Annals of Pure and Applied Mathematics

Vol. 10, No.1, 2015, 123-128 Annals of .
ISSN: 2279-087X (P), 2279-0888(online) Pure and Applled
Published on 29 July 2015 H
www.researchmathsci.org Mathe—n‘atlcs

The Total Dominating Graph
V.RKulli

Department of Mathematics, Gulbarga University, Gulbarga 585 106, India
e-mail; vrkulli@gmail.com

Received 14 July 2015; accepted 28 July 2015

Abstract. Let G = (V, E) be agraph. Let Sbe the set of all minimal total dominating sets
of G. The total dominating graph Dy(G) of G is the graph with the vertex set VOIS in
which two vertices u and v are adjacent if u 0 V and visaminima total dominating set
of G containing u. In this paper, some properties of this new graph are obtained. Also
characterizations are given for graphs (i) whose total dominating graphs are complete
bipartite, (ii) whose total dominating graphs are Eulerian.
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1. Introduction
All graphs considered here are finite, undirected without loops and multiple edges. Any
undefined term in this paper may be found in[1, 2].

Let G=(V, E) beagraph. A set D of verticesin agraph G is called adominating
set of Gif every vertex in V — Dis adjacent to some vertex in D. The domination number
Y(G) of G is the minimum cardinality of a dominating set in G. Recently several
domination parameters are given in the books by Kulli in[2, 3, 4].

A set D of vertices in G is a total dominating set of G if every vertex of G is
adjacent to some vertex in D. The total domination number y,(G) of G is the minimum
cardinality of atotal dominating set of G. A total dominating set D of G is minimal if for
any vertex v D, D <{v} isnot atotal dominating set of G.

We note that any graph G without isolated vertices has a total dominating set.
Thus we consider only graphs without isolated vertices.

Thetotal minimal dominating graph M(G) of agraph G isthe intersection graph
defined on the family of all minimal tota dominating sets of vertices of G. This concept
was introduced by Kulli and lyer in[5].

The common minimal total dominating graph CDy(G) of a graph G is the graph
with same vertex set as G with two vertices in CDy(G) adjacent if there exists a minima
total dominating set in G containing them. This concept was introduced by Kulli in[6].

The dominating graph D(G) of a graph G is the graph with the vertex set VO S
where Sis the set of all minimal dominating sets of G in which two vertices u and v are
adjacent if u0 Vand visaminimal dominating set in G containing u. This concept was
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introduced by Kulli et a in [7]. Many other graph valued functions in domination theory
were studied, for example, in[ 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and also
graph valued functions in graph theory were studied, for example, in [22, 23, 24, 25, 26,
27,28, 29, 30, 31, 32, 33, 34, 35, 36].

The following will be useful in the proof of our result.

Theorem A. [ 1, p.66] A nontrivial graph isbipartite if and only if all itscycles are even.

In section 2, we obtain some properties of total dominating graphs.

Traversability of some graph valued functions was studied, for example, in [37,
38, 39, 40]. In section 3, we study traversability of total dominating graphs.

The subdivision of an edge uv is obtained by removing an edge uv, adding a new
vertex w and adding edges uw and wv. The subdivision graph SG) of a graph G is the
graph obtained from G by subdividing each edge of G.

2. Total dominating graphs
The definition of dominating graph of a graph inspired us to define the following graph
valued function in domination theory.

Definition 1. Let G = (V, E) be agraph. Let Sbe the set of all minimal total dominating
sets of G. The total dominating graph Dy(G) of G isthe graph with the vertex set V O Sin
which two vertices u and v are adjacent if u 0 V and visaminima total dominating set
of G containing u.

Example 2. In Figure 1, agraph G and its total dominating graph Dy(G) are shown.

4 (3 4
4
{14 3
T {2 3}
1 2
{12 2
G D(G)
Figurel

Proposition 3. If G has a vertex which does not lie in any minimal total dominating set,
then Dy(G) is disconnected.

Proof: Let u be avertex of agraph G. If u does not lie in any minimal total dominating
set, then uis anisolated vertex in Dy(G). Hence Dy(G) is disconnected.

Theorem 4. If G isagraph without isolated vertices, then Dy(G) is bipartite.
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Proof: By definition, no two vertices corresponding to vertices of G in D(G) are adjacent
and also no two vertices corresponding to minimal total dominating sets of G in Dy(G) are
adjacent. Thus Dy(G) has no odd cycles. By Theorem A, D(G) is bipartite.

We characterize graphs whose total dominating graphs are complete bipartite.

Theorem 5. The total dominating graph D(G) of G is complete bipartite if and only if G
=mK,, m=1.

Proof: Suppose Dy(G) is complete bipartite. Clearly V(D(G)) = V. O V,, where V; is the
set of al vertices of G and V; isthe set of all minimal total dominating sets of G. We now
prove that G = mK, m = 1. On the contrary, assume G # mK,. Then there exists a
component G, in G which is not K,. Let v be a vertex of G;. Then v 0 G. We consider
the following two cases:

Case 1. Suppose v [0 D, where D is any minimal total dominating set in G. Then the
corresponding vertex of v is an isolated vertex in Dy(G). It implies that the corresponding
vertices of D and v are not adjacent in Dy(G). Thus D¢(G) is not complete bipartite, which
is acontradiction.

Case 2. Suppose there exist two minimal total dominating sets D; and D, such that v
0 D; and v O D,. Thus the corresponding vertices of v and D, are not adjacent in Dy(G).
Hence Dy(G) is not complete bipartite, which is a contradiction.

From Case 1 and Case 2, we conclude that every component of GisK,. Thus G =
mK,, m= 1.

Conversely, suppose G = mK,, m = 1. Then there exists exactly one minimal total
dominating set containing al vertices of G. Then [V(Dy(G) | = 2m +1. Thus by definition
Dy(G) = Ky, om and hence Dy(G) is complete bipartite.

We & so prove the following result.

Theorem 6. Dy(G)= Koy if and only if G=mK,, m= 1.
Proof: Suppose D«(G) = Ky, omy M= 1. Then D(G) is complete bipartite. By Theorem 5, G
=mK, m=1.

Conversely, suppose G = mK,, m = 1. Then there exists exactly one minimal total
dominating set containing all vertices of G. Thus by definition, Dy(G) = Ky, om.

The double star S, , is the graph obtained from joining the centers of two stars
K1, mand Ky, with an edge. The centers of K, and Ky, , are called central vertices of S, »
Thus S, , has m+n+2 vertices.

Theorem 7. If S, 1< m< n, isadouble star, then

Di(Snp) = (M+n) Ky O Ky 2.
Proof: Let S;, ,be adouble star, 1<m<n and u and v be central verticesof S, , Then §;, ,
has exactly one minimal total dominating set D containing the central vertices u and v of
Sh. » Then D ={u, \}. Thus the vertex set of D(S,, ) in VOD, where V is a vertex set of
Sh. » and hence Dy(S., ) has m+n+2+1 vertices. The corresponding vertices of D and u are
adjacent and aso the corresponding vertices of D and v are adjacent in D¢(S,, ) and all
other vertices of Dy(S,, ) are isolated vertices. Thus Dy(S,, 1) is disconnected and

Di(Sn.) = (M+N)K, O Ko
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Theorem 8. Let G be anontrivial connected graph. Let S(G) be the subdivision graph of
G. The graphs D{(G) and S(G) are isomorphic if and only if every pair of verticesformsa
minimal total dominating set of G.

Proof: Let G be a nontrivial connected graph. Suppose Dy(G) = SG). Since G is
connected, SG) is connected. For each edge e=u;v; of G, w; isa new vertex such that uw;
and wyv; are edges of §G). Since Dy(G)= S(G), it implies that every pair of vertices u;,v,
forms aminimal total dominating set of G.

Conversely, suppose every pair of vertices of G forms a minima total
dominating set of G. Then they are adjacent in G. Clearly for each minimal total
dominating set D of G, the corresponding vertex of D in D(G) is adjacent with exactly
two vertices and hence we seethat Dy(G) = S(G).

Corollary 9. If G=K,, p=2 or Ky, , 1<m=n, then D(G) = SG).

3. Traversabiltiy
We need the following result.

Theorem B. A connected graph G is Eulerian if and only if every vertex of G has even
degree.
We characterize total dominating graphs which are Eularian.

Theorem 10. Let G be anontrivial connected graph. The total dominating graph Dy(G) of
GisEularian if and only if the following conditions hold:
i) every minimal total dominating set contains even number of vertices,
ii) every vertex of Gisineven number of minimal total dominating sets of G.
Proof: Suppose D¢(G) is Eulerian. On the contrary, if condition (i) is not satisfied, then
there exists a minimal total dominating set containing odd number of vertices and hence
Dy(G) has a vertex of odd degree. By Theorem B, D¢(G) is not Eulerian, a contradiction.
Similarly we can prove (ii).

Conversely, suppose the given conditions are satisfied. Then the degree of each
vertex in Dy(G) is even. Hence by Theorem B, Di(G) is Eulerian.

Theorem 11. Let 'y(G) =2. If every vertex is in exactly two minima total dominating
sets of G, then Dy(G) is Hamiltonian.

Proof: Clearly w(G) = I'(G) and Dy(G) is connected. Let v V and D be aminimal tota
dominating set of G. Then degp) VvV = degp D = 2. Hence D¢(G) is connected 2 -
regular.

Thus Dy(G) is Hamiltonian.
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