,Sx  

                      1.xx   

                         )11(.  x  

                         xx   

So  xxx   ; ,Sx  

Hence S is a path algebra.                                                                                                    

Remark 3.4(a).  For any .;, bbabaSba   

Definition 3.5. Let  (S;  +, .) be  a path algebra and  .Sx Then Sx  is called 

transitive element iff   

                                           xx 2
. 

Proposition 3.6. . Let  (S;  +, .) be an  incline. Then every element in S is transitive. 

Proof : Let  (S;  +, .) be  an incline. 

Then ,;11. Sxx   

Now )1(2  xxxx  

1.x  

                    x  

Therefore .2 xx   

Hence S is transitive.                                                                                                          

Definition 3.7. Let  (S;  +, .) be  a commutative path algebra and )(SMA n . Then A is 

said to be almost periodic if 
 Zdk,  such that .dkk AA   
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The least positive integer k is called the index and the least positive integer d is called the 

period of A. It is denoted by k(A) and d(A). 

Definition 3.8. Let  (S;  +, .) be  a commutative path algebra and )(SMA n . Then A  

is called transitive element iff .2 AA   

Definition 3.9. Let  (S;  +, .) be a path algebra and )(SMA n . Then A is called 

invertible matrix iff  )(SMG n such that nIGAAG  , where nI  stands for 

identity matrix of order n. 

Definition 3.10. Let (S ; +,.) be a path algebra and )(SMA n . Then A is called a 

permutation matrix if every element of  A is either 0 or 1 and each row and each column 

contains exactly one 1. 

 

Example 3.10(a).  























0100

0010

1000

0001

A  is a permutation matrix. 

Remark  3.10(b).  A permutation matrix )(SMA n  is clearly invertible over S and 

TA  is inverse of  A. 

From Example 3.10(a),   























0100

0010

1000

0001

A  

                                   

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

TA

 
 
 
 
 
 

 

Clearly  IAAAA TT   

Therefore 
TA is inverse of  A. 

Proposition 3.11.  Let  (S; +, .) be a path algebra and )(SMA n . Then  

(1) A is transitive iff ijkjik aaa  for all }.........,,3,2,1{,, nkji   

(2) A is transitive iff 
TPAP is transitive for any nn  permutation matrix P. 

Proof:  
(1) Let A be transitive. 

Then AA 2
 

AAA   
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)(
1

ijkjik

n

k

aaa 


  ; where   }.........,,3,2,1{,, nkji   

)())(( ijkjik aaa   

Conversely suppose  

                                )())(( ijkjik aaa   

Now AA = kjik

n

k

aa
1

 ))(( kjik aa )( ija = A 

Hence AA 2
. 

(2) Let A be transitive.  

Then  AA 2
 

Now  ))(()( 2 TTT PAPPAPPAP   

                         ))()(( TT APPPPA  

                         )()( T

n APIPA  

                        
T

n PAAIP )(  

                         
TPAAP )(  

                         
TPPA2  

Hence 
TT PAPPAP 2)(  

Conversely 

                          
TT PAPPAP 2)(  

Then  
TTT PAPPAPPAP ))((  

        
TTT PAPAPPPPA  ))()((  

        
TT

n PAPAPIPA  )()(  

        
TT

n PAPPAAIP  )(  

        
TT PAPPPA  2

 

        PPAPPPPPAP TTTT  2
 

        )()()()( 2 PPAPPPPAPP TTTT   

        nnnn AIIIAI  2
 

        AA  2
 

Hence A is transitive.                                                                                                    

 

4. Permanent and adjoint of matrix over path algebra 

In this section, we discuss permanent and adjoint of matrices over path algebra.  Some 

properties also established. 

Definition 4.1. Let Let  (S; +, .) be a path algebra and )(SMA n . Then the permanent 

of A denoted by perA is defined as: 
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                                 )()3(3)2(2)1(1 .......... nn

S

aaaaperA
n








  

Where nS  denotes the symmetric group of the set }.........,,3,2,1{ ni . 

Remark 4.2. The partial relation   over )(SM n  is defined as: 

                                      jibaBA ijij ,;   

                                     .A B A B B     

Proposition 4.3. Let  (S; +, .) be  a commutative path algebra and )(, SMBA n . Then 

).().()( BperAperABper   

Proof:   per (AB) = )................( )(

1

)2(2

1

2)1(1

1

1 nn

n

n

n

S

n

bababa
n











 

  
 

 

                                

             
1 2 3 1 2 3

1 2

1 2 3 (1) (2) (3) ( )

, ,..........

( ...... ......... )
n n

n n

n n

S

a a a a b b b b           
   

                                                                                                        

 

              )....................( )()()3()3()2()2()1()1()()3(3)2(2)1(1 nn

S

nn

S

bbbbaaaa
nn









 


  

              )(.......... )()3(3)2(2)1(1 Bperaaaa nn

Sn








  

               )(.)( BperAper  

Hence ).().()( BperAperABper                                                                                   

Definition 4.4. Let  (S; +, .) be  a commutative path algebra and )(SMA n . Then A  is 

called idempotent iff .2 AA   

Proposition 4.5. Let  (S;  +, .) be  a commutative path algebra and )(SMA n . If A is 

idempotent with ,1)( Aper then )(Aper  is idempotent. 

Proof : Since A is idempotent,  so .2 AA   

By Proposition 4.3 we get  

                                         ).().()( BperAperABper                                  ....(i) 

Putting A for B in (i) 

                                )().()( AperAperAAper   

                           
22 ))(()( AperAper   

                           
2))(()( AperAper   

                           )())(( 2 AperAper                                                                    ....(ii) 

We have 

                          1)( Aper  

                    )()()( AperAperAper   

                    )())(( 2 AperAper                                                                          ....(iii)                         

From (ii) and (iii) we get 
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                                    )())(( 2 AperAper  .                                                                    

Definition 4.6. Let  (S;  +, .) be  a commutative path algebra and )(SMA n . Then A is 

said to be nilpotent matrix if 
 Zk  such that .0kA  

Definition 4.7. Let  (S;  +, .) be  a commutative path algebra and )(SMA n . Then A  

is called irreflexive element iff  0iia  ; where }.........,,3,2,1{ ni . 

Proposition 4.8. Let  (S;  +, .) be  a commutative path algebra and )(SMA n . 

(i) If 0)( ii

kA , for all }.........,,3,2,1{, nki  , then A is nilpotent. 

(ii) If A is irreflexive and transitive, then A is nilpotent. 

Proof : Trivial. 

Definition 4.9. Let  (S;  +, .) be  a commutative path algebra and 2;)(  nSMA n . 

The matrix B is said to be adjoint matrix of matrix A if jiij Ab  ; nji  ,1 , where 

jiA  is matrix of order 1n formed by delating row j  and column i  from A. 

It is denoted by ).(Aadj  

Proposition 4.10. Let  (S;  +, .) be  a commutative path algebra and )(, SMBA n  and 

AB  . Then (1) adjAadjB                

                       (2) if A is nilpotent then B is nilpotent and )()( AhBh  . 

Proof: (1)  

                   Let )(, SMBA n  and AB  . 

Then 
n n( ( | j))TperB i 

  n n( ( | j))TperA i 
               

          adjAadjB   

(2)  Let A be nilpotent. 

So 
 Zk  such that 0kA . 

Let  

         kl  . 

Since AB  , so 

         
kl AB   

  0 lB  

  0 lB . 

Hence B is nilpotent. 

Again 

          
kl AB   

ij

k

ij

l AB )()(   ; where }.........,,3,2,1{,,, nlkji   

From this we get  

              nilpotent index of B   nilpotent index of A 

)()( AkBl   



         K.R.Chowdhury, Md. Yasin Ali, A.Sultana, N.K.Mitra and A.F.M.Khodadad Khan 

52 

 

)()( AhBh  .                                                                                                                 

Proposition 4.11. Let  (S;  +, .) be  a commutative path algebra and ).(, SMBA n  Then  

(1) )()()( BAadjBadjAadj   

(2) )())(( TT AadjAadj  . 

Proof: 

(1)    We have  BAA   and BAB  . 

By Proposition 4.10 (1), we get 

          )()( BAadjAadj                                                                                          ….(i) 

and   )()( BAadjBadj                                                                                           …(ii) 

From (i) and (ii) we get 

                      )()()( BAadjBadjAadj  . 

(2)  It is obvious.                                                                                                                 

Definition 4.12. Let  (S;  +, .) be  a commutative path algebra and )(SMA n . Then A  

is called symmetric iff .AAT   

Definition 4.13. Let  (S;  +, .) be  a commutative path algebra and )(,, SMCBA n . 

Then  

                  CBA   iff )(
1

kjik

n

k

ij bac 


 for any }.........,,3,2,1{, nji  . 

Proposition 4.14. Let  (S; +, .) be a path algebra and )(,,, SMDCBA n . Then 

(i) 
TTT BCCB  )(  

(ii) If  BA   then BDAD    and CBCA   . 

Proof : (i)    )(
1

kjik

n

k

cbCB 


 ,  

 For  i = 1,2, …..,m 

                                                                          j = 1, 2, …..,l. 

          
T

kjik

n

k

T cbCB ))(()(
1

 


  

  = )(
1

kijk

n

k

bc 


 

 

Now  jk

T cC  , ki

T bB   

kijk

TT bcBC    

              = )(
1

kijk

n

k

bc 


 

Therefore 
TTT BCCB  )(                                                                                          ∆ 
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(ii)        Let  

  BA  . 

 

Then                ;ijij ba      for i = 1, 2,…..,m 

            j = 1, 2, …..,n  

AD  )()(
11

ijti

m

i

ijti

m

i

bdad  


 

Therefore BDAD   . 

Again 

                         CA )()(
11

jkij

n

j

jkij

n

j

cbca  


 

Therefore .CBCA                                                                                                     ∆ 

Definition 4.15. Let  (S;  +, .) be  a commutative path algebra and )(SMA n . Then A  

is called  reflexive element iff  1iia  ; where }.........,,3,2,1{ ni . 

Definition 4.16. Let  (S;  +, .) be  a commutative path algebra and )(SMA n . Then A  

is called weekly reflexive element iff  ijii aa   ; where }.........,,3,2,1{, nji  . 

Definition 4.17. Let  (S;  +, .) be  a commutative path algebra and )(SMA n . Then A  

is called nearly irreflexive element iff  ijii aa   ; where }.........,,3,2,1{, nji  . 

Proposition 4.18. Let  (S; +, .) be a path algebra and )(SMA n . If  A is nearly 

irreflexive and symmetric, then  

(1) AAA   

(2) AA   is symmetric and nearly irreflexive. 

(3) 
2A  is weekly reflexive. 

Proof :  (1)  Let  

                                  AAT   
Then  

                



n

k

kjikij aat
1

)(                                                                                       .…(i) 

                   )( ijii aa   

                   ija  

Hence  AAA  . 

(2) Now   

                  



n

k

kijkji aat
1

)(  
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                              



n

k

ikkj aa
1

)(                         [  A is Symmetric] 

                              



n

k

kjik aa
1

)(  

                                      ijt  

Hence T is symmetric. 

Again   

                                     



n

k

kiikii aat
1

)(  

                                         



n

k

ikik aa
1

)(  

                                         



n

k

ika
1

 

                                        )(
1

kj

n

k

ik aa 


 

                                        ijt  

Hence AA   is  nearly irreflexive.                     

(3) Let  
2AS  . 

Then ki

n

k

ikii aas 



1

 

             ik

n

k

ik aa



1

 

             ik

n

k

a



1

 

             



n

k

kjik aa
1

 

              ijs  

Hence 
2A  is weekly reflexive.                                                                                           ∆ 

Proposition 4.19. Let  (S; +, .) be a path algebra and )(SMA n . If  A is nearly 

irreflexive and symmetric, then 
TAA   is symmetric and nearly irreflexive. 

Proof : Let 
TAAS  . 

Then  



n

k

ikikii aas
1

)(  

                 



n

k

ika
1





n

k

jkik aa
1

)( ijs  
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Hence 
TAA   is nearly irreflexive. 

By Proposition 4.14,  .)()( TTTTTT AAAAAA                                                   ∆ 

Proposition 4.20. Let  (S; +, .) be a path algebra and )(SMA n . If  A is irreflexive and 

transitive, then (1) 0TAA     

                         (2) 0TA A   

Proof : Let 
TAAS   

Then 



n

k

jkikij aas
1

)( ))(( jjijjiij aaaa  0 iijiij aaa  

Hence 0TAA  .  

The proof of (2) is similar. 
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