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1. Introduction

The notion of a Semigraph is a new concept intreduby Sampatkumar [5],
generalizing the concept of a graph. Semigraphmbkes graph when drawn on a plane
and every concept/results in graph can be easitgrgézed yielding a rich variety of
corresponding results. Road networks, projectivengary, Steiner’s triple systems are
the some examples of semigraphs. Many authors3[9,20] have studied properties of
semigraphs.

Representation of any discrete structure in mafasm is important for the
applications in electrical network analysis, operatresearch and computer science.
Many authors [2,7,12,13] have studied the propei@ph, semigraph and fuzzy graph
by using their associated matrices. The authod¢fihed partial edge incidence matrix of
semigraph and author [2] defined the adjacencyirafrsemigraph. In this paper strong
circuit matrix and strong path matrix of semigrague defined. The results of circuit
matrix and path matrix of graph [4,6] are genesdliin this paper.

2. Preliminaries
Definition 2.1. [5] A semigraphG is an ordered paiV; X) whereV is a non-empty set,
whose elements are callgdrticesof G and a seX is a set oh - tuples callededgesof
G, of distinct vertices, for various>2, with the following conditions :
SG1: Any two edges have at most one element in common.
SG2: Two edgegu;; Uy ; . . . Wand(vy vy . . . ; V) are considered to be equal if
and only if

i) m=n and
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ii) eitheru =vioru=vyig fori=1,2,3,.n
Thus the edgéuy; uy; . . . . ) is the same as the ed@g; u,4; . . . U).
Let G = (V; X) be semigraph anll = (v¢; Vo, . . .; V.1, Vo) is an edge of G. Then
the vertices; andv, are called the end vertices, represented by thitk, the vertices,;

. ; Vn1 are called the middle vertices or m-vertices, espnted by small hollow
C|rcles A vertex in G which appears as end vertex of one edge and migdiex of the
other edge is known as the middle-cum-émg e)vertex represented by a small tangent
to the hollow circle of middle vertex.

Example 2.2. Let G = (V; X) be a semigraph (Figure 1) , whéfte (Vo; Vi, Va; V3, Vs ,V5;
Ve, V7; Vg) andX = ((Vo, V1, V2); (V1; Vs, Va); (Va; Vs); (Vs; Ve, V7); (V2y V7, Vg)) IN G, Wb, Vo,
Vi, Vs, Vg are end verticesizs andvg are middle verticesy; andv; are middle-cum-end
vertices.

Vi Vi Vi V7 Vg
L r L O ]
g g
Vg & vs

Figure 1. Semigraphc

Definition 2.3. [5] A subedgeof an edgde = (vi; Vo, . . . V) is ak-tupleE’ =(vi; ; Viz ; .
. W) wherel<il<i2z<. .<ik<norl<ik<ik+l)<:<il <n.

Definition 2.4. [5] A partial edgeof E = (vi; vo; .. . w)isa(-i+ 1)-tupleE'(v;; vj) =

(Vi; Vie1; - - . Y), where Xi<n.

Definition 2.5. [5] fs-edgds an edge which is either a full edge or a subedgdp-edge
is an edge which is either a full edge or a paetihgje.

Definition 2.6. [1] LetE = (vq; V2; .. . V) be an edge of a semigra@@h Two subedges
S=Mvp Vie; - . . y)wherel<jl<j2< ... <jlsnandS = (Vk Vie; . « - ¥m)
wherel<kl< . . . <km<nof E are said to beonsecutive subedg#sy = .

Two partial edge®; = (Vj; Vis1; Vs + - - V) @ndPy = (Vi Vier; - . . Vum) OFE
are said to be consecutive partial edgesif Vim

An edgeE = (vi; V2; .. . V) hasn -1 partial edges of cardinality two naméty =
(Vivo); Po = (V25 v3); . . Pri= (Vhg Vn) such thatP; andP;,; are consecutive partial

edgesfor=1;2;... n-2

The partial edg®; = (v; ; V1) is e-partial edge if botkk andvi,; are end vertices
and forms an edge. It is mm-partial edge if bgthndvi,; are middle vertices and me -
partial edge if one vertex is middle and othemid.e
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Definition 2.7. [5] A walkin a semigrapi® is an alternating sequence of vertices and fs-
edgesviEsv-E, . . . \.1EnVv, beginning and ending with vertices, such thatandyv; are
the end vertices of the fs-edggl <i <n.

A Vo - v, walk is atrail if any two fs-edges in it are disjoint. Note thata trail
vertices may be repeated.

A Vg - Vi pathis avg - v, trail in which all the vertices are distinct.

A cycleis a closed path.

A Vo - V, path is ans-path (or a strong path) if all its fs-edges are fp-exge
Otherwise, it is av-path(or a weak path). Similarly, we define an s-cyatel a w-cycle.

In Figure 1vg; Vo, Vi V4, Vs; Ve, V7 iS W-path,vg; Vi; Vs, Vi Vs, Ve, V7 iS s-pathyg; Vo;
Vi; Vs, Vs; Ve, V7; V2, Vo IS W-Cycle andry; Vs; Va; Vs; Ve, V7, Vo, Vy IS S-cycle.

Definition 2.8. [8,11,14] Galois Field of prime poweGF(2?) is the field of polynomials
of degree less thahoverGF(2) modulo(o? + a + 1) contains four elements 0; d; o® =

a + 1 wherea is a root of the polynomiat?+x+1 ( with coefficients inGF(2) ). The
addition and multiplication operation GF(2%) are as shown in the Table 1 and Table 2.

+ 0 1 o o’
0 0 1 a o
1 1 0 o a
a a o? 0 1
o’ o o 1 0

Table 1. Addition operation

X 0 1 o o’
0 0 0 0 0
1 0 1 o o’
o 0 o o’ 1
o’ 0 o’ 1 o

Table 2: Multiplication Operation

Definition 2.9. [7] The partial edge incidence matri® of a semigrapl® is a matrix of
ordernxm, wheren is number of vertices and is number of consecutive partial ed@es
of cardinality 2 of semigrap8, is defined as

by =1, ife— partial edge or me — partial e@®yes incident on end vertex

=a, if me — partial edg®; is incident on middle vertex
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=o®,  if mm — partial edgP, is incident on middle vertex
=0, otherwise

1
P1
2()
P,
a \_ 7
3@ —0 0—0 o)
Ps Py Ps Pe Py

Figure2: SemigraphG

Example 2.10. For the semigrap& (Figure 2), the partial edge incidence maB{G) is

100 0 0 0 0 1 1]
a a 00 0 0 00O
0110 0 0 000
00aa* 0 0 00O
B(G)= .
000a*a* 0 001
000 0 a*a*> 000
000 0 0 a*>a 00
000 0 0 0 1 1 0]

3. Main results
Now we define the strong circuit matrix of semidrap

Definition 3.1. The strong circuit matri = [c;; ] of a semigrapl® is a matrix of order
gxm , where g is number of strong circuit of semigragh and m is number of
consecutive partial edg&s of cardinality 2 of semigrap@, is defined as
G = 1, ifi" circuit include e-partial edge;
=g, ifi" circuit include mm-partial edd® ;
=a?  ifi" circuit include me-partial edd® ;

=0, otherwise
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The above definition is illustrated in Example 3.2
Example 3.2. For the semigrap® (Figure 2), the strong circuits are

Ci = (Py; Py P3; Py Pg) , C, = (Ps; Ps; P7; Pg; Pg) andCs = (Py; Py; Ps; Py; Ps; Pg; Py
Pg; Pg)

The corresponding strong circuit matrix is

a’> a* a* a 0 0 0 0 1
CG=0 0 0 0 a a a* 11
a’ a* a* a a a a* 1 0

Remark 3.3. In case of Strong circuit matrix,

* The number of nonzero entries in each row is etahe number of partial
edges of cardinality 2 in the corresponding circuit

» A column of all zero corresponds to a non circdge

* The permutation of any two columns in a strongutrenatrix corresponds to
relabeling of partial edges.

* The permutation of any two rows in a strong circoatrix corresponds to
relabeling of strong circuits.

The following theorem characterizes the stronguiinmatrix of a semigraph.

Theorem 3.4. Let C andB be, respectively, the strong circuit matrix and gartial edge
incidence matrix of semigraph (as per the definit®1 and the definition 2.9) whose
columns are arranged using the same order of padiges. Then the produBC’ or CB'
(with respect ta@sF(2) ) is the matrix containing elements zeraxor

Proof: Consider a vertex and a strong circui;in the semigrapks. Then eithew is inC;
orvis notinC;. If vis not inC; , there is no partial edge of cardinality twoGnthat is
incident onv. On the other hand i is in C;, the number of those partial edges in the
circuit C; that are incident omis exactly two.

Consideri™ row in B andj™ row in C. Since partial edges are arranged in the same
order, the nonzero entries in the correspondingipns occur only if the particular partial
edge is incident on th& vertex and is also in th8 circuit.

If the i™ vertex is not in thg™ circuit, then the dot product of the two rows é&sa If
thei™ vertex is in thg™ circuit, then the following ten cases arise.

Case (i) Leti™ vertexv is an end vertex and let two partial edges indidenv in
circuit C; are both e-partial edges then the correspondiegasit in the matriBC' is
(1.1) + (1.1) = 1 + 1 = 0 with respect@¥(2%).

Case (i) Leti™ vertexv is an end vertex and let two partial edges indidenv in
circuit C; are both me-partial edges then the correspondemesit in the matriBC' is
(1.0%) + (1.0°) = o® + o” = 0 with respect tGF(2%).

Case (iii) Leti" vertexv is an end vertex and let the out of the two pasgiges
incident onv in circuit C; one be, e-partial edge and other one be, me-padig then the
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correzsponding element in the matBC' is (1.1) + (1.a®) = 1 +o®= a with respect to
GF(29).

Case (iv) Let"™ vertexv is the middle vertex and two partial edges incidemv in
circuit C, are both me-partial edges then the correspondemgent in the matrixBC' is
(0. @) + (0.0?) = o®*+ o= 1 + 1 = 0 with respect BBF(2?).

Case (V) Lei™ vertexv is the middle vertex and two partial edges incidemv in
circuit C; are me-partial edge and mm-partial edge ( reptedeby o) then the
corresponding element in the mat®C' is (0. o) + (@.a) = o>+ a®= 1 + 1 = 0 with
respect taGF(2?).

Case (vi) Leti" vertexv is the middle vertex and two partial edges incidemv in
circuit C; are both mm -partial edges then the correspongliement in the matriBC' is
(02.0) + (02.a) = a®+ o= 0 with respect t&F(29).

Case (vii) Let™ vertex v is the middle-cum-end vertex and twoiphedges incident
onv in circuit C; are me-partial edge and e-partial edge then thresywonding element in
the matrixBC' is (0. ¢ + (1.1) =+ 1 = 1 + 1 = 0 with respect ®F(2?).

Case (viii) Leti™ vertexv is the middle-cum-end vertex and two partial edgeislent
onv in circuit C; are both me-partial edges then the correspondargest in the matrix
BC'is (a. o) + (1.0%) = 1 +0? = a with respect t&aF(2?).

Case (ix) Leti™ vertexv is the middle-cum-end vertex and two partial edgelent
onv in circuit C; are mm-partial edge and me-partial edge thendhesponding element
in the matrixBC" is (@2.0) +(1.0?) = o*+ a® = 1+0” = a with respect t@GF(2?).

Case (x) Lei™ vertexv is the middle-cum-end vertex and two partial edgeilent
onv in circuit C; are mm-partial edge and e-partial edge then thegmonding element in
the matrixBC' is (0®.a) + (1.1) =+ 1 = 1 + 1 = 0 with respect BF(2?).

Therefore, in any case element in the ma® is 0 ora.

Similarly, it can be proved faZB'.

Hence the theorem.

Example 3.5. For the semigrapls (Figure 2), let the partial edge incidence maB{x)
and strong circuit matri€€(G) are as in Example 2.10 and Example 3.2 therciesr that

a 0 «a

O O O O O o
o O O O
O O O O o o

0 a «a

Corollary 3.6. Let C andB be, respectively, the strong circuit matrix ane gartial edge
incidence matrix of semigrapB whose columns are arranged using the same order of
partial edges. If semigraph is graph or semigraph with all edges having caldin> 3

and does not contain middle-cum-end vertex ther;pmeluctBCT or CB" = O, null matrix

(with respect t@GF(2) ).
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Now we define the Strong Path Matrix of a Semigraph

Definition 3.7. A strong path matrix is defined for a specific rpaf vertices of a
semigraph, sayX, y), and is denoted bj( X, y ) The rows inP corresponds to different
paths between verticeasandy, and the columns correspond to the partial edf& Path
matrix is defined aB( x, y )=[ p; ] , where
p; = 1, ifi" path include e-partial edd;

=q, if it path include mm-partial edde ;

=¢? ifi" path include me-partial edé®;

=0, otherwise

Example 3.8. Consider the all different strong paths betweenioss 1 and 6 of
semigraphG in Figure 2L, = (Pg; Pg), Ly = (Ps; P7; Pe) and L = (P1; Pa; P3; Pgs; Ps). The
corresponding 3x9 path matrix is

O 0 O O a 0O O 01
P=l0 O O O O a a*> 1 O
a’> a> a> a a 0 0 0 O

Remark 3.9. In case of strong path matrix,

* A column of all zeros corresponds to an edge tlwsdnot lie on any path
between x and y.

» A column of all nonzero entries corresponds to dgeethat lies in every path
between x and y.

* There is no row with all zeros.

The following theorem characterizes the strong padlkrix of a semigraph.

Theorem 3.10. If the partial edges of a connected semigraphaar@nged in the same
order for columns of partial edge incidence maBiand the strong path matri(x, y),
then the producBP' (x; y) = M, (with respect tdGF(2°) ) where the matritM has two
rows ofx andy, are nonzero and the restrof 2 rows are zero.

Proof: Proof is similar to Theorem 3.4.
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