Annals of Pure and Applied Mathematics Vol. 10, No. 2, 2015, 239-245 ISSN: 2279-087X (P), 2279-0888(online) Published on 16 November 2015 www.researchmathsci.org

On Neighborhood Transformation Graphs

V.R.Kulli

Department of Mathematics Gulbarga University, Gulbarga 585 106, India e-mail : vrkulli@gmail.com

Received 30 October 2015; accepted 11 November 2015

Abstract. Let G=(V, E) be a graph. Let *S* be the set of all open neighborhood sets of *G*. Let *x*, *y*, *z* be three variables each taking value + or –. The neighborhood transformation graph NG^{xyz} is the graph having $V \cup S$ as the vertex set and for any two vertices *u* and *v* in $V \cup S$, *u* and *v* are adjacent in NG^{xyz} if and only if one of the following conditions holds: (i) $u, v \in V$. x = + if $u, v \in N$ where *N* is an open neighborhood set of *G*. x = - if $u, v \notin N$ where *N* is an open neighborhood set of *G* (ii) $u, v \in S$. y = + if $u \cap v \neq \phi$. y = - if $u \cap v = \phi$. (iii) $u \in V$ and $v \in S$. z = + if $u \in v$. z = - if $u \notin v$. In this paper, we initiate a study of neighborhood transformation graphs. Also characterizations are given for graphs for which (i) NG^{+++} is connected (ii) $NG = NG^{+++}$ and (iii) $N_S(G) = NG^{+++}$.

Keywords: neighborhood graph, middle neighborhood graph, semientire neighborhood graph, entire neighborhood graph, transformation.

AMS Mathematics Subject Classification (2010): 03E72, 05C72

1. Introduction

All graphs considered here are finite, undirected without loops or multiple edges. Any undefined term in this paper may be found in [1].

Let G=(V, E) be a graph with |V| = p vertices and |E|=q edges. For any vertex $u \in V$, the open neighborhood of u is the set $N(u) = \{v \in V: uv \in E\}$. We call N(u) is the open neighborhood set of a vertex u of G. Let $V=\{u_1, u_2, ..., u_p\}$ and let $S = \{N(u_1), N(u_2), ..., N(u_p)\}$ be the set of all open neighborhood sets of G.

The neighborhood graph N(G) of a graph G=(V, E) is the graph with vertex set $V \cup S$ in which two vertices u and v are adjacent if $u \in V$ and v is an open neighborhood set containing u. This concept was introduced by Kulli in [2]. Many other graph valued functions in graph theory were studied, for example, in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and also graph valued functions in domination theory were studied, for example, in [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

The middle neighborhood graph $M_{nd}(G)$ of a graph *G* is the graph with the vertex set $V \cup S$ in which two vertices *u* and *v* are adjacent if $u, v \in S$ and $u \cap v \neq \phi$ or $u \in V$ and *v* is an open neighborhood set of *G* containing *u*. This concept was introduced by Kulli in [28].

V.R.Kulli

The semientire neighborhood graph $N_s(G)$ of G is the graph with the vertex set $V \cup S$ in which two vertices u and v are adjacent if $u, v \in N$, where N is an open neighborhood set of G or $u \in V$ and v is an open neighborhood set of G containing u. This concept was introduced by Kulli in [29].

The entire neighborhood graph $N_e(G)$ of G is the graph with vertex set $V \cup S$, in which two vertices u and v are adjacent if $u, v \in N$ where N is an open neighborhood set of G or $u, v \in S$ and $u \cap v \neq \phi$ or $u \in V$ and v is an open neighborhood set of G containing u. This concept was introduced by Kulli in [30].

Let \overline{G} be the complement of G.

Recently some transformation graphs were studied, for example, in [31, 32, 33, 34, 35, 36]. In this paper, we introduce neighborhood transformation graphs.

2. Neighborhood transformation graphs

Inspired by the definition of the entire neighborhood graph of a graph, we introduce the neighborhood transformation graphs.

Definition 1. Let G = (V, E) be a graph and let *S* be the set of all open neighborhood sets of *G*. Let *x*, *y*, *z* be three variables each taking value + and –. The neighborhood transformation graph NG^{xyz} is the graph having $V \cup S$ as the vertex set and for any two vertices *u* and *v* in $V \cup S$, *u* and *v* are adjacent if and only if one of the following conditions holds:

- i) $u, v \in V. x = +$ if $u, v \in N$ where N is an open neighborhood set of G. x = if $u, v \notin N$ where N is an open neighborhood set of G.
- ii) $u, v \in S. y = +$ if $u \cap v \neq \phi. y = -$ if $u \cap v = \phi.$
- iii) $u \in V$ and $v \in S$. z = + if $u \in v$. z = if $u \notin v$.

Using the above neighborhood transformation, we obtain eight distinct neighborhood transformation graphs: G^{+++} , G^{+-+} , G^{-++} , G^{-++} , G^{-+-} , G^{-+-} , G^{--+} , G^{----} .

Example 2. In Figure 1, a graph G, its neighborhood graphs NG^{+++} , NG^{---} , NG^{++-} and NG^{--+} are shown.

On Neighborhood Transformation Graphs

Figure 1:

Proposition 3. If *G* is a nontrivial connected graph, then

(1)	$NG^{+++} = NG^{}$	(2)	$NG^{++-} = NG^{+}$
(3)	$\overline{NG^{+-+}} = NG^{-+-}$	(4)	$\overline{NG^{+}} = NG^{-++}$

Proof: Each follows from the definitions of G^{+++} and \overline{G} .

3. The neighborhood transformation graph NG⁺⁺⁺

Among the neighborhood transformation graphs one is the entire neighborhood graph $N_e(G)$. It is easy to see that

Proposition 4. For any graph G, $N_e(G) = NG^{+++}$.

Remark 5. For any graph G, the neighborhood graph N(G) of G is a spanning subgraph of NG^{+++} .

Remark 6. For any graph G, the middle neighborhood graph $M_{nd}(G)$ of G is a spanning subgraph of NG^{+++} .

Remark 7. For any graph G, the semientire neighborhood graph $N_s(G)$ of G is a spanning subgraph of NG^{+++} .

We need the following result to prove our next result.

Theorem A [2]. Let G be a connected graph. The neighborhood graph N(G) of G is connected if and only if G contains an odd cycle.

Theorem 8. Let G be a connected graph. The neighborhood transformation graph NG^{+++} of G is connected if and only if G contains an odd cycle.

Proof: Let G be a connected graph. Suppose G contains an odd cycle. By Theorem A, N(G) is connected. Since, by Remarks 5, N(G) is a spanning subgraph of NG^{+++} , it implies that NG^{+++} is connected.

Conversely suppose NG^{+++} is connected. By Remark 5, N(G) is a spanning subgraph of NG^{+++} . Therefore N(G) is connected. Hence by Theorem A, a connected graph G contains an odd cycle.

V.R.Kulli

Corollary 9. For any nontrivial bipartite graph G, NG^{+++} is disconnected.

Observation 10. If G is a nontrivial connected bipartite graph G, then NG^{+++} has exactly two components.

Theorem 11. $NG^{+++} = 2pK_2$ if and only if $G = pK_2$, $p \ge 1$.

Proof: Suppose $G = pK_2$. Then each open neighborhood set of a vertex of *G* contains exactly one vertex. Thus the corresponding vertex of open neighborhood set is adjacent with exactly one vertex in NG^{+++} . Since *G* has 2p vertices, it implies that *G* has 2p open neighborhood sets. Thus NG^{+++} has 4p vertices and the degree of each vertex is one. Hence $NG^{+++} = 2pK_2$.

Conversely suppose $NG^{+++} = 2pK_2$. We now prove that $G = pK_2$. On the contrary, assume $G \neq pK_2$, Then there exists at least one open neighborhood set containing at least two vertices of *G*. Then NG^{+++} contains a subgraph P_3 . Hence $NG^{+++} \neq 2pK_2$, which is a contradiction. Thus $G = pK_2$.

Theorem 11. $NG^{+++} = 2K_p$ if and only if $G = K_{1, p-1}, p \ge 2$ or $C_p, p = 4$.

Proof: Let $G = K_{1,p-1}$, $p \ge 2$. Let $V(G) = \{v, v_1, v_2, \dots, v_{p-1}\}$. Let deg v = p - 1 and deg $v_i = 1, 1 \le i \le p-1$. Then $N(v) = \{v_1, v_2, \dots, v_{p-1}\}$, $N(v_i) = \{v\}$, $1\le i\le p-1$. Therefore $V(NG^{+++}) = \{v, v_1, v_2, \dots, v_{p-1}, N(v), N(v_1) \ N(v_2), \dots, N(V_{p-1})\}$. By Corollary 9, NG^{+++} is disconnected. Since $N(v) = \{v_1, v_2, \dots, v_{p-1}\}$, it implies that every pair of vertices of v_1 , v_2, \dots, v_{p-1} are adjacent in NG^{+++} and the vertex N(v) is adjacent with every vertex v_i , $1 \le i \le p-1$ in NG^{+++} . This produces K_p in NG^{+++} . Since $N(v_1) \cap N(v_2), \dots, N(v_{p-1})$ are adjacent in NG^{+++} and the vertices of $N(v_1), N(v_2), \dots, N(v_{p-1})$ are adjacent in NG^{+++} and the vertices $N(v_1), N(v_2), \dots, N(v_{p-1})$ in NG^{+++} . This produces K_p in NG^{+++} . Thus the resulting graph is $K_p \cup K_p$. Hence $NG^{+++} = 2K_p$.

Let $G = C_4$. Then it is easy to see that $NG^{+++} = 2K_4$.

Conversely suppose $NG^{+++} = 2K_p$. We prove that *G* is either $K_{1, p-1}$, $p \ge 2$ or C_p , p = 4. Since NG^{+++} is disconnected, it implies by Theorem 8, that *G* has no odd cycles. We consider the following two cases.

Case 1: Suppose *G* has even cycles and $G \neq C_4$. Then each component of NG^{+++} is not K_p , which is a contradiction. This proves that $G = C_4$.

Case 2. Suppose *G* is a tree. We now prove that $G = K_{1, p-1}$, $p \ge 2$. On the contrary, *G* is not a star. Then $\Delta(G) . Therefore the open neighborhood set of a vertex of$ *G*contains at most <math>p - 2 vertices. Then in each component of NG^{+++} , there exists a vertex whose degree is less than p - 1. Thus NG^{+++} does not contain K_p as a component, a contradiction. Thus $G = K_{1, p-1}$, $p \ge 2$.

Remark 12. If $G = K_{1,3}$, then $NG^{+++} = 2K_4$. Also if $G = C_4$, then $NG^{+++} = 2K_4$. Clearly $NK_{1,3}^{+++} = NC_4^{+++}$ but $K_{1,3} \neq C_4$.

We characterize graphs *G* for which $NG^{+++} = N(G)$.

Theorem 13. For any graph *G* without isolated vertices,

 $N(G) \subseteq NG^{+++}.$ (1)

On Neighborhood Transformation Graphs

Furthermore, equality holds if and only if every open neighborhood set contains exactly one vertex.

Proof: By Remark 5, $N(G) \subseteq NG^{+++}$.

We now prove the second part.

Suppose $NG^{+++} = N(G)$. Assume the open neighborhood set of a vertex of *G* contains at least two vertices, say $v_1, v_2, ..., v_p, p \ge 2$. Then the corresponding vertices of $v_1, v_2, ..., v_p$ are not mutually adjacent in N(G), but they are mutually adjacent in NG^{+++} . Thus two or more vertices of *G* are not in the same open neighborhood set.

Conversely suppose every open neighborhood set of *G* contains exactly one vertex. Then every pair of open neighborhood sets of *G* is disjoint. Thus the corresponding vertices of open neighborhood sets in NG^{+++} are not adjacent. Hence $NG^{+++} \subseteq N(G)$ and since $N(G) \subseteq NG^{+++}$, it implies that $N(G) = NG^{+++}$.

We now characterize graphs *G* for which $NG^{+++} = N_s(G)$.

Theorem 14. For any graph *G* without isolated vertices,

$$N_{s}(G) \subset NG^{+++}$$
.

Furthermore, equality holds if and only if every pair of open neighborhood sets of vertices of G is disjoint.

Proof: By Remark 7, $N_s(G) \subseteq NG^{+++}$.

We now prove the second part.

Suppose $N_s(G) = NG^{+++}$. We prove that every pair of open neighborhood sets of vertices of *G* is disjoint. On the contrary, assume $N_1, N_2, ..., N_k, k \ge 2$ are open neighborhood sets of vertices of *G* such that $N_1 \cap N_2 \neq \phi$. Then the corresponding vertices of N_1 and N_2 are not adjacent in $N_s(G)$ and are adjacent in NG^{+++} . Thus $N_s(G) \neq NG^{+++}$, which is a contradiction. Hence every pair of open neighborhood sets of *G* is disjoint.

Conversely suppose every pair of open neighborhood sets of *G* is disjoint. Then two vertices corresponding to open neighborhood sets cannot be adjacent in NG^{+++} . Thus $NG^{+++} \subseteq N_s(G)$ and since $N_s(G) \subseteq NG^{+++}$, it implies that $N_s(G) = NG^{+++}$.

REFERENCES

- 1. V.R.Kulli, *College Graph Theory*, Vishwa International Publications, Gulbarga, India (2012).
- 2. V.R.Kulli, The neighborhood graph of a graph, *Intern. Journal of Fuzzy Mathematical Archive*, 8(2) (2015) 93-99.
- 3. V.R.Kulli, On the plick graph and the qlick graph of a graph, *Research Journal*, 1 (1988) 48-52.
- 4. V.R.Kulli, On line block graphs, *International Research Journal of Pure Algebra*, 5(4) (2015) 40-44.
- 5. V.R.Kulli, The block line forest of a graph, *Journal of Computer and Mathematical Sciences*, 6(4) (2015) 200-205.
- 6. V.R.Kulli, On block line graphs, middle line graphs and middle block graphs, *International Journal of Mathematical Archive*, 6(5) (2015) 80-86.
- 7. V.R.Kulli, On full graphs, *Journal of Computer and Mathematical Sciences*, 6(5) (2015) 261-267.

V.R.Kulli

- 8. V.R.Kulli, The semifull graph of a graph, *Annals of Pure and Applied Mathematics*, 10(1) (2015) 99-104.
- 9. V.R.Kulli, The middle blict graph of a graph, *International Research Journal of Pure Algebra*, 5(7) (2015) 111-117.
- 10. V.R.Kulli, On semifull line graphs and semifull block graphs, *Journal of Computer* and Mathematical Sciences, 6(7) (2015) 388-394.
- 11. V.R.Kulli, On full line graph and the full block graph of a graph, *International Journal of Mathemetical Archive*, 6(8) (2015) 91-95.
- 12. V.R.Kulli and D.G.Akka, On semientire graphs, *J Math. and Phy.Sci*.15, (1981) 585-589.
- 13. V.R.Kulli and B.Basavanagoud, On the quasivertex total graph of a graph, J. *Karnatak University Sci.*, 42, (1998) 1-7.
- 14. V.R.Kulli and M.S.Biradar, The point block graph of a graph, *Journal of Computer* and Mathematical Sciences, 5(5) (2014) 476-481.
- 15. V.R.Kulli and K.M.Niranjan, The semi-splitting block graph of a graph, *Journal of Scientific Research*, 2(2) (2010) 485-488.
- 16. V.R.Kulli, *The entire dominating graph*. In Advances in Domination Theory I, V.R.Kulli, ed., Vishwa International Publications, Gulbarga, India, (2012) 71-78.
- 17. V.R.Kulli, The middle edge dominating graph, *Journal of Computer and Mathematical Sciences*, 4(5) (2013) 372-375.
- 18. V.R.Kulli, *The edge dominating graph of a graph*. In Advances in Domination Theory I, V.R.Kulli, ed., Vishwa International Publications Gulbarga, India (2012) 127-131.
- 19. V.R.Kulli, The common minimal total dominating graph, J. Discrete Mathematical Sciences and Cryptography, 17 (2014) 49-54.
- 20. V.R.Kulli, The entire edge dominating graph, *Acta Ciencia Indica*, Vol.40 No.4, to appear.
- 21. V.R.Kulli, The total dominating graph, Annals of Pure and Applied Mathematics, 10(1) (2015) 123-128.
- 22. V.R.Kulli and R.R.Iyer, *The total minimal dominating graph*. In Advances in Domination Theory I, V.R.Kulli., ed., Vishwa International Publications, Gulbarga, India, (2012)121-126.
- 23. V.R.Kulli, B.Janakiram and K.M. Niranjan, The vertex minimal dominating graph, *Acta Ciencia Indica*, 28 (2002) 435-440.
- 24. V.R.Kulli, B.Janakiram and K.M.Niranjan, The dominating graph, *Graph Theory* Notes of New York, New York Academy of Sciences, 46, (2004) 5-8.
- 25. B.Basavanagoud, V.R.Kulli and V.V.Teli, Equitable total minimal dominating graph, *International Research Journal of Pure Algebra*, 3(10) (2013) 307-310.
- 26. B.Basavanagoud, V.R.Kulli and V.V. Teli, Semientire equitable dominating graphs, *International Journal of Mathematical Combinatorics*, 3 (2014) 49-54.
- 27. B.Basavanagoud, V.R.Kulli and V.V.Teli, Equitable dominating graph, *International J. of Math. Sci. and Engineering Applications*, 9(2) (2015)109-114.
- 28. V.R.Kulli, On middle neighborhood graphs, International Journal of Mathematics and its Applications, (2015).
- 29. V.R.Kulli, On semientire neighborhood graphs, preprint.
- 30. V.R.Kulli, The entire neighborhood graph of a graph, preprint.

On Neighborhood Transformation Graphs

- 31. V.R. Kulli, On entire dominating transformation graphs and fuzzy transformation graphs, *International Journal of Fuzzy Mathematical Archive*, 8(1) (2015) 43-49.
- 32. V.R.Kulli, Entire edge dominating transformation graphs, *Inter. Journal of Advanced Research in Computer Science and Technology*, 3(2), (2015) 104-106.
- 33. V.R.Kulli, Entire total dominating transformation graphs, *International Research Journal of Pure Algebra*, 5(5) (2015) 50-53.
- 34. V.R.Kulli, On qlick transformation graphs, *International Journal of Fuzzy Mathematical Archive*, 8(1) (2015) 29-35.
- 35. V.R.Kulli, On entire equitable dominating transformation graphs and fuzzy transformation graphs, *Journal of Computer and Mathematical Sciences*, 6(8) (2015) 449-454.
- 36. V.R.Kulli, Edge neighborhood transformation graphs, submitted.