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1. Introduction 
The notion of a Semigraph is a new concept introduced by Sampatkumar [5], 
generalizing the concept of a graph. Semigraph resembles graph when drawn on a plane 
and every concept/results in graph can be easily generalized yielding a rich variety of 
corresponding results. Road networks, projective geometry, Steiner’s triple systems are 
the some examples of semigraphs. Many authors [1,2,3,9,10] have studied properties of 
semigraphs. 

Representation of any discrete structure in matrix form is important for the 
applications in electrical network analysis, operation research and computer science. 
Many authors [2,7,12,13] have studied the properties graph, semigraph and fuzzy graph 
by using their associated matrices. The author [7] defined partial edge incidence matrix of 
semigraph and author [2] defined the adjacency matrix of semigraph. In this paper strong 
circuit matrix and strong path matrix of semigraph are defined. The results of circuit 
matrix and path matrix of graph [4,6] are generalized in this paper. 
 
2. Preliminaries 
Definition 2.1. [5]  A semigraph G is an ordered pair (V; X) where V is a non-empty set, 
whose elements are called vertices of G and a set X is a set of n - tuples, called edges of 
G, of distinct vertices, for various n≥2, with the following conditions : 
SG1: Any two edges have at most one element in common. 
SG2: Two edges (u1; u2 ;  .  .  .  un) and (v1; v2;  .  .  .  ;  vm) are considered to be equal if  
and only if 

 i)  m = n   and  
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 ii) either ui = vi or ui = vn-i+1  for i = 1, 2, 3, . . n 
Thus the edge (u1; u2; .  .  .  .  un) is the same as the edge (un; un-1; .  .  .  u1). 
Let G = (V; X) be semigraph and E = (v1; v2;  .  .  . ; vn-1; vn) is an edge of G. Then 

the vertices v1 and vn are called the end vertices, represented by thick dots, the vertices v2;  
. . .  . ;  vn-1 are called the middle vertices or m-vertices, represented by small hollow 
circles. A vertex v in G which appears as end vertex of one edge and middle vertex of the 
other edge is known as the middle-cum-end (m, e) vertex represented by a small tangent 
to the hollow circle of middle vertex. 
 
Example 2.2. Let G = (V; X) be a semigraph (Figure 1) , where V = (v0; v1; v2; v3; v4 ,v5; 
v6; v7; v8) and X = ((v0; v1; v2); (v1; v3; v4); (v4; v5); (v5; v6; v7); (v2; v7; v8)) In G, v0; v2; 
v4; v5; v8 are end vertices, v3 and v6 are middle vertices, v1 and v7 are middle-cum-end 
vertices. 

 
                                                   Figure 1: Semigraph G 
 
Definition 2.3. [5] A subedge of an edge E = (v1; v2; . .  .  vn) is a k-tuple E’ =(v i1 ; vi2 ; .  
.   .  vik ) where 1 ≤ i1 < i2 < .  . < ik ≤ n or 1 ≤ ik < i(k+1) < :: < il ≤ n. 
 
Definition 2.4. [5] A partial edge of E = (v1; v2;  . .  .  vn) is a (j - i + 1)-tuple E’(vi; vj) = 
(vi; vi+1; . .  .  vj ), where 1≤ i ≤ n. 
 
Definition 2.5. [5] fs-edge is an edge which is either a full edge or a subedge and fp-edge 
is an edge which is either a full edge or a partial edge. 
 
Definition 2.6. [1] Let E = (v1; v2;  . .  .  vn) be an edge of a semigraph G. Two subedges 
Sj = (vj1; vj2 ;  .  .  . vjl ) where 1 ≤ j1 < j2 <  .  .  .  < jl ≤ n and Sk = (vk1; vk2 ; .  .  . ; vkm ) 
where 1< k1 <  .  .  . < km ≤ n of E are said to be consecutive subedges if vjl = vk1.  

Two partial edges Pj = (vj ; vj+1; vj+2 ;   .  .  . vj+l ) and Pk = (vk ; vk+1;  .  .  . vk+m ) of E 
are said to be consecutive partial edges if vj+l  = vk+m 

An edge E = (v1; v2;  . .  .  vn) has n - 1 partial edges of cardinality two namely P1 = 
(v1;v2); P2 = (v2 ; v3);  .  .  Pn-1 = (vn-1; vn) such that Pi and Pi+1 are consecutive partial 
edges for i = 1; 2; . .  .  n - 2. 

The partial edge P1 = (vi  ; vi+1) is e-partial edge if both vi and vi+1 are end vertices 
and forms an edge. It is mm-partial edge if both vi   and vi+1 are middle vertices and me -
partial edge if one vertex is middle and other is end. 
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Definition 2.7. [5] A walk in a semigraph G is an alternating sequence of vertices and fs-
edges v0E1v2E2  . .  . vn-1Envn beginning and ending with vertices, such that vi-1 and vi are 
the end vertices of the fs-edge Ei, 1 ≤ i ≤ n. 

A v0 - vn walk is a trail  if any two fs-edges in it are disjoint. Note that in a trail 
vertices may be repeated. 

A v0 - vn path is a v0 - vn trail in which all the vertices are distinct. 
A cycle is a closed path. 
A v0 - vn path is an s-path (or a strong path) if all its fs-edges are fp-edges. 

Otherwise, it is a w-path (or a weak path). Similarly, we define an s-cycle and a w-cycle. 
In Figure 1, v0; v2; v1; v4; v5; v6; v7 is w-path, v0; v1; v3; v4; v5; v6; v7 is s-path, v0; v2; 

v1; v4; v5; v6; v7; v2; v0 is w-cycle and v1; v3; v4; v5; v6; v7; v2; v1 is s-cycle. 
 

Definition 2.8. [8,11,14] Galois Field of prime power GF(22) is the field of polynomials 
of degree less than 2 over GF(2) modulo (α2 + α + 1) contains four elements 0; 1; α; α2 = 
α + 1 where α is a root of the polynomial x2+x+1 ( with coefficients in GF(2) ). The 
addition and multiplication operation on GF(22) are as shown in the Table 1 and Table 2. 

 
+ 0 1 α α

2 

0 0 1 α α
2 

1 1 0 α
2 α 

α α α
2 0 1 

α
2 α

2 α 1 0 

Table 1: Addition operation 
 

× 0 1 α α
2 

0 0 0 0 0 

1 0 1 α α
2 

α 0 α α
2 1 

α
2 0 α

2 1 α 

Table 2:  Multiplication Operation 
 

Definition 2.9. [7] The partial edge incidence matrix B of a semigraph G is a matrix of 
order n×m, where n is number of vertices and m is number of consecutive partial edges Pi 
of cardinality 2 of semigraph G, is defined as 

bij  = 1,    if e – partial edge or me – partial edge Pj is  incident on end vertex vi 

   = α,      if me – partial edge  Pj is incident on middle vertex vi 
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     = α2,     if mm – partial edge Pj  is incident on middle vertex vi 

     = 0,      otherwise  

  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure2: Semigraph G 

 
Example 2.10. For the semigraph G (Figure 2), the partial edge incidence matrix B(G) is 
 

B(G)= 

































011000000

0000000

0000000

1000000

0000000

000000110

0000000

110000001

2

22

22

2

αα
αα

αα
αα

αα

 

 
3. Main results 
Now we define the strong circuit matrix of semigraph. 
 
Definition 3.1. The strong circuit matrix C = [cij ]  of a semigraph G is a matrix of order 
q×m , where q is number of strong circuit of semigraph G and m is number of 
consecutive partial edges Pi of cardinality 2 of semigraph G, is defined as  

cij  =  1,    if i th circuit include e-partial edge Pj ; 

   = α,      if i th circuit include mm-partial edge Pj ; 

     = α2,     if i th circuit include me-partial edge Pj ; 

     = 0,      otherwise  

  

P9 

1 

2 

3 

 
4 5 7

1 

8
2 

P1 

P4 P3 

P2 

 P6 P7 

P8 

6 

P5 
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 The above definition is illustrated in Example 3.2 

Example 3.2. For the semigraph G (Figure 2), the strong circuits are  

C1 = (P1; P2; P3; P4; P9) , C2 = (P5; P6; P7; P8; P9) and C3 = (P1; P2; P3; P4; P5; P6; P7; 
P8; P9) 

The corresponding strong circuit matrix is 

C(G) =

















01

110000

10000

2222

2

222

ααααααα
ααα

αααα
 

 
Remark 3.3. In case of Strong circuit matrix, 

• The number of nonzero entries in each row is equal to the number of partial 
edges of cardinality 2 in the corresponding circuit. 

• A column of all zero corresponds to a non circuit edge. 
• The permutation of any two columns in a strong circuit matrix corresponds to 

relabeling of partial edges. 
• The permutation of any two rows in a strong circuit matrix corresponds to 

relabeling of strong circuits. 
 
The following theorem characterizes the strong circuit matrix of a semigraph. 

Theorem 3.4. Let C and B be, respectively, the strong circuit matrix and the partial edge 
incidence matrix of semigraph (as per the definition 3.1 and the definition 2.9) whose 
columns are arranged using the same order of partial edges. Then the product BCT or CBT 
(with respect to GF(22) ) is the matrix containing elements zero or α. 

Proof: Consider a vertex v and a strong circuit Ci in the semigraph G. Then either v is in Ci 

or v is not in Ci . If v is not in Ci , there is no partial edge of cardinality two in Ci that is 
incident on v. On the other hand if v is in Ci, the number of those partial edges in the 
circuit Ci  that are incident on v is exactly two. 

Consider i th row in B and j th row in C. Since partial edges are arranged in the same 
order, the nonzero entries in the corresponding positions occur only if the particular partial 
edge is incident on the i th vertex and is also in the jth circuit. 

If the i th vertex is not in the jth circuit, then the dot product of the two rows is zero. If 
the i th vertex is in the j th circuit, then the following ten cases arise. 

Case (i) Let i th vertex v is an end vertex and let two partial edges incident on v in 
circuit Ci  are both e-partial edges then the corresponding element in the matrix BCT is 
(1.1) + (1.1) = 1 + 1 = 0 with respect to GF(22). 

Case (ii) Let i th vertex v is an end vertex and let two partial edges incident on v in 
circuit Ci  are both me-partial edges then the corresponding element in the matrix BCT is 
(1.α2) + (1. α2) = α2 + α2 = 0 with respect to GF(22). 

Case (iii) Let i th vertex v is an end vertex and let the out of the two partial edges 
incident on v in circuit Ci one be, e-partial edge and other one be, me-partial edge then the 
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corresponding element in the matrix BCT is (1.1) + (1. α2) = 1 + α2 = α with respect to 
GF(22). 

Case (iv) Let i th vertex v is the middle vertex and two partial edges incident on v in 
circuit Ci are both me-partial edges then the corresponding element in the matrix BCT is 
(α. α2) + (α.α2) = α3+ α3= 1 + 1 = 0 with respect to GF(22). 

Case (v) Let i th vertex v is the middle vertex and two partial edges incident on v in 
circuit Ci are me-partial edge and mm-partial edge ( represented by α) then the 
corresponding element in the matrix BCT is (α. α2) + (α2.α) = α3+ α3= 1 + 1 = 0 with 
respect to GF(22). 

Case (vi) Let ith vertex v is the middle vertex and two partial edges incident on v in 
circuit Ci are both mm -partial edges then the corresponding element in the matrix BCT is 
(α2.α) + (α2.α) = α3+ α3= 0 with respect to GF(22). 

Case (vii) Let i th vertex v is the middle-cum-end vertex and two partial edges incident 
on v in circuit Ci are me-partial edge and e-partial edge then the corresponding element in 
the matrix BCT is (α. α2) + (1.1) = α3+ 1 = 1 + 1 = 0 with respect to GF(22). 

Case (viii) Let i th vertex v is the middle-cum-end vertex and two partial edges incident 
on v in circuit Ci are both me-partial edges then the corresponding element in the matrix 
BCT is (α. α2) + (1. α2) = 1 + α2 = α with respect to GF(22). 

Case (ix) Let i th vertex v is the middle-cum-end vertex and two partial edges incident 
on v in circuit Ci are mm-partial edge and me-partial edge then the corresponding element 
in the matrix BCT is (α2.α) +(1. α2) = α3+ α2 = 1+ α2 = α with respect to GF(22). 

Case (x) Let i th vertex v is the middle-cum-end vertex and two partial edges incident 
on v in circuit Ci are mm-partial edge and e-partial edge then the corresponding element in 
the matrix BCT is (α2.α) + (1.1) = α3+ 1 = 1 + 1 = 0 with respect to GF(22). 

Therefore, in any case element in the matrix BCT is 0 or α. 
Similarly, it can be proved for CBT. 
Hence the theorem. 

Example 3.5. For the semigraph G (Figure 2), let the partial edge incidence matrix B(G) 
and strong circuit matrix C(G) are as in Example 2.10 and Example 3.2 then it is clear that 

BCT=

































αα

αα

0

000

000

000

000

000

000

0

 

Corollary 3.6. Let C and B be, respectively, the strong circuit matrix and the partial edge 
incidence matrix of semigraph G whose columns are arranged using the same order of 
partial edges. If semigraph G is graph or semigraph with all edges having cardinality ≥ 3 
and does not contain middle-cum-end vertex then the product BCT or CBT = O, null matrix 
(with respect to GF(22) ). 
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Now we define the Strong Path Matrix of a Semigraph. 

Definition 3.7. A strong path matrix is defined for a specific pair of vertices of a 
semigraph, say ( x, y ), and is denoted by P( x, y ). The rows in P corresponds to different 
paths between vertices x and y, and the columns correspond to the partial edges of G. Path 
matrix is defined as P( x, y ) =[ pij ] , where 

pij  =  1,    if i th path include e-partial edge Pj ; 

   = α,      if i th path include mm-partial edge Pj ; 

     = α2,     if i th path include me-partial edge Pj ; 

     = 0,      otherwise  

Example 3.8. Consider the all different strong paths between vertices 1 and 6 of 
semigraph G in Figure 2, L1 = (P9; P6), L2 = (P8; P7; P6) and L3 = (P1; P2; P3; P4; P5). The 
corresponding 3×9 path matrix is 

P = 

















0000

0100000

10000000

222

2

ααααα
αα

α
 

Remark 3.9. In case of strong path matrix, 

• A column of all zeros corresponds to an edge that does not lie on any path 
between x and y. 

• A column of all nonzero entries corresponds to an edge that lies in every path 
between x and y. 

• There is no row with all zeros. 

The following theorem characterizes the strong path matrix of a semigraph. 

Theorem 3.10. If the partial edges of a connected semigraph are arranged in the same 
order for columns of partial edge incidence matrix B and the strong path matrix P(x, y), 
then the product BPT (x; y) = M, (with respect to GF(22) ) where the matrix M has two 
rows of x and y, are nonzero and the rest of n - 2 rows are zero. 

Proof: Proof is similar to Theorem 3.4. 
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