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Abstract. Domination and coloring are two important concepts in the study of graphs, 
extensively studied for theoretical properties and applications. Power domination and 
dominator coloring are two notions recently introduced and investigated. Here we 
introduce the concept of power dominator coloring requiring each element of a set of 
vertices to power dominate an entire color class, thus giving rise to power dominator 
chromatic number which is the minimum cardinality of such sets of vertices in a graph. 
We derive formulae for computing this number for certain classes of graphs. 
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1. Introduction 
Motivated by the problem of monitoring the state of an electric power system and 
modelling this problem by a graph with the vertices representing electrical nodes and the 
edges, the transmission lines, Haynes et al. [4] introduced a variant of domination, known 
as power domination.  On the other hand the concept of dominator coloring [2] of a graph 
assigns a proper coloring to the vertices and requires every vertex to dominate a color 
class consisting of all the vertices with the same color. Here we combine the notions of 
power domination and dominator coloring and introduce a new notion of power 
dominator coloring which requires every vertex to power dominate all vertices in a color 
class. The minimum cardinality of such color classes is defined as the power dominator  
chromatic number )(Gpdχ ,  for a given graph G .  We obtain certain properties of 

)(Gpdχ  and also compute this number for certain classes of graphs. 

 
2. Basic definitions 
For basic concepts in graph theory we refer to [1]. We recall certain notions on graphs 
needed in the sequel. We deal with only simple, undirected graphs. 
      A complete graph nK  consists of n  vertices in which any two vertices are adjacent. 

A complete bipartite graph nmK ,   is a bipartite graph with bipartition ( )21 ,VV  such that 

every vertex of 1V  is adjacent to all the vertices of 2V   and vice versa.   
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Let ),( EVG  be a graph. A subset VS ⊆ is a dominating set [5,6] of G  if every vertex 

in SV − has at least one neighbor in S . A subset VS ⊆  is a power dominating set [4] of 

),( EVG  if all the vertices of V  can be observed recursively by the following rules: (i) 

all vertices in [ ]SN  are observed initially and (ii) if an observed vertex u  has all its 
neighbours observed except one non-observed neighbor v , then v  is observed (by u ). 
We then say that S power dominates the vertices of the graph .G  
       An illustration of power dominating set is now given. 
Consider the graph ),( EVG  in Fig. 1, with vertex set  { }qpyxvudcbaV ,,,,,,,,,=  

and edge set  { }yqxpvyuxcdvcuvbuabE ,,,,,,,,= . Here { }vuS ,=  is a power 

dominating set. Note that initially, the vertices { }yxvucb ,,,,,  in [ ]SN  are observed. 

The only non-observed neighbor of the observed vertex b  is a  and hence a  is observed. 
Similarly, the only non-observed neighbor of the observed vertex c  is d  and hence d  is 
observed. Likewise, qp,  are also observed. 
 
 
 
 
 
 
 
 
 

        Figure 1: A graph with .4)( =Gpdχ  

 
        A proper coloring [1] of a graph ),( EVG  is an assignment of colors to the vertices 

of G  in such a way that no two adjacent vertices receive the same color. The chromatic 
number )(Gχ , is the minimum number of colors required for a proper coloring of G . A 

color class is the set of vertices of G , having the same color. The color class 
corresponding to the color i  is denoted by .iC  A dominator coloring [2] of G  is a 

proper coloring of G in which every vertex of G dominates every vertex of at least one 
color class. The convention is that if { }v  is a color class, then v  dominates the color class 

{ }v . The dominator chromatic number )(Gdχ  is the minimum number of colors 

required for a dominator coloring of G. 
 
3. Power dominator coloring of a graph 
We first introduce the notion of power dominator coloring in a graph.  
 
Definition 3.1. A power dominator coloring of a graph ),( EVG  is a proper coloring of 

G  such that every vertex of V  power dominates all vertices of at least one color class of 

  p   q 

  x   y 

  a   b   u   v   c   d 
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G . The power dominator chromatic number )(Gpdχ  is the minimum number of colors 

required for a power dominator coloring of .G  
         For example, for the graph in Fig. 1, .4)( =Gpdχ  In fact color 1 can be assigned to 

the vertex u while color 2 can be assigned to .v  The vertices yxcb ,,,  can be given 

color 3 while qpda ,,, can be given color 4.  Each of the vertices pxba ,,,  power 
dominates the vertex u , the only vertex with color 1. Likewise each of the vertices 

qydc ,,,  power dominates the vertex ,v the only vertex with color 2. Each of vu, self 
dominates itself. Thus each vertex power dominates a color class. It can be seen that no 
less than 4 colors will suffice to serve for a power dominator coloring of .G  Note that the 
dominator chromatic number )(Gdχ for the graph in Fig. 1 is 6. 

 
Theorem 3.1.  For any graph ,G .)()()( GGG dpd χχχ ≤≤  

Proof:  The inequality )()( GG pdχχ ≤ is a consequence of the fact that only a proper 

coloring is needed in computing )(Gχ while in a dominator coloring, we need a proper 
coloring and additionally, a vertex has to dominate all vertices in a color class which 
means more colors might be needed to achieve this.  In proving the inequality 

),()( GG dpd χχ ≤  we note that for computing dominator chromatic number, a vertex 

u  has to dominate all vertices in a color class which means that  u  has to be adjacent to 
all these vertices. On the other hand, while computing power dominator coloring, again a 
vertex u  power dominates all vertices in a color class. This would mean that u  could 
“dominate” even vertices not adjacent to u . This could result in a reduction in the 
number of color classes. Hence the inequality )()( GG dpd χχ ≤  in the statement of the 

Theorem holds. Equality happens, for example, for the star graph nK ,1  for which 

.2)()()( === GGG dpd χχχ  

 
Theorem 3.2.  For a path ,2, ≥nPn   on n  vertices, .2)( =npd Pχ  

Proof:  Let the n vertices of the path nP  be nvv ,,1 L  and the 1−n edges be nee ,,1 L  

where .11,1 −≤≤= + nivve iii  Clearly, each vertex  ,1, nivi ≤≤   power dominates all 

the vertices of the path .nP  For proper coloring, assign color 1 to ,iv for odd  i and  

color 2 to ,iv for even  .i  Hence each vertex power dominates all the vertices in a color 

class with color either 1 or 2 and so .2)( =npd Pχ  

 
Remark. Note that the dominator chromatic number is 2 only for the paths 2P and 

3P while for ,3, >nPn it follows from Theorem 3.3 in [2] that .2)( >nd Pχ  

Theorem 3.3.  For a cycle  ,3, ≥nCn




=
oddisnif

evenisnif
Cnpd ,3

,2
)(χ  
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Proof:  Case (i):  Let the n2 vertices of the even cycle nC2  be .2,,, 21 ≥nvv nL  

Assign color 1 to each vertex ,iv for odd  i and  color 2 to ,iv for even  .i  Hence each 

vertex power dominates all the vertices in a color class with color either 1 or 2 and so 
.2)( =npd Cχ  

Case (ii):  Let 12 +nC be an odd cycle with vertices .1,,, 121 ≥+ nvv nL  Assign color 1 to 

each vertex ,iv for odd  ( )121, −≤≤ nii and  color 2 to ,iv for even  i while assign 

color 3 to .12 +nv  Hence each vertex power dominates all the vertices in at least one color 

class and so .3)( =npd Cχ  

Remark.  Note that for a cycle ,6, ≥nCn the dominator Chromatic number 

3)( >nd Cχ   [3]  while )( npd Cχ  is at the most 3 for any .n  

 
Theorem 3.4.  (i) For the complete bipartite graph ,,nmK .2)( , =nmpd Kχ  (ii)  If G  is a 

connected graph of order ,n  then  nGpd =)(χ  if and only if .1, ≥= nKG n  

Proof:  The proofs of statements (i) and (ii) are similar to the corresponding results [ 3 , 
Propositions 3.1 and 3.2] for )( ,nmd Kχ  and ).( nd Kχ  In fact, for statement (i), if   

( )21 ,VV  is a bipartition of ,,nmK then every vertex of 1V  dominates every vertex of 2V  

and vice versa so that we can assign color 1 to all the vertices in 1V  and color 2 to all the 

vertices in 2V  . This is a proper coloring and every vertex power dominates at least one 

color class. For statement (ii), the proof is exactly the same as the proof in the case of dχ  

[3, Proposition 3.2]. 
 
Theorem 3.5.   If a graph G  of order n contains one and only one vertex of degree 

,1−n  then  ).()( GG dpd χχ =  

Proof:  Let G  be a graph of order .n  Let nvv ,,1 L  be the vertices of G .  Let ,iv  for 

some i, ,1 ni ≤≤  be the only vertex of degree 1−n . Clearly G  is connected. Then iv  

is adjacent to every other vertex of .G   Clearly one of the color classes is { }iv  as iv is 

adjacent to all the remaining vertices and so receives a color c , not received by any other 
vertex. Thus every vertex of G  dominates the color class { }iv . Thus it is clear that a 

dominator coloring is also a power dominator coloring. Hence  ).()( GG dpd χχ =  

 
4. Conclusion 
Several variants of the notion of domination in graphs are known [4-9].  A new notion of 
power dominator coloring is introduced and the power dominator chromatic number 

)(Gpdχ  is computed for certain classes of graphs. Computation of )(Gpdχ for other 

classes of graphs and connections with other kinds of colorings such as total dominator 
coloring are for future work. 
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