Annals of Pure and Applied Mathematics Vol. 10, No.1, 2015, 7-14 ISSN: 2279-087X (P), 2279-0888(online) Published on 8 April 2015 www.researchmathsci.org

On Intuitionistic Fuzzy R₀–Spaces

Estiaq Ahmed¹, M.S.Hossain² and D.M.Ali²

¹Department of Mathematics, Meherpur Government College, Mehepur-7100 Bangladesh.Email: estiaq1977@gmail.com

²Department of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh

Received 9 March 2015; accepted 25 March 2015

Abstract. In this paper, we introduce intuitionistic fuzzy topological R_0 -spaces (in short, IF- R_0) in the sense of D. Coker. We define some new notions of R_0 -spaces using intuitionistic fuzzy sets. We also show that R_0 -spaces satisfy "good extensions" property.

Keywords: Intuitionistic set, Intuitionistic fuzzy set, Intuitionistic topological space, Intuitionistic fuzzy topological space, Intuitionistic fuzzy R_0 -spaces

AMS Mathematics Subject Classification (2010): 54A40, 03F55

I. Introduction

The concept of intuitionistic fuzzy sets was introduced by Atanassov[2, 3] as a generalization of fuzzy sets. Coker [5, 7, 8, 9, 10] and his colleagues introduced intuitionistic fuzzy topological spaces by using intuitionistic fuzzy sets. In this paper, we investigate the properties and features of R_0 -spaces.

Definition 1.1. [10] An intuitionistic set A is an object having the form $A = (x, A_1, A_2)$, where A_1 and A_2 are subsets of X satisfying $A_1 \cap A_2 = \phi$. The set A_1 is called the set of member of A while A_2 is called the set of non-member of A.

Throughout this paper, we use the simpler notation $A = (A_1, A_2)$ for an intuitionistic set.

Remark 1.2. [10] Every subset A on a non-empty set X may obviously be regarded as an intuitionistic set having the form $A' = (A, A^C)$, where $A^C = X \setminus A$ is the complement of Ain X.

Definition 1.3. [10] Let the intuitionistic sets A and B on X be of the forms $A = (A_1, A_2)$ and $B = (B_1, B_2)$ respectively. Furthermore, let $\{A_j : j \in J\}$ be an arbitrary family of intuitionistic sets in X, where $A_j = (A_j^{(1)}, A_j^{(2)})$. Then

- (a) $A \subseteq B$ if and only if $A_1 \subseteq B_1$ and $A_2 \supseteq B_2$.
- (b) A = B if and only if $A \subseteq B$ and $B \subseteq A$.
- (c) $\overline{A} = (A_2, A_1)$, denotes the complement of A.
- (d) $\cap A_j = (\cap A_j^{(1)}, \cup A_J^{(2)}).$

- (e) $\bigcup A_j = (\bigcup A_j^{(1)}, \bigcap A_j^{(2)}).$
- (f) $\phi_{\sim} = (\phi, X)$ and $X_{\sim} = (X, \phi)$.

Definition: 1.5. [7] An intuitionistic topology on a set X is a family τ of intuitionistic sets in X satisfying the following axioms:

- (1) $\phi_{\sim}, X_{\sim} \in \tau$.
- (2) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$.
- (3) \cup G_i $\in \tau$ for any arbitrary family G_i $\in \tau$.

In this case, the pair (X, τ) is called an intuitionistic topological space (ITS, in short) and any intuitionistic set in τ is known as an intuitionistic open set (IOS, in short) in X.

Definition 1.6. [3] Let X be a non-empty set and I be the unit interval [0, 1]. An intuitionistic fuzzy set A (IFS, in short) in X is an object having the form $A=\{(x, \mu_A(x), \nu_A(x)), x \in X\}$, where $\mu_A: X \to I$ and $\nu_A: X \to I$ denote the degree of membership and the degree of non-membership respectively, and $\mu_A(x) + \nu_A(x) \le 1$.

Let I(X) denote the set of all intuitionistic fuzzy sets in X. Obviously every fuzzy set μ_A in X is an intuitionistic fuzzy set of the form $(\mu_A, 1 - \mu_A)$.

Throughout this paper, we use the simpler notation $A = (\mu_A, \nu_A)$ instead of $A = \{(x, \mu_A(x), \nu_A(x)), x \in X\}$.

Definition 1.7. [3] Let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be intuitionistic fuzzy sets in X. Then

- (1) $A \subseteq B$ if and only if $\mu_A \leq \mu_B$ and $\nu_A \geq \nu_B$.
- (2) A = B if and only if $A \subseteq B$ and $B \subseteq A$.
- (3) $A^{c} = (v_{A}, \mu_{A}).$
- (4) $A \cap B = (\mu_A \cap \mu_B; \nu_A \cup \nu_B).$
- (5) $A \cup B = (\mu_A \cup \mu_B; \nu_A \cap \nu_B).$
- (6) $0_{\sim} = (0^{\sim}, 1^{\sim})$ and $1_{\sim} = (1^{\sim}, 0^{\sim})$.

Definition 1.8. [8] An intuitionistic fuzzy topology (IFT, in short) on X is a family t of IFS's in X which satisfies the following axioms:

- (1) $0_{\sim}, 1_{\sim} \in t$.
- (2) if A_1 , $A_2 \in t$, then $A_1 \cap A_2 \in t$.

(3) if $A_i \in t$ for each i, then $\bigcup A_i \in t$.

The pair (X, t) is called an intuitionistic fuzzy topological space (IFTS, in short). Let (X, t) be an IFTS. Then any member of t is called an intuitionistic fuzzy open set (IFOS, in short) in X. The complement of an IFOS in X is called an intuitionistic fuzzy closed set (IFCS, in short) in X.

Definition 1.9. [3] Let X and Y be two nonempty sets and $f: X \to Y$ be a function. If $B = \{(y, \mu_B(y), \nu_B(y)) / y \in Y\}$ isan IFS in Y, then the pre image of B under f, denoted by $f^{-1}(B)$ is the IFS in X defined by $f^{-1}(B) = \{(x, f^{-1}(\mu_B)(x), f^{-1}(\nu_B)(x)), x \in X\}$ and the image of A under f, denoted by $f(A) = \{(y, f(\mu_A), f(\nu_A), y \in Y\}$ is an IFS of Y, where for each $y \in Y$

On Intuitionistic Fuzzy R₀-Spaces

$$f(\mu_{A})(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \mu_{A}(x) & \text{if } f^{-1}(y) \neq \varphi, \\ 0 & \text{otherwise.} \end{cases}$$
$$f(\nu_{A})(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \nu_{A}(x) & \text{if } f^{-1}(y) \neq \varphi, \\ 1 & \text{otherwise.} \end{cases}$$

Theorem 1.10. [1] Let (X, τ) be an intuitionistic topological space and let $t = \{1_A : A \in \tau\}, 1_{(A_1, A_2)} = (1_{A_1}, 1_{A_2})$, then (X, t) is the corresponding intuitionistic fuzzy topological space of (X, τ) .

2. Intuitionistic fuzzy R₀-spaces

Definition 2.1. An intuitionistic fuzzy topological space (X, t) is called

- (1) IF-R₀(i) if for all x, $y \in X, x \neq y$ whenever $\exists A = (\mu_A, \upsilon_A) \in t$ with $\mu_A(x) = 1, \upsilon_A(x) = 0; \mu_A(y) = 0, \upsilon_A(y) = 1$, then $\exists B = (\mu_B, \upsilon_B) \in t$ such that $\mu_B(y) = 1, \upsilon_B(y) = 0; \mu_B(x) = 0, \upsilon_B(x) = 1$.
- (2) IF-R₀(ii) if for all x, $y \in X$, $x \neq y$ whenever $\exists A = (\mu_A, \upsilon_A) \in t$ with $\mu_A(x) = 1$, $\upsilon_A(x) = 0$; $\mu_A(y) = 0$, $\upsilon_A(y) > 0$, then $\exists B = (\mu_B, \upsilon_B) \in t$ such that $\mu_B(y) = 1$, $\upsilon_B(y) = 0$; $\mu_B(x) = 0$, $\upsilon_B(x) > 0$.
- (3) IF-R₀(iii) if for all x, $y \in X$, $x \neq y$ whenever $\exists A = (\mu_A, \upsilon_A) \in t$ with $\mu_A(x) > 0$, $\upsilon_A(x) = 0$; $\mu_A(y) = 0$, $\upsilon_A(y) = 1$, then $\exists B = (\mu_B, \upsilon_B) \in t$ such that $\mu_B(y) > 0$, $\upsilon_B(y) = 0$; $\mu_B(x) = 0$, $\upsilon_B(x) = 1$.
- (4) IF-R₀(iv) if for all x, $y \in X$, $x \neq y$ whenever $\exists A = (\mu_A, \upsilon_A) \in t$ with $\mu_A(x) > 0$, $\upsilon_A(x) = 0$; $\mu_A(y) = 0$, $\upsilon_A(y) > 0$, then $\exists B = (\mu_B, \upsilon_B) \in t$ such that $\mu_B(y) > 0$, $\upsilon_B(y) = 0$; $\mu_B(x) = 0$, $\upsilon_B(x) > 0$.

Definition 2.2. Let $\alpha \in (0, 1)$. An intuitionistic fuzzy topological space (X, t) is called

- (a) $\alpha IF R_0(i)$ if for all x, $y \in X$, $x \neq y$ whenever $\exists A = (\mu_A, \upsilon_A) \in t$ with $\mu_A(x) = 1$, $\upsilon_A(x) = 0$; $\mu_A(y) = 0$, $\upsilon_A(y) \ge \alpha$, then $\exists B = (\mu_B, \upsilon_B) \in t$ such that $\mu_B(y) = 1$, $\upsilon_B(y) = 0$; $\mu_B(x) = 0$, $\upsilon_B(x) \ge \alpha$.
- (b) $\alpha IF R_0(ii)$ if for all x, $y \in X$, $x \neq y$ whenever $\exists A = (\mu_A, \upsilon_A) \in t$ with $\mu_A(x) \ge \alpha, \upsilon_A(x) = 0$; $\mu_A(y) = 0$, $\upsilon_A(y) \ge \alpha$, then $\exists B = (\mu_B, \upsilon_B) \in t$ such that $\mu_B(y) \ge \alpha$, $\upsilon_B(y) = 0$; $\mu_B(x) = 0$, $\upsilon_B(x) \ge \alpha$.
- (c) $\alpha IF R_0(iii)$ if for all $x, y \in X, x \neq y$ whenever $\exists A = (\mu_A, \upsilon_A) \in t$ with $\mu_A(x) > 0, \upsilon_A(x) = 0; \quad \mu_A(y) = 0, \quad \upsilon_A(y) \ge \alpha$, then $\exists B = (\mu_B, \upsilon_B) \in t$ such that $\mu_B(y) > 0, \quad \upsilon_B(y) = 0; \quad \mu_B(x) = 0, \quad \upsilon_B(x) \ge \alpha$.

Theorem 2.3. The properties $IF-R_0(i)$, $IF-R_0(ii)$, $IF-R_0(iii)$ and $IF-R_0(iv)$ are all independent.

Proof:To prove the non-implications among these properties, we consider the following examples.

Example 2.3.1. Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 1, 0), (y, 0, 0.5)\}$ and $B = \{(x, 0.3, 0.2), (y, 0.1, 0.4)\}$. We see that the IFTS (X, t) is IF-R₀(i),but it is neither IF-R₀(ii) nor IF-R₀(iv).

Example 2.3.2. Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 0.6, 0), (y, 0, 1)\}$ and $B = \{(x, 0.2, 0.7), (y, 0.6, 0.3)\}$. We see that the IFTS (X, t) is IF-R₀(i), but it is notIF-R₀(iii).

Example 2.3.3. Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 0.5, 0), (y, 0, 1)\}$ and $B = \{(x, 0.2, 0.4), (y, 0.1, 0.6)\}$. We see that the IFTS (X, t) is IF-R₀(ii), but it is neither IF-R₀(iii) norIF-R₀(iv).

Example 2.3.4. Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 1, 0), (y, 0, 1)\}$ and $B = \{(x, 0, 0.2), (y, 1, 0)\}$. We see that the IFTS (X, t) is IF-R₀(ii), but it is notIF-R₀(i).

Example 2.3.5. Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 0.6, 0), (y, 0, 0.4)\}$ and $B = \{(x, 0.3, 0.1), (y, 0.4, 0.2)\}$. We see that the IFTS (X, t) is IF-R₀(iii), but it is notIF-R₀(iv).

Example 2.3.6. Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 1, 0), (y, 0, 1)\}$ and $B = \{(x, 0, 1), (y, 0.5, 0)\}$. We see that the IFTS (X, t) is IF-R₀(ii), but it is not IF-R₀(i).

Example 2.3.7. Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 0.2, 0), (y, 0, 1)\}$ and $B = \{(x, 0, 0.5), (y, 0.6, 0)\}$. We see that the IFTS (X, t) is IF-R₀(iv), but it is notIF-R₀(iii).

Theorem 2.4. The properties $\alpha -IF - R_0(i)$, $\alpha -IF - R_0(ii)$ and $\alpha -IF - R_0(iii)$ are all independent.

Proof: To prove the non-implications among these properties, we consider the following examples.

Example 2.4.1. Let X = {x, y} and t be the intuitionistic fuzzy topology on X generated by {A, B} where A= {(x, 0.6, 0), (y, 0, 0.8)} and B= {(x, 0.4, 0.3), (y, 0.5, 0.2)}. For $\alpha = 0.2$, we see that the IFTS(X, t) is $\alpha - IF - R_0(i)$, but it isneither $\alpha - IF - R_0(i)$ nor $\alpha - IF - R_0(ii)$.

Examples 2.4.2.Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by{A, B} where A={(x, 1, 0), (y, 0, 0.5)} and B={(x, 0, 0.6), (y, 0.4, 0)}. For $\alpha = 0.3$, we see that the IFTS (X, t) is $\alpha - IF - R_0(i)$, but it is not $\alpha - IF - R_0(i)$.

Examples 2.4.3.Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 0.2, 0), (y, 0, 0.5)\}$ and $B = \{(x, 0, 0.1), (y, 0.3, 0)\}$. For $\alpha = 0.5$, we see that the IFTS (X, t) is $\alpha - IF - R_0(ii)$, but it is not $\alpha - IF - R_0(ii)$.

Examples 2.4.4.Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 1, 0), (y, 0, 0.7)\}$ and $B = \{(x, 0, 0.3), (y, 0.2, 0)\}$. For $\alpha = 0.3$, we see that the IFTS (X, t) is $\alpha - IF - R_0(ii)$, but it is neither $\alpha - IF - R_0(i)$ nor $\alpha - IF - R_0(ii)$.

On Intuitionistic Fuzzy R₀-Spaces

Theorem 2.5. Let (X, t) be an intuitionistic fuzzy topological space, $U \subseteq X$ and $t_U = \{A | U : A \in t\}$ and $\alpha \in (0, 1)$, then

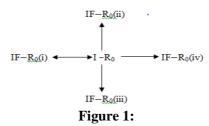
(a) (X, t) is $IF-R_0(i) \Rightarrow (U, t_U)$ is $IF-R_0(i)$. (b) (X, t) is $IF-R_0(ii) \Rightarrow (U, t_U)$ is $IF-R_0(ii)$. (c) (X, t) is $IF-R_0(iii) \Rightarrow (U, t_U)$ is $IF-R_0(iii)$. (d) (X, t) is $IF-R_0(iv) \Rightarrow (U, t_U)$ is $IF-R_0(iv)$. (e) (X, t) is $\alpha - IF-R_0(i) \Rightarrow (U, t_U)$ is $\alpha - IF-R_0(i)$. (f) (X, t) is $\alpha - IF-R_0(ii) \Rightarrow (U, t_U)$ is $\alpha - IF-R_0(ii)$. (g) (X, t) is $\alpha - IF-R_0(iii) \Rightarrow (U, t_U)$ is $\alpha - IF-R_0(iii)$.

The proofs (a), (b), (c), (d), (e), (f), (g) are similar. As an example we proved (e).

Proof (e): Suppose (X, t) is the intuitionistic fuzzy topological space and is also $\alpha - IF - R_0(i)$. We shall prove that (U, t_U) is $\alpha - IF - R_0(i)$. Letx, $y \in U, x \neq y$ with $A_U = (\mu_{A_U}, \nu_{A_U}) \in t_U$ such that $\mu_{A_U}(x) = 1$, $\nu_{A_U}(x) = 0$ and $\mu_{A_U}(y) = 0$, $\nu_{A_U}(y) \geq \alpha$. Suppose $A = (\mu_A, \nu_A) \in t$ is the extension IFS of A_U on X, then $\mu_A(x) = 1$, $\nu_A(x) = 0$ and $\mu_A(y) = 0$, $\nu_A(y) \geq \alpha$. Since x, $y \in U \subseteq X$. That is,x, $y \in X$. Again, since (X, t) is $\alpha - IF - R_0(i)$, then $\exists B = (\mu_B, \nu_B) \in t$ such that $\mu_B(y) = 1$, $\nu_B(y) = 0$ and $\mu_B(x) = 0$, $\nu_B(x) \geq \alpha \Longrightarrow (\mu_B | U)(y) = 1$, $(\nu_B | U)(y) = 0$ and $(\mu_B | U)(x) = 0$, $(\nu_B | U)(x) \geq \alpha$. Hence $(\mu_B | U, \nu_B | U) \in t_U$. Therefore (U, t_U) is $\alpha - IF - R_0(i)$.

Definition 2.7. An intuitionistic topological space (X, τ) is called intuitionistic R_0 -space $(I-R_0 \text{ space})$ if for allx, $y \in X$, $x \neq y$ whenever $\exists C = (C_1, C_2) \in \tau$ with $x \in C_1, x \notin C_2$ and $y \notin C_1$, $y \in C_2$ then $\exists D = (D_1, D_2) \in \tau$ such that $y \in D_1$, $y \notin D_2$ and $x \notin D_1$, $x \in D_2$.

Theorem 2.8. Let (X, τ) be an intuitionistic topological space and let (X, t) be an intuitionistic fuzzy topological space. Then we have the following implications:



Proof: Let (X, τ) beI $-R_0$ space. We shall show that (X, t) isIF $-R_0(i)$. Suppose (X, τ) is I $-R_0$. Let $x, y \in X, x \neq y$ with $(1_{C_1}, 1_{C_2}) \in t$ such that $1_{C_1}(x) = 1$, $1_{C_2}(x) = 0$; $1_{C_1}(y) = 0$, $1_{C_2}(y) = 1 \Rightarrow x \in C_1, x \notin C_2$; $y \notin C_1$, $y \in C_2$. Hence(C_1, C_2) $\in \tau$. Since (X, τ) is I $-R_0$, then $\exists (D_1, D_2) \in \tau$ such that $y \in D_1, y \notin D_2$ and $x \notin D_1$, $x \in D_2 \Rightarrow 1_{D_1}(y) = 1$, $1_{D_2}(y) = 0$ and $1_{D_1}(x) = 0$, $1_{D_2}(x) = 1 \Rightarrow (1_{D_1}, 1_{D_2}) \in t$. Hence (X, t) is IF $-R_0(i)$.

Conversely, let(X, t)beIF- $R_0(i)$. We shall show that (X, τ) is I- R_0 . Suppose (X, t) is IF- $R_0(i)$.Let x, y \in X, x \neq y with C = (C₁, C₂) $\in \tau$ such that x \in C₁,

 $\begin{array}{ll} x \notin C_2 \ \text{ and } y \notin C_1, \quad y \in C_2 \Longrightarrow 1_{C_1}(x) = 1, \ 1_{C_2}(x) = 0 \ \text{ and } \ 1_{C_1}(y) = 0, \ 1_{C_2}(y) = 1.\\ \text{Hence} \ (1_{C_1}, \ 1_{C_2}) \in t. \ \text{Since} \ (X, \ t) \text{is } \ IF-R_0(i), \ \text{then} \ \exists \ (1_{D_1}, \ 1_{D_2}) \in t \ \text{such} \\ \text{that} 1_{D_1}(y) = 1, \ 1_{D_2}(y) = 0 \ \text{and} \ 1_{D_1}(x) = 0, \ 1_{D_2}(x) = 1 \Longrightarrow y \in D_1, \ y \notin D_2 \ \text{and} \\ x \notin D_1, \ y \in D_2 \Longrightarrow (D_1, \ D_2) \in \tau. \ \text{Hence} \ (X, \ \tau) \ \text{is } \ I-R_0. \ \text{Hence} \ IF-R_0(i) \Longrightarrow I-R_0.\\ \text{Therefore } I-R_0 \oplus IF-R_0(i). \end{array}$

Furthermore, it can verify that $I-R_0 \Longrightarrow IF-R_0(ii)$, $I-R_0 \Longrightarrow IF-R_0(iii)$ and $I-R_0 \Longrightarrow IF-R_0(iv)$.

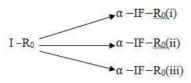
None of the reverse implications is true in general which can be seen from the following examples.

Examples 2.8.1. Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 1, 0), (y, 0, 0.4)\}$ and $B = \{(x, 0, 0.5), (y, 1, 0)\}$, we see that the IFTS (X, t) is IF-R₀(ii), but not corresponding I -R₀.

Examples 2.8.2. Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by{A, B} where A= {(x, 0.5, 0), (y, 0, 1)} and B= {(x, 0, 1), (y, 0.6, 0)}, we see that the IFTS (X, t) isIF-R₀(iii), but not corresponding I -R₀.

Examples 2.8.3. Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 1, 0), (y, 0, 0.3)\}$ and $B = \{(x, 0, 0.4), (y, 0.6, 0)\}$, we see that the IFTS (X, t) is IF-R₀(iv), but not corresponding I -R₀.

Theorem2.9. Let (X, τ) be an intuitionistic topological space and let (X, t) be an intuitionistic fuzzy topological space. Then we have the following implications:



Proof: Let (X, τ) be $I - R_0$ space. We shall show that (X, t) is $\alpha - IF - R_0(i)$. Let $\alpha \in (0, 1)$. Suppose (X, τ) is $I - R_0$. Let $x, y \in X, x \neq y$ with $(1_{C_1}, 1_{C_2}) \in t$ such that $1_{C_1}(x) = 1$, $1_{C_2}(x) = 0$; $1_{C_1}(y) = 0$, $1_{C_2}(y) \ge \alpha \Longrightarrow 1_{C_1}(x) = 1, 1_{C_2}(x) = 0$; $1_{C_1}(y) = 0$, $1_{C_2}(y) = 1$ for any $\alpha \in (0, 1) \Longrightarrow x \in C_1$, $x \notin C_2$; $y \notin C_1$, $y \in C_2$. Hence $(C_1, C_2) \in \tau$. Since (X, τ) is $I - R_0$, then $\exists (D_1, D_2) \in \tau$ such that $y \in D_1$, $y \notin D_2$ and $x \notin D_1$, $x \in D_2 \Longrightarrow 1_{D_1}(y) = 1$, $1_{D_2}(y) = 0$ and $1_{D_1}(x) = 0$, $1_{D_2}(x) = 1 \Longrightarrow 1_{D_1}(y) = 1$, $1_{D_2}(y) = 0$ and $1_{D_1}(x) = 0$, $1_{D_1}, 1_{D_2}) \in t$. Hence (X, t) is $\alpha - IF - R_0(i)$.

Furthermore, it can verify that $I - R_0 \Longrightarrow \alpha - IF - R_0(ii)$ and $I - R_0 \Longrightarrow \alpha - IF - R_0(iii)$. None of the reverse implications is true in general which can be seen from the following examples.

On Intuitionistic Fuzzy R₀-Spaces

Example 2.9.1. Let $X = \{x, y\}$ and let t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 1, 0), (y, 0, 0.7)\}$ and $B = \{(x, 0, 0.8), (y, 1, 0)\}$. For $\alpha = 0.7$, we see that the IFTS (X, t) is $\alpha - IF - R_0(i)$ but not corresponding I $-R_0$.

Example 2.9.2. Let $X = \{x, y\}$ and let t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 1, 0), (y, 0, 0.5)\}$ and $B = \{(x, 0, 0.6), (y, 0.6, 0)\}$. For $\alpha = 0.5$, we see that the IFTS (X, t) is $\alpha - IF - R_0(ii)$ but not corresponding I $-R_0$.

Example 2.9.3. Let $X = \{x, y\}$ and let t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 0.3, 0), (y, 0, 0.5)\}$ and $B = \{(x, 0, 0.5), (y, 1, 0)\}$. For $\alpha = 0.4$, we see that the IFTS (X, t) is $\alpha - IF - R_0(iii)$ but not corresponding $I - R_0$.

Theorem2.10.Let (X, t)and(Y, s)be two intuitionistic fuzzy topological spaces and f: $X \rightarrow Y$ be one-one, onto, continuous open mapping, then

(1) (X, t) is $IF-R_0(i) \Leftrightarrow (Y, s)$ is $IF-R_0(i)$.

(2) (X, t) is IF- $R_0(ii) \Leftrightarrow$ (Y, s) is IF- $R_0(ii)$.

(3) (X, t) is $IF-R_0(iii) \Leftrightarrow (Y, s)$ is $IF-R_0(iii)$.

(4) (X, t) is $IF-R_0(iv) \Leftrightarrow (Y, s)$ is $IF-R_0(iv)$.

(5) (X, t) is α –IF–R₀(i) \Leftrightarrow (Y, s) is α –IF–R₀(i).

(6) (X, t) is α –IF–R₀(ii) \Leftrightarrow (Y, s) is α –IF–R₀(ii).

(7) (X, t) is $\alpha - IF - R_0(iii) \Leftrightarrow$ (Y, s) is $\alpha - IF - R_0(iii)$.

The proofs (1), (2), (3), (4), (5), (6), (7) are similar. As an example we proved (1).

Proof (1) Suppose the intuitionistic fuzzy topological space (X, t) is IF- $R_0(i)$. We shall prove that the intuitionistic fuzzy topological space (Y, s) is IF- $R_0(i)$. Let $y_1, y_2 \in Y$, $y_1 \neq y_2$ with $A = (\mu_A, \nu_A) \in$ ssuch that $\mu_A(y_1) = 1$, $\nu_A(y_2) = 1$. Since f is onto, then $\exists x_1, x_2 \in X$ such that $x_1 = f^{-1}(y_1)$ and $x_2 = f^{-1}(y_2)$. Since $y_1 \neq y_2$, then $f^{-1}(y_1) \neq$ $f^{-1}(y_2)$. Hence $x_1 \neq x_2$. We have $(f^{-1}(\mu_A), f^{-1}(\nu_A)) \in t$, as f is IF-continuous. Now, $(f^{-1}(\mu_A))(x_1) = \mu_A(f(x_1)) = \mu_A(y_1) = 1$ and $(f^{-1}(\nu_A))(x_2) = \nu_A(f(x_2)) =$ $\nu_A(y_2) = 1$. Therefore, since(X, t) is IF- $R_0(i)$, then $\exists B = (\mu_B, \nu_B) \in t$ such that $\mu_B(x_2) = 1, \nu_B(x_1) = 1$.Now, $(f(\mu_B))(y_2) = \mu_B(f^{-1}(y_2)) = \mu_B(x_2) = 1$ and $(f(\nu_B))(y_1)$ $= \nu_B(f^{-1}(y_1)) = \nu_B(x_1) = 1$ as f is one-one and onto. Hence $(f(\mu_B), f(\nu_B)) \in s$. Therefore(Y, s) is IF- $R_0(i)$.

Conversely, Suppose the intuitionistic fuzzy topological space (Y, s) is IF-R₀(i). We shall prove that the intuitionistic fuzzy topological space (X, t) is IF-R₀(i). Let $x_1, x_2 \in X, x_1 \neq x_2$ with $A = (\mu_A, \nu_A) \in t$ such that $\mu_A(x_1) = 1, \nu_A(x_2) = 1$. Since f is one-one, then $\exists y_i \in s$ such that $y_i = f(x_i), i = 1, 2$. Hence $f(x_1) \neq f(x_2)$ implies $y_1 \neq y_2$ as f is one-one. We have $(f(\mu_A), f(\nu_A)) \in s$ as f is IF-continuous. Now, $(f(\mu_A))(y_1)=(f(\mu_A))(f(x_1)) = \mu_A(f^{-1}(f(x_1))) = \mu_A(x_1) = 1$ and $(f(\nu_A))(y_2) = \nu_A(f^{-1}(f(x_2))) = \nu_A(x_2) = 1$. Therefore, since (Y, s) is IF-R₀(i), then $\exists D = (\mu_D, \nu_D) \in s$ such that $\mu_D(y_2) = 1, \nu_D((y_1) = 1$. Now, $(f^{-1}(\mu_D))(x_2) = \mu_D(f(x_2)) = \mu_D(y_2) = 1$ and $(f^{-1}(\nu_D))(x_1) = \nu_D(f(x_1)) = \nu_D(y_1) = 1$, as f is one-one and onto. Hence $(f^{-1}(\mu_D), f^{-1}(\nu_D)) \in t$. Therefore (X, t) is IF-R₀(i).

REFFERENCES

- E.Ahmed, M.S.Hossain and D.M.Ali, On intuitionistic Fuzzy T₀ –spaces, J. of Bangladesh Academy of Sciences, 38(2)(2014) 197-207.
- 2. K.T.Atanassov, Review and new results on intuitionistic fuzzy sets, *Preprint MFAIS*-1-88 (1988) 1-8.
- 3. K.T.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986) 87-96.
- 4. S.Bayhan and D.Coker, On separation axioms in intuitionistic topological space, *Int. J. of Math. Sci.*, 27(10) (2001) 621-630.
- 5. S.Bayhan and D.Coker, On fuzzy separation axioms in intuitionistic fuzzy topological space, *BUSEFAL*, 67(1996) 77-87.
- 6. C.L.Chang, Fuzzy topological space, J. Math. Anal. Appl., 24 (1968) 182-190.
- 7. D.Coker, An introduction to intuitionistic topological space, *BUSEFAL*, 81(2000) 51-56.
- 8. D.Coker, An introduction to intuitionistic fuzzy topological space, *Fuzzy Sets and Systems*, 88 (1997) 81-89.
- 9. D.Coker, An introduction to fuzzy subspace in intuitionistic fuzzy topological space, *J. Fuzzy Math.*, 4 (1996) 749-764.
- 10. D.Coker, A note on intuitionistic sets and intuitionistic points, TU J. Math. 20(3) (1996) 343-351.
- 11. M.A.M.Talukder and D.M.Ali,Certain properties of countably compact fuzzy sets, *Annals of Pure and Applied Mathematics*, 5(2) (2014) 108-119.
- 12. S.Elizabeth and L.Sujatha, Medical diagnosis based on interval valued fuzzy number matrices, *Annals of Pure and Applied Mathematics*, 7(1) (2014) 91-96.
- 13. L.A.Zadeh. Fuzzy Sets, Information and Control, 8 (1965) 338-353.