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Abstract. Domination and coloring are two important concdaptshe study of graphs,

extensively studied for theoretical properties amplications. Power domination and
dominator coloring are two notions recently introdd and investigated. Here we
introduce the concept of power dominator colorirquiring each element of a set of
vertices to power dominate an entire color clalgs tgiving rise to power dominator
chromatic number which is the minimum cardinalifysach sets of vertices in a graph.
We derive formulae for computing this number fortaie classes of graphs.
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1. Introduction

Motivated by the problem of monitoring the state af electric power system and
modelling this problem by a graph with the verticegresenting electrical nodes and the
edges, the transmission lines, Haynes et al. {fddinced a variant of domination, known
as power domination. On the other hand the corafefdminator coloring [2] of a graph
assigns a proper coloring to the vertices and reguévery vertex to dominate a color
class consisting of all the vertices with the samoler. Here we combine the notions of
power domination and dominator coloring and intmelua new notion of power
dominator coloring which requires every vertex tavpr dominate all vertices in a color
class. The minimum cardinality of such color classedefined as the power dominator

chromatic numbery (G), for a given graphG. We obtain certain properties of

Xod (G) and also compute this number for certain clasbgsaphs.

2. Basic definitions
For basic concepts in graph theory we refer to \ll¢ recall certain notions on graphs
needed in the sequel. We deal with only simplejrented graphs.

A complete grapliK,, consists ofn vertices in which any two vertices are adjacent.
A complete bipartite grapkK,, | is a bipartite graph with bipartitiof\/l ,V2) such that

every vertex ol is adjacent to all the vertices\df and vice versa.
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Let G(V, E) be a graph. A subs&[1V is a dominating set [5,6] d& if every vertex
in V — Shas at least one neighbor $. A subsetS[1V is a power dominating set [4] of
G(V, E) if all the vertices oV can be observed recursively by the following rul@s
all vertices inN[S] are observed initially and (ii) if an observed te@ru has all its
neighbours observed except one non-observed neighbthenv is observed (by).

We then say tha power dominates the vertices of the gr&ph
An illustration of power dominating set ismgiven.

Consider the grap(V,E) in Fig. 1, with vertex setV :{a, b,c,d,u,v, Xy, p,q}
and edge set E={ab,bu,uv,vc,cd,ux,vy,xp, yq} . Here S={u,v} is a power
dominating set. Note that initially, the vertic{eks c,u,V, X, y} in N[S] are observed.

The only non-observed neighbor of the observedexdstis a and hencea is observed.
Similarly, the only non-observed neighbor of theetved vertexc is d and hencel is
observed. Likewisep, q are also observed.

Figure 1: A graph with x,(G) = 4.

A proper coloring [1] of a grapB(V, E) is an assignment of colors to the vertices

of G in such a way that no two adjacent vertices rectie same color. The chromatic
number x(G), is the minimum number of colors required for egar coloring ofG . A

color class is the set of vertices & , having the same color. The color class
corresponding to the coladris denoted byC,. A dominator coloring [2] ofG is a
proper coloring ofG in which every vertex of5 dominates every vertex of at least one
color class. The convention is that{‘i}f} is a color class, them dominates the color class
{v}. The dominator chromatic numbey,(G) is the minimum number of colors
required for a dominator coloring of G.

3. Power dominator coloring of a graph
We first introduce the notion of power dominatolocimg in a graph.

Definition 3.1. A power dominator coloring of a gragB(V, E) is a proper coloring of
G such that every vertex & power dominates all vertices of at least one cd@ss of
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G . The power dominator chromatic numbgg, (G) is the minimum number of colors

required for a power dominator coloring Gf
For example, for the graph in Fig. X, (G)=4. In fact color 1 can be assigned to

the vertexu while color 2 can be assigned Yo The verticesh,c, X,y can be given
color 3 while a,d, p,qcan be given color 4. Each of the vertiagdb, X, p power
dominates the vertek, the only vertex with color 1. Likewise each ot thertices
c,d,y,q power dominates the vertexthe only vertex with color 2. Each of v self

dominates itself. Thus each vertex power dominateslor class. It can be seen that no
less than 4 colors will suffice to serve for a podeminator coloring of5. Note that the

dominator chromatic numbey, (G) for the graph in Fig. 1 is 6.

Theorem 3.1. For any graptG, x(G) < x,4(G) < x,(G).
Proof: The inequality ¥(G) < x,4(G) is a consequence of the fact that only a proper

coloring is needed in computing(G) while in a dominator coloring, we need a proper

coloring and additionally, a vertex has to dominallevertices in a color class which
means more colors might be needed to achieve this. proving the inequality

X (G) € X4(G), we note thatdr computing dominator chromatic number, a vertex

U has to dominate all vertices in a color class thieeans thatu has to be adjacent to
all these vertices. On the other hand, while coimguytower dominator coloring, again a
vertexu power dominates all vertices in a color class.sThould mean thati could

“dominate” even vertices not adjacent ia This could result in a reduction in the

number of color classes. Hence the inequaljty, (G) < x,(G) in the statement of the

Theorem holds. Equality happens, for example, for star graphK, & for which
X(G) = x4 (G) =x4(G) = 2.

Theorem 3.2. For a pathP,, n 22, onn vertices, X 4 (R)=2

Proof: Let then vertices of the pattP, bev,,---,v, and then—1edges beg, ,---, €,
wheree =v,v,,, ,1<i <n -1 Clearly, each vertexv, ,1<i <n, power dominates all
the vertices of the patR,. For proper coloring, assign color 1 ¥p, for odd i and
color 2 tov, , for even i. Hence each vertex power dominates all the vertitascolor
class with color either 1 or 2 and g9, (R,) =2.

Remark. Note that the dominator chromatic number is 2 dioly the pathsP, and
P, while for P,,n > 3, it follows from Theorem 3.3 in [2] thax, (P,) > 2.
2, if niseven

Theorem 3.3. ForacycleC ,n = 3 x,, (Cn)={3 it nisodd
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Proof: Case (i): Let the 2n vertices of the even cycl€,, bev,,---,v,,, N = 2.

Assign color 1 to each vertex, for odd i and color 2 tov,, for even i. Hence each
vertex power dominates all the vertices in a calass with color either 1 or 2 and so

Xpd (C)=2

Case (ii): LetC,,,, be an odd cycle with verticeg ,---,V,,,, , N = 1. Assign color 1 to
each vertex, , for odd i, (1si <2n —1) and color 2 tov, , for even i while assign
color 3 tov,,,,. Hence each vertex power dominates all the veriices least one color
class and sgr,, (C,) =3.

Remark. Note that for a cycle C,,n = 6, the dominator Chromatic number
X4(C,) >3 [3] while x,,(C,) is at the most 3 for ang.

Theorem 3.4. (i) For the complete bipartite gragh Xoa(Kpp) =2 (i) If G isa
connected graph of order, then ), (G)=n ifand only ifG=K, ,n> 1

Proof: The proofs of statements (i) and (ii) are similathe corresponding results [ 3,
Propositions 3.1 and 3.2] fox, (K, ,) and x,(K,). In fact, for statement (i), if

(V1 ,VZ) is a bipartition ofK
and vice versa so that we can assign color 1 tihalertices iV, and color 2 to all the

m,n?

mn» then every vertex d¥; dominates every vertex M,
vertices inV, . This is a proper coloring and every vertex podeminates at least one

color class. For statement (i), the proof is elyaitte same as the proof in the caseygf
[3, Proposition 3.2].

Theorem 3.5. If a graphG of ordern contains one and only one vertex of degree
n-1, then x4 (G)= x,4(G).

Proof: Let G be a graph of ordem. Let v, ,---,v, be the vertices o6 . Letv,, for
somei, 1<i <n, be the only vertex of degrae—1. Clearly G is connected. Thew

is adjacent to every other vertex Gf. Clearly one of the color classes{\'t;:} asy, is

adjacent to all the remaining vertices and so vesea coloc, not received by any other
vertex. Thus every vertex & dominates the color clais'i}. Thus it is clear that a

dominator coloring is also a power dominator ceigriHence x ,(G) = x,(G).

4. Conclusion
Several variants of the notion of domination inpirsare known [4-9]. A new notion of
power dominator coloring is introduced and the poweminator chromatic number

Xpa(G) is computed for certain classes of graphs. Contipataof X, (G) for other

classes of graphs and connections with other kifidslorings such as total dominator
coloring are for future work.
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