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1. Introduction
A Fractal, is defined by Mandelbrot as “is a shape made of parts similar to the whole in 
some way” [1]. Fractal is a geometric object that possesses the two properties: self-
similar and non-integer dimensions. So a fractal is an object or quantity which displays 
self-similarity. The Cantor set is the prototypical fractal [2]. The Cantor sets were 
discovered by the German Mathematician George Cantor in the late 19th to early 20th 
centuries (1845-1918) [3]. He introduced fractal which has come to be known as the 
Cantor set, or Cantor dust. 
We studied Cantor set and found generalized Cantor set and proved its dynamical 

behaviors and fractal dimensions [4]. The Cantor middle ,
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general, Cantor middle }2:
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  is called generalized Cantor set and it is 

denoted by .)12/(1 mC  Since the Cantor set is the prototypical fractal, we would like to 

study the generalized Cantor set in measure space,  which is defined by an algorithm and 
also defined by the shrinking process [9].  
         A measure is a countably additive, non-negative, extended real-valued function 
defined on a  -algebra. There are different types of measure such as Borel measure, 
Lebesgue measure, Probability measure, Counting measure and Random measure. Let X  
be a locally compact Hausdorff space, let   be the smallest  -algebra that contains the 
open sets (or, equivalently, the closed sets) of ;X  this is known as the  -algebra of 
Borel sets. Any measure   defined on the  -algebra of Borel sets is called a Borel 
measure. Every Borel measure on ]1,0[  )etc.or( nRR possesses a unique completion 
which is a Lebesgue measure. If   is both inner regular and locally finite, it is called a 
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Random measure [12]. In this paper, we discuss the construction and some properties of 
generalized Cantor set. We show that this special type of set is measurable set, Borel set 
as well as Borel measurable whose Lebesgue measure is zero. We also prove several 
interesting lemma, theorems, and propositions relating to generalized Cantor set.   

2. Preliminaries
Definition 2.1. A non empty set R  is called a Cantor set if 
(a)   is closed and bounded. (b)   contains no intervals. 
(c) Every point in   is an accumulation point of .  

Definition 2.2. The outer measure of any interval I  on R  with endpoints ba  is 

ab   and is denoted as .)( abI   A set RE  is said to be outer measure (or 
measurable) if, for all RA  one has ).()()( EAEAA   

Definition 2.3. The inner measure of any set ,EA   denoted ),(A  is defined as 
),\()()( AEEA 

    where AE \  is the complement of A with respect to .E

Definition 2.4. [7] If E  is a measurable set, we define the Lebesgue measure )(E  to 
be the outer measure of .E  That is,  ).()( EE  

Definition 2.5. [8] A set EA   is Lebesgue measurable or measurable if 
),()( AA 

    in which case the measure of A  is denoted simply by )(A  and is 
given by ).()()( AAA 

  

Definition 2.6. A Borel set is any set in topological space that can be formed from open 
sets (or, equivalently, from closed sets) through the operations of countable union, 
countable intersection and relative complement. Borel sets are named after Emile Borel.  
Definition 2.7. A collection  of subsets of a set X  is called a  -algebra if  satisfies 
the following axioms:  
A1: X ,  A2: A   AX \ , 
A3: If NnnA )(  is sequence in  then nn A .

Definition 2.8. The Borel  -algebra of a set X  is the smallest  -algebra of X  that 
contains all of the open balls in .X  Any element of a Borel  -algebra is a Borel set.

Definition 2.9. Let X  be a set and   be a collection of subsets of .X  Then ),( X  be a 
topological space [10]. The Borel or topological  -algebra )(B  of a topological space 

),( X  is the  -algebra generated by .  

Theorem 2.10. Every Borel set is measurable. In particular each open set and each closed 
set is measurable. 
Proof: The proof can be found in Real Analysis [5].
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Definition 2.11. Let ],[ baX   be a closed set and let  be a collection of subsets of .X  A set 
function   on  (i.e. :   ],0[   is called a measure if the following properties hold:  
1. abA  )(0   for all A  2. 0)( 
3. )()( BA    for all BA, , BA 
4. If ,,, 321 AAA  are in , with  ji AA  for ,ji   

then .)()(
11








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








i
i

i
i AAA   The pair ,(X ) is called a measurable space and the 

triple ,(X ,  ) is a measure space.

3. Generalized Cantor set (Cantor middle )2(,
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1



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m
set)

3.1.1. Construction of the Cantor middle
3
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We start with the closed interval ].1,0[0 
0

0 1

Remove the middle open third. This leaves a new set ].1,
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3
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Each iteration through the algorithm removes the open middle third from each segment of 
the previous iteration. Thus the next set would be 
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Figure 3.1. Construction of the Cantor middle
3
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 set

In general, after n  times iterations, we obtain n  which as follows
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Therefore we construct a decreasing sequence )( n  of closed sets, that is nn  1  for 

all ,Nn  so that every n  consists of n2  closed intervals all of which the same leng
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.
3
1

n  The Cantor ternary set, which we denote ,3/1C  is the “limiting set” of this process, 

that is, 





1

3/1
n

nC [7] and call it the Cantor middle
3
1

 set.

         Alternative process of constructing 3/1C  is in physical terms as taking a length of 
string and repeatedly cutting it into shorter pieces. If we think first piece as the interval 

]1,0[  and cut it at the points 1/2, then it becomes two pieces of string each with two 
endpoints such as the intervals ],2/1,0[  and ].1,2/1[  In order to make all these pieces 
disjoint subsets of R  one can image the string as being stretched so tightly that each time 
it is cut, it pulls apart at the cut and shrinks to 3/2  of its length, so after the first cut, 

]2/1,0[  shrinks to ],3/1,0[  ]1,2/1[  shrinks to ].1,3/2[  Then at the next stage we cut 
]3/1,0[  at the point 1/6, and then two pieces are ],6/1,0[  ],3/1,6/1[ shrink to ]9/1,0[  

and ].3/1,9/2[  similarly for the piece ],1,3/2[ and so on.

3.1.2. Properties of the Cantor middle
3
1

 
set

3.1.2.1. The set 3/1C  is disconnected  
The set 3/1C  is totally disconnected since it was constructed so as to contain no intervals 
other than points. Namely, if 3/1C  contained an interval of positive length   then this 
interval would be contained in each ,n  but n  contains no interval of length greater 

than n3
1

 so if n is chosen to be large enough so that n3
1

 is less than ,  then there is no 

interval of length   in .n

3.1.2.2 [11] The set 3/1C  contains no intervals
We will show that the length of the complement of the set 3/1C  is equal to ,1  hence 3/1C  
contains no intervals. At the thn  stage, we are removing 12 n  intervals from the previous 

set of intervals, and each one has length of .
3
1

n   The length of the removing intervals 

within ]1,0[  after an infinite number of removals is 
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Thus, we are removing a length of 1 from the unit interval ]1,0[  which has a length of .1  

Alternative method: 
Note that in the first iteration we removed 1/3, in the second iteration we removed 2/9, in 
the third iteration we removed 4/27, and in the fourth iteration we removed 8/81, and so 
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forth. This is a geometric series with first term 
3
1

a  and common ratio .
3
2

r  This 

converges, and the sum is .1
3/21

3/1



S  

Thus the length of the complement of the set 3/1C  is equal to .1  
Therefore, the total length of 3/1C  is 0, which means it has no intervals.

3.2.1. Construction of the Cantor middle
5
1

 set

We start with the closed interval ].1,0[0 

0
0 1

Remove the middle open interval )5/2,5/1(  and )5/4,5/3( . This leaves a new set 
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Each iteration through the algorithm removes the open 2nd and 4th interval from each 
segment of the previous iteration. Thus the next set would be
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Figure 3.2: Construction of the Cantor middle
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In general, after n  times iterations, we obtain n  which as follows
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Therefore,  we construct a decreasing sequence )( n  of closed sets, that is, nn  1  for 

all ,Nn  so that every n  consists of n3  closed intervals all of which the same length 
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Alternative process of constructing 5/1C  is in physical terms as taking a length of 
string and repeatedly cutting it into shorter pieces. If we think first piece as the interval 

]1,0[  and cut it at the points 1/3 and 2/3, then it becomes three pieces of string each with 
two endpoints such as the intervals ],3/1,0[  ],3/2,3/1[  and ].1,3/2[  In order to make 
all these pieces disjoint subsets of R  one can image the string as being stretched so 
tightly that each time it is cut, it pulls apart at the cut and shrinks to 5/3  of its length, so 
after the first cut, ]3/1,0[  shrinks to ],5/1,0[  ]3/2,3/1[  shrinks to ],5/3,5/2[  and 

]1,3/2[  shrinks to ].1,5/4[  Then at the next stage we cut ]5/1,0[  at the points 1/15 and 
2/15 and the three pieces ],15/1,0[  ],15/2,15/1[  and ]5/1,15/2[  shrink to 

],25/1,0[  ],25/3,25/2[  and ],5/1,25/4[  similarly for the pieces ],5/3,5/2[  and 
],1,5/4[  and so on.

3.2.2. Properties of the Cantor middle
5
1

 set

3.2.2.1. The set 5/1C  is disconnected
The set 5/1C  is totally disconnected since it was constructed so as to contain no intervals 
other than points. Namely, if 5/1C  contained an interval of positive length   then this 
interval would be contained in each ,n  but n  contains no interval of length greater 

than n5
1

 so if n  is chosen to be large enough so that n5
1

 is less than ,  then there is no 

interval of length   in .n
3.2.2.2. The set 5/1C  contains no intervals
We will show that the length of the complement of the set 5/1C  is equal to ,1  hence 5/1C  
contains no intervals. At the thn  stage, we are removing 13.2 n

 intervals from the 

previous set of intervals, and each one has length of .
5
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n   The length of the removing 

intervals within ]1,0[  after an infinite number of removals is 
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Thus, we are removing a length of 1 from the unit interval ]1,0[  which has a length of .1  

Alternative method: 
Note that in the first iteration we removed 2/5, in the second iteration we removed 6/25, 
in the third iteration we removed 18/125, and so forth. This is a geometric series with first 

term 
5
2

a  and common ratio .
5
3

r  This converges, and the sum is .1
5/31

5/2



S  

Thus the length of the complement of the set 5/1C  is equal to .1  
Therefore, the total length of 5/1C  is 0, which means it has no intervals.
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3.3.1. Construction of the Cantor middle
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We start with the closed interval ].1,0[0 
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Each iteration through the algorithm removes the open 2nd, 4th, and 6th interval from each 
segment of the previous iteration. Thus the next set would be 
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Figure 3.3: Construction of the Cantor middle
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In general, after n  times iterations, we obtain n  which as follows 
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Therefore we construct a decreasing sequence )( n  of closed sets, that is, nn  1  for all 

,Nn  so that every n  consists of n4  closed intervals all of which the same length 
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n

nC  and call it the Cantor middle
7
1

 set. 

3.3.2. Properties of the Cantor middle
7
1

 set

3.3.2.1. The set 7/1C  is disconnected
The set 7/1C  is totally disconnected since it was constructed so as to contain no intervals 
other than points. Namely, if 7/1C  contained an interval of positive length   then this 
interval would be contained in each ,n  but n  contains no interval of length greater 

than n7
1

 so if n is chosen to be large enough so that n7
1

 is less than ,  then there is no 

interval of length   in .n
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3.3.2.2. The set 7/1C  contains no intervals
We will show that the length of the complement of the set 7/1C  is equal to ,1  hence 7/1C  
contains no intervals. At the thn  stage, we are removing 14.3 n

 intervals from the 

previous set of intervals, and each one has length of .
7
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n  

The length of the removing intervals within ]1,0[  after an infinite number of removals is 















 



01

1

1

1 1
7/41

7/3)
7
4(

7
3)

7
4(

7
3)

7
1(4.3

n

n

n

n

n
n

n

Thus, we are removing a length of 1 from the unit interval ]1,0[  which has a length of .1  

Alternative method: 
Note that in the first iteration we removed 3/7, in the second iteration we removed 12/49, 
in the third iteration we removed 48/343 and so forth. This is a geometric series with first 

term 
7
3

a  and common ratio .
7
4

r  This converges, and the sum is .1
7/41

7/3



S  

Thus the length of the complement of the set 7/1C  is equal to .1  
Therefore, the total length of 7/1C  is 0, which means it has no intervals.

Similarly, we can construct and show the properties of the Cantor middle
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set which is denoted by )12/(1 mC and is called generalized Cantor set.

3.4.1. Construction of the Cantor middle )2(,
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where .2  m  This leaves a new set 1  which will depend on the value of .m  
In general, after n  times iterations, we obtain n  which as follows: 
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Therefore,  we construct a decreasing sequence )( n  of closed sets, that is nn  1  for 

all ,Nn  so that every n  consists of nm  closed intervals all of which the same length 
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n
nmC  and call it the Cantor middle

12
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 set, where 

 m2  or generalized Cantor set. 

3.4.2. Properties of the Cantor middle
12
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3.4.2.1 The set  is disconnected)12/(1 mC
The set  is totally disconnected since it was constructed so as to contain no )12/(1 mC
intervals other than points. Namely, if  contained an interval of positive length  )12/(1 mC 
then this interval would be contained in each  but  contains no interval of length ,n n

greater than  so if n is chosen to be large enough so that  is less than nm )12(
1
 nm )12(

1


 then there is no interval of length  in ,  .n

3.4.2.2. The set )12/(1 mC  contains no intervals

We will show that the length of the complement of the set )12/(1 mC  is equal to ,1  hence 

)12/(1 mC  contains no intervals. At the thn  stage, we are removing 1).1(  nmm  intervals 

from the previous set of intervals, and each one has length of .
)12(

1
nm    The length of 

the removing intervals within ]1,0[  after an infinite number of removals is 















 












01

1

1

1 1)
12

(
)12(

1)
12

(
)12(

1)
)12(

1().1(
n

n

n

n

n
n

n

m
m

m
m

m
m

m
m

m
mm

Thus, we are removing a length of  from the unit interval  which has a length of  1 ]1,0[ .1

Alternative method: 
Note that in the first iteration we removed )12/()1(  mm , in the second iteration we 
removed ,)12/()1( 2 mmm  in the third iteration we removed 

,)12/()1( 32  mmm and so on. This is a geometric series with first term 
12

1




m

ma  

and common ratio .
12 


m
mr  This converges, and the sum is 

.1
)12/(1
)12/()1(





 mm
mmS

 
Therefore, the total length of )12/(1 mC  is 0, which means it 

has no intervals.

3.4.2.3. The set )12/(1 mC  is nowhere dense 
A set S is said to be nowhere dense if the interior of the closure of S is empty. The 
closure of the set is the union of the set with the set of limit points. Since every point in 
the set )12/(1 mC  is a limit point of the set, the closure of the set is simply the set itself. 
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The interior of the set )12/(1 mC  must be empty, since no two points in the set are adjacent 

to each other. Thus the set )12/(1 mC  is nowhere dense.

4. Lebesgue measure of generalized Cantor set 
Lemma 4.1. Let  be a closed set and  be a collection of subsets of  Then ]1,0[X  .X

 be a topological space. Let  be closed subsets in  Then ),( X 
N

 
n

nmC )12/(1 .X

 is a Borel set as well as measurable set. )2(,)12/(1  mC m

Proof: Since every intersection of closed sets is again closed set,  is closed set.
N


n

n

By the definition of Borel set,  is a Borel set. Thus  is a 
N


n

n )2(,)12/(1  mC m

Borel set. Since every Borel set is measurable, then  is measurable )2(,)12/(1  mC m

set. Thus  is a Borel set as well as measurable set.)2(,)12/(1  mC m

Theorem 4.2. Let ]1,0[X  be a closed set and   be a  -algebra on .X  Then ),( X  
is a measurable space. Let    Nnn  be a collection of measurable sets. Then show 
that ,)12/(1 mC  where .2  m

Proof: We know  ,)12/(1 
N

 
n

nmC ).2(  m  For each ,Nn  .n

This implies that ,\ nX  by Axiom (A2) for  -algebra. 

Then ,)\( 



Nn
nX  by Axiom (A3) for  -algebra. 

This implies that ,)\(\ 












Nn
nXX  by Axiom (A2) for  -algebra. 

Now using De Morgan’s laws, we have 



NN n
n

n
n XX \)\(  

and .\\)\(\ 





















NNN n
n

n
n

n
n XXXX

Thus ,)12/(1 mC  where .2  m

Theorem 4.3. Let ]1,0[X  be a closed set and ),( X  be a topological space. Let 
)(B  be the associated Borel  -algebra. Let   N nn  be closed subset in .X  Then show 

that )2(,)12/(1  mC m  is )(B -measurable. 

Proof: We know  ,)12/(1 
N

 
n

nmC ).2(  m  Since   N nn  is closed set in ,X  

)12/(1 mC  is closed set in .X  Then )12/(1\ mCX  is open set. 

By the definition of Borel  -algebra,  ).(\ )12/(1 BCX m 

This implies that ),()\(\ )12/(1)12/(1 BCCXX mm    by Axioms (A2) for  -algebra.
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Thus )2(,)12/(1  mC m  is )(B -measurable. 

Theorem 4.4. If ,0)(lim)( )12/(1 
 nnmC   then ,)12/(1 mC )2(  m  has 

Lebesgue measure zero. 
Proof: We know ,)12/(1 

N
 

n
nmC ),2(  m  where 
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
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
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Therefore, .0)( 12/1 mc  Hence ,12/1 mC )2(  m  has Lebesgue measure zero. 

Alternative method:
Theorem 4.5. The generalized Cantor set ,)12/(1 mC )2(  m  is measurable and has 
Lebesgue measure zero.
Proof: We know ,)12/(1 

N
 

n
nmC ),2(  m  where 

],1,
)12(

1)12([]
)12(

3,
)12(

2[]
)12(

1,0[ n

n

nnnn m
m

mmm 








  ).1( n   

By Lemma 4.1, )12/(1 mC  is a Borel set as well as measurable set. From the construction 

of ,)12/(1 mC ),2(  m  we remove 1).1(  nmm  disjoint intervals from each previous 

segments and each having length ,)12/(1 nm  where .1n  
Thus we will remove a total length
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1
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nmm
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m .1
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mmm
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Therefore, )12/(1 mC  is obtained by removing a total length 1 from the unit interval ].1,0[  

Thus .1)\( )12/(1 mCI Since ),\()()( )12/(1)12/(1   mm CICI  then .0)( )12/(1 mC
Thus )2(,)12/(1  mC m  has Lebesgue measure zero. 

Hence )2(,)12/(1  mC m  is measurable and has Lebesgue measure zero.

Proposition 4.6. Let )( n  be an infinite decreasing sequence of each measurable sets 

,)12/(1 mC  that is, a sequence with nn  1  for each ,n  and )( 1  be finite. Then 

)(lim
1

nn
i

i 















   for ,)12/(1 mC  where .2  m

Proof: Since N nn )(  is an infinite decreasing sequence of each measurable set ,)12/(1 mC  

,
1

)12/(1 



 

i
imC  where .2  m  Let .~ 1 iii  

Then 



 

1
)12/(11 ~

i
imC  and the sets i  are pair wise disjoint. 














 










1
1

11
)12/(11 )~()()~(

i
ii

i
i

i
imC          (1)

But we know ),~()()( )12/(11)12/(11   mm CC   since 1)12/(1 mC
and ),~()()( 11   iiii   since .1 ii    Since ,)()( 1   i  
we have ),()()~( )12/(11)12/(11   mm CC   )()()~( 11   iiii 

From (1), we have 



 

1
1)12/(11 ))()(()()(

i
iimC 

)(lim)())()((lim)()( 1

1

1
1)12/(11 nn

n

i
iinmC 






  

Since ,)( 1   we have ).(lim)( )12/(1 nnmC 
 

Hence )(lim)( )12/(1 nnmC 
   for ,)12/(1 mC  where .2  m

Alternative method:

Proposition 4.7. If ]1,0[X  is a closed and  is a collection of subsets of ,X  then 
,(X ) is a measurable space. If i ,  )( 1  and ,1 ii    then  
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Proof: Since ,
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i
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


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1
1)12/(11 ),~(

i
iimC  and this is a disjoint 

union. Hence 
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
 

1
1)12/(11 )~()()(

i
iimC         (2)

Since )~( 11   iiii  is a disjoint union, 
we have ).()()~( 11   iiii 

Now from (2) we have 

)(lim)()(

))()((lim)())()(()()(

1)12/(1
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1
1)12/(1

1
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i
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He

nce )(lim)( )12/(1 nnmC 
   for ,)12/(1 mC  where .2  m

5. Concluding remarks
We have shown that generalized Cantor set is measurable set, Borel set as well as Borel 
measurable whose Lebesgue measure is zero. Also we have proved several interesting 
lemma, theorems and propositions relating to generalized Cantor set. These results may 
be extended to Metric space, Banach space and Hilbert space.
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