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Abstract. In this paper, by using the generalized Bernoulli sub-ODE method the Phi-four 
equation and Benney-Luke equation are solved analytically where some exact traveling 
wave solutions are established. This is the method which can be adapted to solve 
nonlinear partial differential equations. Solitary waves can be obtained from each 
traveling wave solution by setting particular values to its unknown parameters. By 
adjusting these parameters, one can get an internal localized mode.  
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1. Introduction 
The NLEEs are very much important due to its wide-ranging applications. In modern 
science nonlinear phenomena are one of the most impressive fields of research. Nonlinear 
phenomena occur in numerous branches of science and engineering, such as, plasma 
physics, fluid mechanics, gas dynamics, elasticity, relativity, chemical reactions, ecology, 
optical fiber, solid state physics, biomechanics, etc., all are essentially governed by 
nonlinear equations. NLEEs are frequently used to illustrate the motion of isolated waves. 
Since the  appearance of solitary wave in natural sciences is expanding every day, it is 
important to seek for exact traveling wave solutions to NLEEs. The exact solutions to 
NLEEs help us to provide information about the structure of complex physical 
phenomena. Therefore, exploration of exact traveling wave solutions to NLEEs turns into 
an essential task in the study of nonlinear physical phenomena. It is notable to observe 
that there is no unique method to solve all kind of NLEEs. For this reason, a lot of 
methods have been established, such as, the Jacobi elliptic function method [1], the 
homotopy perturbation method [2], the variational method[3], the Exp-function method 
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[4], Enhanced (G'/G)-expansion Method [5], the modified simple equation method [6], 
the homogenous balance method [7] etc. 

The objective of this article is to bring to bear the generalized Bernoulli sub-ODE 
method to extract new exact traveling wave solutions and then solitary wave solutions to 
the Phi-four equation [8-9] and Benney–Luke equation [10]. This application shows the 
simplicity, efficiency, and effectiveness of the generalized Bernoulli sub-ODE method. 
To the best of our knowledge the generalized Bernoulli sub-ODE method has not been 
applied to the above mentioned equation in the previous literature. 
  
2. Description of generalized Bernoulli sub-ode method 
Consider a nonlinear partial differential equation of the form 

               ,0),,,,,,( =⋯⋯⋯xxxtttxt uuuuuuP                                  (2.1) 

where ),( txuu = is a function of x and t , P  is a polynomial in ),( txuu = and its 
different partial derivatives, in which the highest order derivatives and nonlinear terms 
are present. 
The generalized Bernoulli sub-ODE method for solving the nonlinear partial differential 
equation (2.1) is demonstrated by the following steps:  
 
Step 1: The traveling wave variable )(),( ξutxu =  where tcx −=ξ , reduce the NPDE 
(2.1) to an NODE of the form 

                        ,0),,,,,,( 2 =′′′′−′′′′− ⋯⋯⋯uucucuucuP                                          (2.2)     
 
Step 2: Suppose that the solution of Eq. (2.2) can be expressed as a polynomial in Φ , i.e.                            

                  ∑
=

Φ=
m

i

i
iAu

0

)(ξ ,                                                                                         (2.3) 

where 1, −mm AA ,……. are constants to be determined later and 0≠mA . The positive 

integer m can be determined by considering the homogeneous balance between the 
highest order derivatives and nonlinear terms appearing in Eq.(2.2), and ( )ξΦ=Φ  
satisfies the following equation: 

                     2Φ=Φ+Φ′ µλ ,                                                                                     (2.4) 

When 0≠µ , Eq. (2.4) is the type of Bernoulli equation, and we can obtain the solution 
as 
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Step 3: Substituting Eq. (2.3) into Eq. (2.2) and using Eq. (2.4), collecting all terms with 
the same power of Φ  together, the left-hand side of Eq. (2.2) is converted into another 
polynomial in Φ . Equating each coefficient of this polynomial to zero, yields a set of 
algebraic equations which gives .,,....., 1 µλ−mm AA  
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Step 4: Setting the values of constants obtained in Step 3, and by using the solutions of 
Eq. (2.4), we can construct the traveling wave solutions of the nonlinear partial 
differential equation (2.1).  
 
3. Application of the method  
3.1. Generalized Bernoulli sub-ODE method for Phi-four equation 
In this section, we will apply the generalized Bernoulli sub-ODE method to find the 
traveling wave solutions of Phi-four equation   
                    0,03 >=+−− auuauu xxtt                                    (3.1) 

Making the wave transformation )(),( ξutxu = , tcx −=ξ ,  Eq.(3.1) becomes the 
following ODE: 

       0)( 32 =+−′′− uuuac ,                                  (3.2) 

Balancing the order of u ′′ and 3u appearing in Eq.(3.2), we have 1=m  .  
So, according to the rule of sub-ODE method, the solution of Eq.(3.2) takes the following 
form 

 0,)( 101 ≠+Φ= AAAu ξ                                                                                (3.3) 

where 01, AA are constants to be determined later. 

Substituting Eq.(3.3) along with Eq.(2.4) into Eq.(3.2) and collecting all the terms with 
the same power of Φ  together, equating each coefficient to zero, yields a set of 
simultaneous algebraic equations as follows: 

                                           03 1
2

1
22

11
2
0 =−+− AAcaAAA λλ  

                                           0333 1
2
101

2 =++ λµλµ aAAAAc  

                                        0322 3
1

2
1

22
1 =++− AAcaA µµ  

                                          00
3
0 =− AA  

Solving the algebraic equations above, we obtain two sets of values for the constants: 

Set A: 
210

2
,

2
,1

λλ
µ −=−== acAA                                                                   (3.4) 

Set B: 
210

2
,

2
,1

λλ
µ −==−= acAA                                                                    (3.5) 

Substituting Eq. (3.4) and Eq. (3.5) into Eq. (3.3) along with Eq. (2.5) and Eq. (2.6), we 
obtain the solution of Eq.(3.1) as: 
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3.2. Generalized Bernoulli sub-ODE method for Benney-Luke equation 
We know that the Beneey-Luke equation is 
                 ,02 =++−+− xtxxxtttxxxxxxxxtt uuuubuauuu                            (3.8) 

The transformation )(),( ξutxu = , tcx −=ξ ,  Eq.(3.8) becomes the following ODE: 

       03)()1( 22 =′′′−′′′′+−+′′− uucubcauc  ,                                  (3.9) 
Here m=1 and the same procedure described above yields a set of algebraic equations of 
constants. 
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Solving, we get 
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Substituting Eq. (3.10) into Eq. (3.3) along with Eq. (2.5) and Eq. (2.6), we obtain the 
solution of Eq.(3.8) as: 
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                    (3.11) 

Remark: All the obtained results has been checked with Maple-13 by putting them back 
into the original equation and found correct. 
 
4. Graphical representation 
In this section, we will discuss the physical interpretation of the solution of the Phi-four 
equations and Benney–Luke equation. By applying the generalized sub-ODE method 
Phi-four equation and Benney–Luke equation affords the traveling wave solutions from 
Eqs. (3.6), (3.7) and Eq. (3.11) respectively. The solutions (3.6) and (3.7) are represented 
in Fig. 1-2. These show the shape of kink type traveling wave solutions. The solutions 
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Eq. (3.11) represented in Fig. 3 shows kink type whereas the Fig.-4 shows the shape of 
singular kink type traveling wave solution. 

 
Figure 1: Profile of ),(1 txu A for a=3,λ=1 

within the interval 10,10 ≤≤− tx . 

 
Figure 2: Profile of ),(1 txu B   

a=3,λ=1within the interval 10,10 ≤≤− tx . 
 

 
Figure 3: Periodic profile of ),(2 txu  

fora=3,λ=1,b=1, 0,1 0 == Aµ within  

the interval 10,10 ≤≤− tx . 

 
Figure4: Soliton profile of ),(2 txu for 

a=3,λ=1,b=1, 0,1 0 == Aµ within the 

interval 53,11 ≤≤−≤≤− tx . 

5. Conclusions 
In this article, the generalized sub-ODE method method has been implemented to find the 
exact traveling wave solutions and then the solitary wave solutions of two very important 
nonlinear evolution equations, namely, the Phi-four equation and the Benney–Luke 
equation. It is important to observe that, the currently proposed method in comparing to 
other methods the generalized sub-ODE method is much simpler. Here, we achieved the 
value of the coefficients 01, AA etc. with using any symbolic computation software such 

as Maple-13 where the procedure is very easy, concise and straightforward. Also it is 
quite capable and almost well suited for finding exact solutions of other NLEEs in 
mathematical physics. 
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