Annals of Pure and Applied Mathematics Vol. 10, No.1, 2015, 49-58 ISSN: 2279-087X (P), 2279-0888(online) Published on 22 April 2015 www.researchmathsci.org

Results on β_M -Excellent Graphs

J. Joseline Manora¹ and B. John²

¹PG & Research Department of Mathematics, T.B.M.L College, Porayar,Nagapattinam Dt., Tamilnadu, India ²Department of Science and Humanities E.G.S.Pillay Engineering College Nagapattinam Dt., Tamilnadu, India Corresponding author. Email: johnvisle@gmail.com

Received 19 February 2015; accepted 1April 2015

Abstract. A graph G is β_M -excellent if every vertex of G is contained in a maximal majority independent set of a graph G. In this paper, we study some standard graphs G which are β_M -excellent and not β_M -excellent graphs. Also we have obtained some results on β_M -excellent graphs in the case of a Cartesian product, generalization of Petersen graph and trees.

Keywords: Majority independence number- $\beta_M(G)$, β_M excellent graphs

AMS Mathematics Subject Classification (2010): 05C69

1. Introduction

Claude Berge in 1980, introduced B graphs. These are graphs in which every vertex in the graph is contained in a maximum independent set of the graph. Fircke et al. [1] in 2002 made a beginning of the study of graphs which are excellent with respect to various parameters. γ -excellent trees and total domination excellent trees have been studied in [1].Also Sridharan and Yamuna [9]made an extensive work in this area. Swaminathan and Pushpalatha have defined β_o -excellent graphs, just β_o -excellent graphs and very β_o -excellent graphs and they have made a detailed study in this paper [8].

By a graph *G*, we mean a finite, simple graph which is undirected and nontrivial. Let G = (V, E) be a graph of order p and size q. For every vertex $v \in V(G)$, the open neighbourhood $N(v) = \{ u \in V(G) / uv \in E(G) \}$ and the closed neighbourhood $N[v] = N(v) \bigcup \{v\}$. Let *S* be a set of vertices, and let $u \in S$. The private neighbour set of *u* with respect to *S* is $pn[u, S] = \{v / N[v] \cap S = \{u\}\}$

Definition 1.1. [2] A set D of vertices in a graph G is called an independent set if no two vertices in D are adjacent. An independent set D is called a maximal independent set if

any vertex set properly containing D is not independent. The independence number $\beta_o(G)$ is the maximum cardinality of a maximal independent set in G. Let G = (V, E) be a simple graph. Let $u \in V(G)$. The vertex u is said to be β_o -good if u is contained in a β_o -set of G. The vertex u is said to be β_o -bad if there exists no β_o -set of G containing u [8].

Definition 1.2. [4] A set S of vertices of a graph G is said to be a Majority Independent set(or MI-set) if it induces a totally disconnected subgraph with $|N[S]| \ge \left\lceil \frac{p}{2} \right\rceil$ and $|pn[v,S]| > |N[S]| - \left\lceil \frac{p}{2} \right\rceil$ for every $v \in S$. If any vertex set S properly containing S is not majority independent. Then S is called Maximal Majority Independent set. The minimum cardinality of a maximal majority independent set is called lower majority independent of G and it is also called Independent Majority Demination number

independence number of Gand it is also called Independent Majority Domination number of G. It is denoted by $i_M(G)$. The maximum cardinality of a maximal majority independent set of G is called Majority Independence number of G and it is denoted by $\beta_M(G)$. A β_M -set is a maximum cardinality of a maximal majority independent set of G. This parameter has been studied by Swaminathan and Joseline Manora.

2. Majority independence number of some graphs

We have determined $\beta_M(G)$ for several standard graphs in [4]. Here we consider some classes of graphs which are needed for our study and compute its $\beta_M(G)$.

1. Let
$$G = P_p$$
, $p \ge 2$. Then $\beta_M(G) = \begin{cases} \left| \frac{p}{4} \right| & \text{if } p \le 6. \\ \left[\frac{p-2}{4} \right] & \text{if } p > 6. \end{cases}$
2. Let $G = K_{1,p-1}$, $p \ge 2$. Then $\beta_M(G) = \left\lfloor \frac{p-1}{2} \right\rfloor$.
3. Let $G = W_p$, $p \ge 5$. Then $\beta_M(G) = \left\lceil \frac{p-2}{6} \right\rceil$.
4. Let $G = D_{r,s}$, $r, s \ge 2$. Then $\beta_M(G) = \left\{ \begin{bmatrix} r & \text{if } r = s, \ p = r + s + 2 \\ \left\lceil \frac{p}{2} \right\rceil - 1 & \text{if } r < s. \end{cases}$
5. Let $G = \overline{K_p}$, $p \ge 2$ Then $\beta_M(G) = \left\lceil \frac{p}{2} \right\rceil$.

3. β_M -Excellency on some standard graphs

Definition 3.1. [3] Let G = (V, E) be a simple graph. Let $u \in V(G)$. The vertex u is said to be β_M -good if u is contained in a β_M -set of G. The vertex u is said to be β_M -bad if there exists no β_M -set of G containing u. A graph G is said to be β_M -excellent if every vertex of G is β_M -good.

Example 3.2. In the following graphs G_1 and G_2 ,

Figure 1:

The vertices v_1 , v_6 , v_7 , v_8 and v_9 are β_M -bad vertices in G_1 . \therefore G_1 is not β_M -excellent.

All vertices are β_M -good vertices in G_2 . Therefore, G_2 is β_M -excellent.

Results 3.3. Some standard β_{M} -excellent graphs

- 1. $K_p, p \ge 2$ is β_M -excellent.
- 2. $C_p, p \ge 3$ is β_M -excellent.
- 3. $K_{m,n}$ is β_M -excellent if m = n.
- 4. $\overline{K_{p}}$ is a β_{M} -excellent graph.
- 5. The tri-partite graph $K_{m,n,r}$ is β_M -excellent if m=n=r otherwise not β_M -excellent.
- 6. Let $G = C_n \square C_m$, $m \ge 3$. Then the Torus is β_M -excellent.

Results 3.4. Some examples for not β_{M} -excellent graphs

- 1. $K_{1,p-1}, p \ge 4$ is not β_M -excellent.
- 2. Let $G = P_n \Box P_m$, $n, m \ge 2$. Then the Grid graph is not β_M -excellent.
- 3. The Wounded spider and a binary tree are not β_M -excellent.
- 4. The Caterpillar is not β_M -excellent.
- 5. $K_{m,n}$, m < n is not β_M -excellent.

6. If
$$G = D_{rs}$$
, $r, s \ge 1$, then G is not β_M -excellent.

Theorem 3.5. [4] Let G be a cycle of p vertices, $p \ge 3$. Then $\beta_M(G) = \left| \frac{p}{6} \right|$.

Theorem 3.6. If $G = C_p$, $p \ge 3$, then G is β_M -excellent.

Proof: When p = 3, 4, 5, 6. Since $\beta_M(G) = \left\lceil \frac{p}{6} \right\rceil$, every single vertex is a β_M -set and all vertices are β_M -good. Then G is β_M -excellent.

Case (i): When p = (n+6), $n = 1, 2, ..., 6 \Rightarrow p = 7, 8, 9, 10, 11, 12$. Since

 $\beta_{M}(G) = \left\lceil \frac{p}{6} \right\rceil, \ \beta_{M} \text{-sets are } \left\{ v_{i}, v_{i+3 \pmod{p}} ; i=1, ..., p \right\}. \text{ All vertices of } G \text{ belong to any one of the } \beta_{M} \text{-sets of } G \therefore G \text{ is } \beta_{M} \text{-excellent.}$ Case (ii): When $p = (n+6), n=7, 8, ..., 12 \Rightarrow p=13, 14, 15, 16, 17, 18.$ Since $\beta_{M}(G) = \left\lceil \frac{p}{6} \right\rceil = 3, \beta_{M} \text{-sets are } \left\{ v_{i}, v_{i+3 \pmod{p}}, v_{i+6 \pmod{p}} ; i=1, 2, ..., p \right\}.$ Case (iii): When $p = (n+6), n=13, 14, ..., 18 \Rightarrow p=19, 20, 21, 22, 23, 24.$ Since $\beta_{M}(G) = \left\lceil \frac{p}{6} \right\rceil = 4, \beta_{M} \text{-sets are}$ $\left\{ v_{i}, v_{i+3 \pmod{p}}, v_{i+6 \pmod{p}}, v_{i+9 \pmod{p}} ; i=1, 2, ..., p \right\}.$

In general, when p = (n-5), (n-4), ..., n. Since β_M -sets of G consist of $\left| \frac{p}{6} \right|$ vertices, β_M -sets are $\left\{ v_i, v_{i+3 \pmod{p}}, v_{i+6 \pmod{p}}, ..., v_{i+3 r \pmod{p}} \right\}$; i = 1, 2, ..., p and $r = 0, 1, 2, ..., \left\lceil \frac{p}{6} \right\rceil - 1 \right\}$.

: All vertices in G are β_M -good. Hence $G = C_p$, $p \ge 3$ is β_M -excellent.

4. Results on β_M -excellent graphs

Proposition 4.1. If $G \neq K_p$ has a full degree vertex and all other vertices are of degree $< \left\lceil \frac{p}{2} \right\rceil - 1$, then G is not β_M -excellent.

Definition 4.2. [6] If the degree of a vertex $v \in V(G)$ satisfies the condition

 $d(v) \ge \left|\frac{p}{2}\right| - 1$, then the vertex v is called a majority dominating vertex of G.

Observation 4.3. If G has all vertices of majority dominating vertices then G is β_M -excellent.

Proposition 4.4. Suppose G has a majority dominating vertex, then G is not β_M - excellent.

Proof: Suppose G has a majority dominating vertex u and other vertices of degree $d(v_i) < \left\lceil \frac{p}{2} \right\rceil - 1$, i = 1, 2, ..., p - 1. Then u is a β_M -bad vertex and v_i , i = 1, 2, ..., p - 1 are β_M -good vertices. \therefore G is not β_M -excellent.

Theorem 4.5. Suppose G has $pC_{\lceil \frac{p}{2} \rceil} - \beta_M$ sets. Then G is β_M -excellent if and only if $G = \overline{K_n}$.

Proof: Assume that *G* is β_M -excellent \Rightarrow All vertices of *G* are β_M -good \Rightarrow All vertices of *V*(*G*) must belong to any one of the majority independent set of *G*. Since *G* has $pC_{\left[\frac{p}{2}\right]} - \beta_M$ sets, each majority independent set *D* contains $\left[\frac{p}{2}\right]$ vertices and also each

 β_M -set is a combination of $\left\lceil \frac{p}{2} \right\rceil$ vertices of V(G). Then, each β_M -set consists of only isolates of G and $|D| = \left\lceil \frac{p}{2} \right\rceil$. \therefore The graph is disconnected with isolates.

Suppose $G = K_2 \bigcup \overline{K_{p-2}}$, then *G* contains exactly one edge and others are isolates. In *G*, every maximal majority independent set *D* contains only isolates and the combination of $\left\lceil \frac{p}{2} \right\rceil$ vertices of $\overline{K_{p-2}}$ is also a β_M -set of *G*. Thus, we have obtained that there are $(p-2)C_{\left\lceil \frac{p}{2} \right\rceil}\beta_M$ -sets for the graph *G* and vertices of K_2 are β_M -bad vertices. It gives a contradiction. Hence, if *G* is β_M -excellent with $pC_{\left\lceil \frac{p}{2} \right\rceil} - \beta_M$ sets then $G = \overline{K_p}$. The converse is obvious.

Theorem 4.6. Let $G=P_p$, $p \ge 2$. Then (i) G is not β_M -excellent if p=5,6.

(ii) G is β_M -excellent if p < 13.

(iii) Let $p \ge 13$. If $p \equiv 1, 2, 5, 6 \pmod{8}$, G is β_M -excellent.

(iv) If $p \equiv 0,3,4,7 \pmod{8}$ and $p \ge 15$, G is not β_M -excellent.

Proposition 4.7. If a tree T with more than two pendants with $p \ge 4$, then T is not β_M -excellent.

Proof: Let *e* be the number of pendants in *T*. If *T* has p = 4 and e = 3 pendants then $T = K_{1,3}$. Suppose *T* has p = 5 and e = 4 pendants, then $T = K_{1,4}$ or *T* has an induced subgraph $K_{1,3}$. With the same argument, Suppose *T* has (p-1) vertices and $3 \le e \le (p-2)$ pendants, then $T = K_{1,p-2}$ or *T* has an induced subgraph of $K_{1,e}$, where $3 \le e \le (p-3)$. If *T* has *p* vertices and $3 \le e \le (p-1)$ pendants then $T = K_{1,p-1}$ or *T* has an induced subgraph of $K_{1,e}$, where $3 \le e \le (p-3)$. If *T* has *p* vertices and $3 \le e \le (p-2)$. By result (3.4.1), we found that every $K_{1,p-1}$, $p \ge 4$ is not β_M -excellent. Hence, the tree *T* with more than two pendants is not a β_M -excellent graph.

Corollary 4.8. If a tree T has a vertex v with $d(v) \ge 3$ then T is not β_M -excellent.

Definition 4.9. [8] For each $n \ge 3$ and 0 < k < n, P(n,k) denotes the generalized Petersen graph with vertex set $V(G) = \{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n\}$ and the edge set $E(G) = \{u_i u_{i+1 \pmod{n}}, u_i v_i, v_i v_{i+k \pmod{n}}\}, 1 \le i \le n$.

Theorem 4.10. Let G be a generalization of Petersen graph P(n,k) with $k=1, n\geq 3$.

Then
$$\beta_M(G) = \begin{cases} \left\lceil \frac{p-4}{4} \right\rceil & \text{if } n < 7 \\ \left\lceil \frac{p}{7} \right\rceil & \text{if } n = 7 \\ \left\lfloor \frac{p-3}{4} \right\rfloor & \text{if } n \ge 8 \end{cases}$$
 and also $G = P(n,1)$ is β_M -excellent.

Proof: Let G be a generalized Petersen graph P(n,1) with |V(G)|=2n=p vertices. Then G consists of two cycles C_1 and C_2 such that the cycle C_1 with vertex set $\{v_1, v_2, ..., v_n\}$ is nested by the another cycle C_2 with vertex set $\{u_1, u_2, ..., u_n\}$ and each u_i in C_2 is incident with exactly one v_i in C_1 and $d(v_i)=d(u_i)=3$, i=1,2,...,n.

Case (i): When n < 7. The maximum majority independent sets are $\{v_i, u_{i+1 \pmod{n}}\}$, i = 1, 2, ..., n. Then $\beta_M(G) = 2 = \left\lceil \frac{p-4}{4} \right\rceil$, if n < 7.

Case (ii): When n = 7. The maximum majority independent sets are

$$\{v_i, u_{i+2 \pmod{n}}, i=1,2,...,7\}$$
 $\therefore \beta_M(G)=2=\left(\frac{p}{7}\right)$.

Case (iii): When $n \ge 8$. Let $D = \{u_1, u_2, ..., u_i\}$, $t = \left\lfloor \frac{p-3}{4} \right\rfloor$ and $d(u_i, u_j) \ge 2$, $i \ne j$. Then $|N[D]| = \sum_{i=1}^{i} (d(u_i)+1) = 4t = 4 \left\lfloor \frac{p-3}{4} \right\rfloor \ge \left\lceil \frac{p}{2} \right\rceil$. Also, for every $v \in D$, $|pn[v,D]| \ge |N[D]| - \left\lceil \frac{p}{2} \right\rceil$. Hence D is a β_M -set of G. $\therefore \beta_M(G) \ge |D| = \left\lfloor \frac{p-3}{4} \right\rfloor$. Suppose $S = \{v_1, v_2, ..., v_r\}$, $r = \left\lfloor \frac{p-3}{4} \right\rfloor + 1$ with $d(v_i, v_j) \ge 2$, $i \ne j$. But $|pn[v,S]| \le |N[S]| - \left\lceil \frac{p}{2} \right\rceil$, for any $v \in S$. $\therefore S$ is not a β_M -set of G. Hence $\beta_M(G) < |S| = \left\lfloor \frac{p-3}{4} \right\rfloor + 1 \Longrightarrow \beta_M(G) \le \left\lfloor \frac{p-3}{4} \right\rfloor$. Therefore $\beta_M(G) = \left\lfloor \frac{p-3}{4} \right\rfloor$. The maximum majority independent sets are $\{v_i, u_{i+1(\text{mod }n)}, v_{i+2(\text{mod }n)}, u_{i+3(\text{mod }n)}, \dots\}$, $\{u_i, v_{i+1(\text{mod }n)}, u_{i+2(\text{mod }n)}, v_{i+3(\text{mod }n)}, \dots\}$, i=1, 2, ..., n. In all the above cases, all vertices of V(G) are β_M -good. Hence G = P(n, 1) is β_M -excellent.

Remark 4.11. We have determined that the most popular regular graphs such as complete graph, cycle, generalization of Petersen graph and $K_{m,n}$ if m=n are β_M excellent graphs. But all regular graphs are not β_M -excellent.

Example 4.12. This graph G_3 is a cubic graph. Here $\{v_1, v_2, v_5, v_7, v_9, v_{11}, v_{13}, v_{16}\}$ are β_M -good vertices and $\{v_3, v_4, v_6, v_8, v_{10}, v_{12}, v_{14}, v_{15}\}$ are β_M -bad vertices. Therefore G_3 is not β_M -excellent.

J.Joseline Manora and B.John

Theorem 4.13. Let *H* be a graph without pendants. Then $\overline{K_p} \Box H$ is β_M -excellent if and only if *H* is β_M -excellent.

Proof: Let *H* be a β_M -excellent graph. Let $\{u_1, u_2, ..., u_q\}$ be the vertices of *H*. The construction of $\overline{K_p} \square H$ is the graph of *H* in *p* times. Since all vertices of *H* are β_M -good, all vertices of the graph $\overline{K_p} \square H$ are β_M -good. Therefore, $\overline{K_p} \square H$ is β_M -excellent. Suppose *H* is not β_M -excellent then any vertex $u \in V(H)$ is not contained in any β_M -set of *H*. Suppose *S* is a β_M -set of $\overline{K_p} \square H$ containing (v, u) for some $v \in V(\overline{K_p})$, then *S* is of the form $V(\overline{K_p}) \times A$, where *A* is a β_M -set of *H*. Therefore $u \in A$, which is a contradiction.

Theorem 4.14. Let *H* be a graph without pendants. Then $K_n \Box H$ is β_M -excellent if and only if *H* is β_M -excellent.

Proposition 4.15. Let $G = P_2 \Box P_m$. Then $\beta_M(G) = \begin{cases} \left\lfloor \frac{p}{4} \right\rfloor & \text{if } p \le 10 \\ \left\lfloor \frac{p-4}{4} \right\rfloor & \text{if } p > 10 \end{cases}$

Theorem 4.16. If $G = P_2 \square P_m$, then the following results are true in G.

- (i) When m=2,3,5, G is β_M -excellent.
- (ii) When m=4, G is not β_M -excellent.
- (iii) When m > 6 and m is odd, G is not β_M -excellent.
- (iv) If *m* is even and $m \ge 6$, *G* is β_M -excellent.

Proof: Let $G = P_2 \square P_m$. Here $\Delta(G) = 3$ and $\delta(G) = 2$. Then $V(P_2) = (u_1, u_2)$ and $V(P_m) = \{v_1, v_2, \dots, v_m\}$.

Case (i): When m=2,3. Then every vertex in G is a β_M -set of $G \, \therefore \, G$ is β_M -excellent.

When m=5. The β_{M} -sets are $(u_{1}v_{1}, u_{2}v_{i+1}), (u_{2}v_{1}, u_{1}v_{i+1}), i=1,2,3,4$. Also, $(u_{1}v_{1}, u_{1}v_{i+2})$ and $(u_{2}v_{1}, u_{2}v_{i+2}), i=1,2,3$. Hence G is β_{M} -excellent.

Case (ii): When m=4. The β_M -sets are $(u_1v_1, u_2v_{i+2}), (u_2v_1, u_1v_{i+2}), i=1, 2$ and also $(u_1v_1, u_1v_4), (u_2v_1, u_2v_4)$. In $V(G), (u_1v_i), (u_2v_i), i=2, 3$ are β_M -bad vertices of $G \therefore G$ is not β_M -excellent.

Case (iii): When m > 6 and m is odd. Here, there are some β_M -bad vertices such as $(u_1 v_i), (u_2 v_i), i = 4, 5, ...$ The remaining vertices are β_M -good vertices. Hence G is not β_M -excellent.

Case (iv): $m \ge 6$ and *m* is even. When m = 6, i = 1, 2, 3, 4. Then the β_M -sets are $(u_1v_1, u_2v_{i+2}), (u_1v_1, u_1v_{i+2}), (u_2v_1, u_1v_{i+2}), (u_2v_1, u_2v_{i+2}).$

When m=8, i=1,2,3,4. The β_M -sets are $(u_1v_1, u_2v_{i+2}, u_2v_{i+4})$, $(u_1v_1, u_1v_{i+2}, u_1v_{i+4})$, $(u_2v_1, u_1v_{i+2}, u_1v_{i+4})$, $(u_2v_1, u_2v_{i+2}, u_2v_{i+4})$.

In general, m > 8, i=1,2,3,4. The β_M -sets are $(u_1v_1, u_2v_{i+2}, u_2v_{i+4}, ...)$, $(u_1v_1, u_1v_{i+2}, u_1v_{i+4}, ...)$, $(u_2v_1, u_1v_{i+2}, u_1v_{i+4}, ...)$,

 $(u_2 v_1, u_2 v_{i+2}, u_2 v_{i+4}, ...)$. Since every vertex of *G* belongs to any β_M -set of *G*. Hence *G* is β_M -excellent.

REFERENCES

- 1. G.H.Fricke, T.W.Haynes, S.T.Hadetniemi, S.M.Hedetniemi and R.C.Laskar, Excellent trees, *Bull. Inst. Combin. Appl.*, 34 (2002) 27-38.
- T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of domination in graphs, Marcel Dekkar, New York, 1998.
- 3. J.JoselineManora and B.John, $\beta_M(G)$ -excellent graphs, *Proceedings of the International Conference on Jamal Research Journal: An Interdisciplinary (Special Issue)*, (2015) 513-517.
- 4. J.Joseline Manora and B.John, Majority independence number of a graph, *International Journal of Mathematical Research*, 6(1) (2014) 65-74.
- 5. J.Joseline Manora and I.Paulrajjaya simman, Neighborhood sets and neighborhood polynomials of cycles, *Annals of Pure and Applied Mathematics*, 7(2) (2014) 45-51.

- 6. J.Joseline Manora and V.Swaminathan, Results on majority dominating set, *Science Magna*, 7(3) (2011) 53-58.
- 7. J.Joseline Manora and S.Veeramanikandan, The split majority domination number of a graph, *Annals of Pure and Applied Mathematics*, 9(1) (2015) 13-22.
- 8. A.P.Pushpalatha, G.Jothilakshmi, S.Suganthi and V.Swaminathan, β_o -excellent graphs, WSEAS Transaction on Mathematics, 10(2) (2011).
- 9. N.Sridharan and M.Yamuna, A note on excellent graphs, *ARS Combinatoria*, 78 (2006) 267-276.