Annals of Pure and Applied Mathematics Vol. 10, No.1, 2015, 117-122 ISSN: 2279-087X (P), 2279-0888(online) Published on 14 July 2015 www.researchmathsci.org

Annals of **Pure and Applied Mathematics**

q-Continuous Functions in Quad Topological Spaces

U.D. Tapi¹ and Ranu Sharma²

Department of Applied Mathematics and Computational Science SGSITS, Indore (M.P.), India. ¹Email: <u>utapi@sgsits.ac.in</u> ²Corresponding author, Email: <u>r.tiwari28@yahoo.com</u>

Received 6 June 2015; accepted 5 July 2015

Abstract. The purpose of this paper is to study the properties of q-open sets and q-closed sets and introduce q-continuous function in quad topological spaces (q-topological spaces).

Keywords: quad topological spaces, *q*-open sets, *q*-interior, *q*-closure, *q*-continuous function.

AMS Mathematics Subject Classification (2010): 54A40

1. Introduction

The concept of bitopological spaces was introduced by Kelly [2] as an extension of topological spaces in 1963. A nonempty set X with two topologies is called bitopological spaces. The study of tri-topological spaces was first initiated by Kovar [3] in 2000, where a non empty set X with three topologies is called tri-topological spaces. Biswas [1] defined some mapping in topological spaces. tri α Continuous Functions and tri β continuous functions introduced by Palaniammal [5] in 2011. Mukundan [4] introduced the concept on topological structures with four topologies, quad topology (4-tuple topology) and defined new types of open (closed) sets. In year 2011, Sweedy and Hassan [6] defined δ^{**} -continuous function in tritopolical space. In this paper, we study the properties of q-open sets and q-closed sets and q-continuous function in quad topological space).

2. Preliminaries

Definition 2.1.[4] Let X be a nonempty set and T_1, T_2, T_3 and T_4 are general topologies on X.Then a subset A of space X is said to be quad-open (q-open) set if $A \subset T_1 \cup T_2 \cup$ $T_3 \cup T_4$ and its complement is said to be q-closed and set X with four topologies called qtopological spaces (X, T_1, T_2, T_3, T_4) .q-open sets satisfy all the axioms of topology.

Note 2.2.[4] We will denote the q-interior (resp. q-closure) of any subset, say of A by q-intA (q-clA), where q-intA is the union of all q-open sets contained in A, and q-clA is the intersection of all q-closed sets containing A.

3. Properties of q-open and q-closed sets

Theorem 3.1. Arbitrary union of q-open sets is q-open. **Proof:** Let $\{A_{\alpha} \mid \alpha \in I\}$ be a family of q-open sets in *X*. U.D.Tapi and Ranu Sharma

For each $\alpha \in I$, $A_{\alpha} \subset T_1 \cup T_2 \cup T_3 \cup T_4$. Therefore, $\cup A_{\alpha} \subset T_1 \cup T_2 \cup T_3 \cup T_4$. (by definition of q-open sets). Therefore $\cup A_{\alpha}$ is q-open.

Theorem 3.2. Arbitrary intersection of q-closed sets is q-closed.

Proof: Let $\{B_{\alpha} \mid \alpha \in I\}$ be a family of q-closed sets in *X*.

Let $A_{\alpha} = B_{\alpha}^{c}$. $\{A_{\alpha} / \alpha \in I\}$ be a family of q-open sets in X. Arbitrary union of q-open sets is q-open. Hence $\cup A_{\alpha}$ is q-open and hence $(\cup A_{\alpha})^{c}$ is qclosed i.e $\cap A_{\alpha}^{c}$ is q-closed i.e $\cap B_{\alpha}$ is q-closed. Hence arbitrary intersection of qclosed sets is q-closed.

Definition 3.3. [4] Let (X, T_1, T_2, T_3, T_4) be a q-topological space. Let $A \subset X$, an element $x \in A$ is called q-interior point of A, if \exists a q-open set V such that $x \in V \subset A$.

Definition 3.4 [4] The set of all q-interior points of A is called q-interior of A and is denoted as q-int A.

Note 3.5. (1) $q - int A \subset A$. (2) q-int A is q-open. (3) q-int A is the largest q-open set contained in A.

Theorem 3.6. Let (X, T_1, T_2, T_3, T_4) be a q-topological space. Let $A \subset X$ then A is q-open $\inf A = q - \inf A.$

Proof: A is q-open and $A \subset A$. Therefore, $A \in \{B \mid B \subset A, B \text{ is q-open}\}$

A is in the collection and every other member in the collection is a subset of A and hence the union of this collection is A. Hence $\cup \{B \mid B \subset A, B \text{ is q-open}\} = A$ and hence q - int A = A. Conversely, since q - int A is q-open,

A = q - int A implies that A is q-open.

Theorem 3.7. $q - int (A \cup B) \supset q - int A \cup q - int B$ **Proof:** $q - int A \subset A$ and q-int A is q-open. $q - int B \subset B$ and q-int B is q-open. Union of two q-open sets is q-open and hence $q-int A \cup q - int B$ is a q-open set. Also $q - int A \cup q - int B \subset A \cup B.$ $q - int A \cup q - int B$ is one q-open subset of $A \cup B$ and $q - int (A \cup B)$ is the largest q-open subset of $A \cup B$. Hence, $q - int (A \cup B) \supset q - int A \cup q - int B$.

Definition 3.8. [4] Let (X, T_1, T_2, T_3, T_4) be a quad topological space and let $A \subset X$. The intersection of all q-closed sets containing A is called the q-closure of A & denoted by q - cl A. $q - cl A = \cap \{B \mid B \supset A, B \text{ is tri } \alpha \text{ closed}\}$.

Note 3.9. Since intersection of q-closed sets is q-closed, q-cl A is a q-closed set.

Note 3.10. q-cl A is the smallest q-closed set containing A.

q-Continuous Function in Quad Topological Spaces

Theorem 3.11. A is q-closed iff A = q - cl A. **Proof:** $q - cl A = \cap \{B | B \supset A, B \text{ is q-closed}\}$. If A is a q-closed then A is a member of the above collection and each member contains A. Hence their intersection is A. Hence q - cl A = A. Conversely if A = q - cl A, then A is q-closed because q-cl A is a q-closed set.

Theorem 3.12. Let (X, T_1, T_2, T_3, T_4) be a quad topological space for any $A \subset X$ $(q - intA)^C = q - clA^C$. **Proof:** $(q - intA)^C = [\cup \{G/G \subset A \& G \text{ is } q - open \}]^C$ $= \cap \{G^C/G^C \supset A^c \& G^c \text{ is } q - closed\}$ $= \cap \{F = G^c/F \supset A^c \& F \text{ is } q - closed\}$ where $F = G^c$ $= q - clA^C$.

Definition 3.13. Let $A \subset X$, be a quad topological space. $x \in X$ is called a q-limit point of A, if every q-open set U containing x, intersects $A - \{x\}$.(ie) every q-open set containing x, contains a point of A other than x.

Example 3.14. Let X={a,b,c}, $T_1 = \{\varphi, \{a\}, \{a, b\}, X\}, T_2 = \{\varphi, \{a\}, X\}, T_3 = \{\varphi, \{a\}, \{a, c\}, X\}, T_4 = \{\varphi, \{a, b\}, X\}.$ q-open sets are φ , X, {a}, {a,b}, {a,c} Consider A={a,c}. Then b is a q-limit point of A.

Definition 3.15. Let $A \subset X$. The set of all q-limit points of A is called the q-derived set of A and is denoted as q - D(A).

Theorem 3.16. $q - cl A = A \cup q - D(A)$.

Proof: Let $x \in q - cl A$. If $x \in cl A$, then $x \in A \cup q - D(A)$. If $x \notin A$, then we claim that x is a q-limit point of A. Let U be a q-open set containing x. Suppose $U \cap A = \emptyset$. Then $A \subset U^c$ and U^c is q-closed and hence $q - cl A \subset U^c$. This implies $x \in U^c \Longrightarrow \in$ Hence $U \cap A \neq \emptyset$. Therefore every q-open set U containing x intersects $A - \{x\}$. Hence $x \in q - D(A)$ and $x \in A \cup q - D(A)$. Therefore $q - cl A \subset A \cup q - D(A)$ Conversely, it is clear that $A \subset q - cl A$. It is enough to prove $q - D(A) \subset q - cl A$. Let $x \in q - D(A)$. If $x \in A$ then it is true. So let us take $x \neq A$. Now we have to prove that $x \in$ every q-closed set containing A. Suppose not, $x \notin B$ where B is a q-closed set containing A. $B \supset A$ Now $x \in B^c$, B^c is q-open and $B^c \cap A = \emptyset$. Contradiction to the fact that x is a q-limit point of A. Hence $x \in$ every q-closed set containing A. Hence $A \cup q - D(A) \subset q - cl A$.

Hence $q - cl A = A \cup q - D(A)$.

4. q-continuous function

Definition 4.1. Let (X, T_1, T_2, T_3, T_4) and $(Y, T_1', T_2', T_3', T_4')$ be two quad topological spaces. A function $f: X \to Y$ is called q-continuous function if $f^{-1}(V)$ is q-open in X, for every q-open set V in Y.

U.D.Tapi and Ranu Sharma

Example 4.2. Let $X = \{1, 2, 3, 4\}, T_1 = \{\emptyset, \{1\}, X\}, T_2 = \{\emptyset, \{1\}, \{1,3\}, X\}, T_3 = \{\emptyset, \{1\}, \{1,2\}, X\}, T_4 = \{\emptyset, \{4\}, \{1,4\}, X\}$ Let $Y = \{a, b, c, d\}, T_{1'} = \{\emptyset, \{a\}, Y\}, T_{2'} = \{\emptyset, \{a\}, \{a, b\}, Y\}, T_{3'} = \{\emptyset, \{a\}, \{a, b\}, Y\}, T_{4'} = \{\emptyset, \{d\}, \{a, d\}, Y\}$ Let $f : X \to Y$ be a function defined as f(1) = a; f(2) = b; f(3) = c; f(4) = d.q-open sets in(X, T₁, T₂, T₃, T₄) are $\emptyset, \{1\}, \{1,2\}, \{1,3\}, \{4\}, \{1,4\}, X.$ q-open sets in (Y, T_{1'}, T_{2'}, T_{3'}, T_{4'}) are $\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{d\}, \{a, d\}, Y.$ Since $f^{-1}(V)$ is q-open in X for every q-open set V in Y, f is q-continuous.

Definition 4.3. Let X and Y be two q-topological spaces. A function f: $X \rightarrow Y$ is said to be q-continuous at a point $a \in X$ if for every q-open set V containing f(a), \exists a q-open set U containing a, such that $f(U) \subset V$.

Theorem 4.4. $f: X \to Y$ is q-continuous iff f is q-continuous at each point of X. **Proof:** Let $f: X \to Y$ be q-continuous. Take any $a \in X$. Let V be a q-open set containing f(a). $f: X \to Y$ is q-continuous, Since $f^{-1}(V)$ is q-open set containing a. Let $U = f^{-1}(V)$. Then $f(U) \subset V \Rightarrow \exists$ a q-open set U containing a and $f(U) \subset V$ Hence f is q-continuous at a. Conversely, suppose f is q-continuous at each point of X. Let V be a q-open set of Y. If $f^{-1}(V) = \emptyset$ then it is q-open. Take any $a \in f^{-1}(V)$ f is q-continuous at a. Hence \exists Ua, q-open set containing a and $f(Ua) \subset V$. Let $U = \cup \{ Ua \mid a \in f^{-1}(V) \}$.

Claim: $U = f^{-1}(V)$. $a \in f^{-1}(V) \Rightarrow Ua \subset U \Rightarrow a \in U$. $x \in U \Rightarrow x \in Ua$ for some $a \Rightarrow f(x) \in V \Rightarrow x \in f^{-1}(V)$. Hence $U = f^{-1}(V)$ Each Ua is q-open. Hence U is q-open. $\Rightarrow f^{-1}(V)$ is q-open in X. Hence f is q-continuous.

Theorem 4.5. Let (X, T_1, T_2, T_3, T_4) and $(Y, T_1', T_2', T_3', T_4')$ be two q-topological spaces. Then f: $X \to Y$ is q-continuous function iff $f^{-1}(V)$ is q-closed in X whenever V is qclosed in Y. **Proof:** Let f : $X \to Y$ be q-continuous function. Let V be any q-closed in Y. $\Rightarrow V^c$ is tri α open in $Y \Rightarrow f^{-1}(V^c)$ is q-open in X. $\Rightarrow [f^{-1}(V)]^c$ is q-open in X. $\Rightarrow f^{-1}(V)$ is q-closed in X. Hence $f^{-1}(V)$ is q-closed in X whenever V is q-closed in Y. Conversely, suppose $f^{-1}(V)$ is q-closed in X whenever V is q-closed in Y. \forall is a q-open set in Y. $\Rightarrow V^c$ is q-closed in Y. q-Continuous Function in Quad Topological Spaces

⇒ $f^{-1}(V^c)$ is tri α closed in X. ⇒ $[f^{-1}(V)]^c$ is q-closed in X. ⇒ $f^{-1}(V)$ is q- open in X. Hence f is q-continuous.

Theorem 4.6. Let (X, T_1, T_2, T_3, T_4) and $(Y, T_1', T_2', T_3', T_4')$ be two q-topological spaces. Then, $f: X \to Y$ is q-continuous iff $f[q - cl A] \subset q - cl [f(A)] \forall A \subset X$. **Proof:** Suppose $f: X \to Y$ is q-continuous. Since q - cl [f(A)] is q-closed in Y. Then by theorem (4.5) $f^{-1}(q - cl [f(A)])$ is q-closed in X, $q - cl [f^{-1}(q - cl(f(A))] = f^{-1}(q - cl(f(A))).$ (1) Now $:f(A) \subset q - cl [f(A)], A \subset f^{-1}(f(A)) \subset f^{-1}(q - cl(f(A))).$ Then $q - cl(A) \subset q - cl [f^{-1}(q - cl(f(A))] = f^{-1}(q - cl(f(A)))$ by (1) Then $f(q - cl(f(A)) \subset q - cl(f(A))).$ Conversely, let $f(q - cl(A)) \subset q - cl(f(A))$. Let F be q-closed set in Y, so that q - cl(F) = F. Now $f^{-1}(F) \subset X$, by hypothesis, $f(q - cl(f^{-1}(F)) \subset q - cl(f(f^{-1}(F))) \subset q - cl(F^{-1}(F))$ always. Hence $q - cl(f^{-1}(F)) = f^{-1}(F)$ and so $f^{-1}(F)$ is q-closed in X. Hence by theorem (4.5) f is q-continuous.

5. q-Homomorphism

Definition 5.1. Let (X, T_1, T_2, T_3, T_4) and $(Y, T_1', T_2', T_3', T_4')$ be two q-topological spaces. A function f: $X \to Y$ is called q-open map if f (V) q-open in Y for every q-open set V in X.

Example 5.2. In example 4.2 f is q- open map also.

Definition 5.3. Let (X, T_1, T_2, T_3, T_4) and $(Y, T_1', T_2', T_3', T_4')$ be two q-topological spaces .Let f: $X \rightarrow Y$ be a mapping . f is called q-closed map if f(F) is q-closed in Y for every q-closed set F in X.

Example 5.4. The function f defined in the example 4.2 is q-closed map.

Result 5.5. Let X & Y be two q-topological spaces. Let $f: X \to Y$ be a mapping f is q-continuous iff $f^{-1}: Y \to X$ is q-open map.

Definition 5.6. Let (X, T_1, T_2, T_3, T_4) and $(Y, T_1', T_2', T_3', T_4')$ be two q-topological spaces. Let f: $X \to Y$ be a mapping . f is called a q-homeomorphism. If (i) f is a bijection. (ii) f is q-continuous. (iii) f^{-1} is q-continuous.

Example 5.7. The function f defined in the example 4.2 is (i) a bijection. (ii) f is q-continuous. (iii) f^{-1} is q-continuous. Therefore f is a q-homeomorphism.

U.D.Tapi and Ranu Sharma

6. Conclusion

In this paper, the idea of q-continous function in quad topological spaces were introduced and studied. Also properties of q-open and q-closed sets were studied.

REFERENCES

- 1. N.Biswas, On some mappings in topological spaces, *Bull. Calcutta Math. Soc.*, 61 (1969) 127-135.
- 2. J.C.Kelly, Bitopological spaces, Proc. London Math. Soc., 3 (1963) 17-89.
- 3. M.Kovar, On 3-topological version of Thet-reularity, *Internat. J. Math. Sci.*, 23 (6) (2000) 393-398.
- 4. D.V.Mukundan, Introduction to quad topological spaces, *Int. Journal of Scientific and Engg. Research*, 4(7) (2013) 2483-2485.
- 5. S. Palaniammal, A study of tri topological spaces, Ph.D Thesis 2011.
- 6. Al-L.Sweedy and A.F.Hassan, δ^{**} -continuous function in tritopolgical space, *Journal* of Basrah Research Sc., 37(4) (2011) 66-74.