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|. Introduction
By a graph we mean a finite, undirected graph witHoops and multiple lines. Any
undefined term in this paper may be found in [1].

If B={uy, Us..., U; r=2} is a block of a grapls, then we say that poing and
block B are incident with each other, as ageandB, and so on. IB = {e}, &,...,&;, =21}
is a block of a grapls, then we say that line, and blockB are incident with each other,
as aree; andB, and so on. If two distinct block®; andB, are incident with a common
cut point, then they are adjacent blocks. This idea introduced by Kulli in [2]. The
points, lines and blocks of a graph are calledhiggnbers.

The point block grapP,(G) of a graphG is the graph whose point set is the set
of points and blocks d& in which two points are adjacent if the correspagdilocks are
adjacent or the corresponding members are inciddis. concept was studied by Kulli
and Biradar in [3, 4, 5]. Many other graph valuaddtions in graph theory were studied,
for example, in [6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,41] and also graph valued
functions in domination theory were studied, foamwle, in [18, 19, 20, 21, 22, 23, 24].

The middle blict grapiM,(G) of a graphG is the graph whose point set is the
union of the set of points, lines and blocks®in which two points are adjacent if the
corresponding lines db are adjacent or the corresponding block$sadre adjacent or
the corresponding members ®fare incident. This concept was introduced by Karid
Biradar in [25]

The total grapfT(G) of a graphG is the graph whose point set is the union of the
set of points and lines d& in which two points are adjacent if the correspagdi
members of5 are adjacent or incident.

Let B(G) and L(G) be the block graph and the line graph of a gré&h
respectively. Lef\(G) denote the maximum degree among the poin. of
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The inner point numbei(G) of a planar grapl is the minimum number of
points not belonging to the boundary of the extargion in any embedding & in the
plane. A graplG is said to bé&-minimally nonouterplanar i{G) =k, k= 1. This concept
was introduced by Kulli in [26]. A graph is outesiplr ifi(G) = 0. A 1-minimally
nonouterplanar graph is called minimally nonoutengk, see [26]. The concepts of
outerplanar and minimally nonouterplanar were stdidfor example, in [27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40].

The following will be useful in the proof our rdsu

Theorem A [25]. If G is a , q) graph whose points have degmteand if by is the
number of blocks to which point belongs inG, then the middle blict grap®.(G) of G

hasq+Y b +1 points andq+%2di2 +—;Zb, (b +1) lines.

Theorem B [25]. The middle blict grapiM.(G) of a graphG is planar if and only if
A(G)=2.

Theorem C. A graphG is outerplanar if and only if it has no subgragimieomorphic to
K4 orK, s exceptk, —x.

Theorem D [26]. A graphG is minimally nonouterplanar if and only if one bloof G is
minimally nonouterplanar and each of its remairiifarks is outerplanar.

2. Semifull graphs
The definition ofM,(G) of a graphG inspired us to define the following graph valued
function.

Definition 1. The semifull graph-G) of a graphG is the graph whose point set is the
union of the set of points, lines and blocksGin which two points are adjacent if the
corresponding members Gfare adjacent or one corresponds to a point andthies to a
pointv of G with it or one corresponds to a block®fnd the other to gointv of G and
visinB.

If G has an isolated point then the corresponding pointwfs an isolated point
of Fy(G). Hence we consider graphs without isolated points

Example 2. In Figure 1, a grap® and its semifull grapFsG) are shown.
€, €,
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Figure 1:
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The Semifull Graph of a Graph
Remark 3. If Gis a connected graph, thBgG) is also connected and conversely.

Remark 4. The middle blict grapM,(G) is a spanning subgraph of the semifull graph
F{G) of G.

Remark 5. For any graphs, L(G) and B(G) are point and also line disjoint induced
subgraphs of{(G).

Proposition 6. For any graplit, F(G) = T(G) O Py(G).
Theorem 7. For any grapl®, F{(G) =M,(G) O G.

The following theorem determines the number of foand lines in the semifull
graph of a graph.
Theorem 8. If G is a connectedp( g) graph whose points have degceand ifb; is the
number of blocks to which point belongs inG, then semifull graphF{(G) of G has

g+ Y b +1 points and2q+%2q2 +—;Zb, (b +1) lines.

Proof: By Remark 4, the middle blict graph,(G) is a spanning subgraph of the semifull
graphF{G) of G. Thus the number of points &,(G) equals the number of points of
F4G). By Theorem AM,(G) hasq+ > b +1 points. Hence the number of pointsFiiG)

=q+2b +1.
By Theorem 7, the number of lineskhgG) is the sum of the number of lines in

M,(G) and the number of lines &. By Theorem AM,(G) haSq+%2h2 +—22q (b +1)

lines andG hasq lines. Thus the number of lineskyG) = 2q+%2b.2 +%Zq (h +1).

3. Planarity of semifull graphs
We now present a characterization of graphs whesdfgll graphs are planar.

Theorem 9. The semifull graptF{(G) of a connected grapB is planar if and only if
A(G)=2.
Proof: Supposd-G) is planar. We now prove th&{G)<2. On the contrary, assume
A(G)=3. By Theorem BM,(G) is nonplanar. Sinct,(G) is a subgraph oF{(G), it
implies that~{(G) is nonplanar, which is a contradiction. HeA¢®) < 2.

Conversely supposf(G)<2. ThenG is either a path or a cycle. Clea® is
eitherP,, p< 1 orC,, p=3. It is easy to observe thaf(G) is planar see Figure 2.

Corollary 10. Let G be a graph. TheR4G) is planar if and only if every component of
G s either a path or a cycle.
We characterize graphs whose semifull graphs aterglanar.

Theorem 11. The semifull graplir{(G) of a connected grap® is outerplanar if and only
if GisP,.

Proof: SupposeG = P,. ThenF¢{(G) = K; — e. SinceK, — e is outerplanarF{G) is
outerplanar.
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Conversely suppode(G) is outerplanar an@ is connected. We now prove that
G=P,. On the contrary, assun@P,. ThenG has two linese; ande,. We consider the
following cases.

Case 1. Assumee; ande, are adjacent and each is a block. Tlen Ps. Then clearly
F{(G)=W; and henc&4G) is not outerplanar, a contradiction.

Case 2. Assumee; ande, lie in a block. There; ande;, lie on a cycle ofs. From Figure
2, itis easy to observe thaf(C,) is not outerplanar and hen€gG) is not outerplanar, a
contradiction.

. . ® 0 *

Fs( Pp)

Figure2:
From the above two cases, we conclude @atPs.

Corollary 12. Let G be a graph. TheR{G) is outerplanar if and only 6 = mP,, m>1.

We now establish a characterization of graphs whssmifull graphs are
minimally nonouterplanar.

Theorem 13. The semifull graphF{G) of a connected graplc is minimally
nonouterplanar if and only @& = Px.
Proof: SupposeG = Pz ThenF{(G) is W;, see Figure 1 and hen&g(G) is minimally
nonouterplanar.

Conversely supposEy(G) is minimally nonouterplanar. We now prove that
G=Ps. On the contrary, assun@# Ps;. We consider the following cases.

Case 1. AssumeG = P,. By Theorem 11F(G) is outerplanar, a contradiction.
Case 2. AssumeG has at least 3 lines. Sindg(G) is minimally nonouterplanar, it
implies thatF4G) is planar. Thus by Theorem@,is a path or a cycle.

If Gis a path containing at least 3 lines, tig{G) has at least two inner points, a
contradiction. IfG is a cycle containing at least 3 lines, th@h(G) ) >1, a contradiction.
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From the above two cases, we conclude @atPs.

Coroallary 14. The semifull graphiry(G) of a graphG is minimally nonouterplanar if and
only if G=mP, 0 P;, m=0.
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