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Abstract. The aim of this communication is to introduce the concepts of �� −	generelized 
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functions in bitopological spaces and investigate some of their properties. Furthermore by 
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1. Introduction     
In 1987, Banerjee [2] introduced the notion δ – open sets in bitopological space. 
Khedr[9], introduced and study more about �� −	δ open sets. Using �� −	δ open, Edward 
Samuel and Balan introduced one kind of �� −	δ semi open sets in bitopological space and 
investigated some of their properties in [6]. In 1990, Arya and Nour [1] defined 
generalized semi closed sets. Generalized closed and generalized semi closed sets are 
independent notions. In this paper, we introduce the notion of �� − Generalized δ - semi 
closed sets in bitopological spaces. Moreover the fundamental properties of this new 
concept will be studied. As application of �� − Generalized δ - semi closed sets, we 
introduce and study some notions like �� − �δs closure, �� − �δs interior and ��– 	
��,  
�� − �δs		
/� spaces. 
 
2. Preliminaries    
Throughout the present paper, (�, �
, ��	) (or briefly X) always mean a bitopological 
space on which no separation axioms are assumed unless explicitly stated.  Also �, �	 =
1, 2 and �	 ≠ 	�. Let A be a subset of (�, �
, ��	).  By � − ���(�) and � − ��(�), we mean 
respectively the interior and the closure of A in the topological space (�, ��) for �	 = 	1, 2. 
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A subset A of X is called �� − semi open[8,9] (respectively �� −   open, �� − regular 
open) if � ⊆ � − "�[� − 	���(�)] (respectively � ⊆ � − 	���[� − "�[� − 	���(�)]], � ⊆ � −
	���[� − "�(�)]). A point x of X is called an �� − 	% − cluster point of A if � − ���(� −
��(&)) 	∩ 	�	 ≠ ∅ for every �� −	open set U containing x. The set of all �� − 	% − cluster 
points of A is called the		�� − 	% −  closure of A and is denoted by �� − %��(�).      
 
Definition 2.1. [9] A subset A is said to be �� − 	% closed if �� − %��(�) = �. The 
complement of an �� − 	% closed set is said to be �� − 	% open. The set of all �� − 	% open 
(respectively �� − 	% closed) sets of X will be denoted by �� − 	%O(X)( respectively 
�� − 	%C(X)). 
 
Definition 2.2. [6] A subset A of a bitopological space (�, �
, ��) is called �� − 	% semi 
open if there exists an �� − 	% open set U such that & ⊆ � ⊆ � − ��(&). Complement of 
�� − 	% semi open is called �� − 	% semi closed. The family of  �� − 	% semi open 
(respectively �� − 	% semi closed) set of X is denoted by �� − 	%)*(�) ( respectively 
�� − 	%)�(�)). 

Recall that, arbitrary union of "�(��), �	 ∈ 	� is contained in closure of arbitrary union 
of subsets �� in any topological space. The equality holds if the collection {��, �	 ∈ 	�} is 
locally finite.   
 
3. ./	– Generalized 0 - semi closed sets  
Definition 3.1. A subset A of a bitopological space (�, �
, ��) is called �� −	generalized δ 
- semi closed (��– �%1	closed) if �� − 1"�(�) ⊆ & whenever �	 ⊆ & and U is �� − δ open 
in X.   
  
Example 3.1. Let � = {2, 3, ", 4}, 	�
 = 5∅, �, {2}, {2, 3}, {2, ", 4}6, 	�� = {∅,�, {2}, {4}, 
{2, 4}}. Then 12	– 	�δs closed sets and 21	– 	�δs closed sets are P(X).  
. 
Theorem 3.1. Let (�, �
, ��) be a bitopological space and � ⊂ �. Then the following are 
true, 
(a) If A is �8 −  closed set, then A is ��– �%1 closed.  

(b) If A is �� − semi closed set, then A is ��– �%1 closed.   
Proof. (a) Suppose that A is �8 − closed set in a bitopological space (�, �
, ��). Let 
� ⊆ & and U is an �� − δ	open in X. Since A is �8 − closed, we have � − cl(A) = A ⊆ &. 

Then �� − scl(A) ⊆ � − cl(A) = A ⊆ &. Therefore A is ��– �%1 closed.  
(b) Suppose that A is �� − semi closed, then �� − 1cl(A) = A ⊆ &  and U is an �� −
δ	open in X. Therefore A is ��– �%1 semi closed.    
 
Theorem 3.2. If A is ��– �%1 closed set in a bitopological space (�, �
, ��) and � ⊆ < ⊆
�� − scl(A), then B is ��– �%1 closed. 
Proof. Suppose that A is ��– �%1	closed set in a bitopological space (�, �
, ��) and 
� ⊆ < ⊆ �� − 	scl(A). Let < ⊆ & and  U is an �� − δ	open in X. Since � ⊆ < and < ⊆ &, 
we have A ⊆ &.  Since A is ��– �%1 closed set, then �� − 	scl(A) ⊆ &. Also since  
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< ⊆ �� − 	scl(A), then ji − 	scl(B) ⊆ ji − scl[ji − 	scl(A)] ⊆ ji − 	scl(A) 	⊆ U. Therefore 
B is ��– �%1 closed. 
 
Preposition 3.1. If A and B are ��– �%1 closed sets in a bitopological space (�, �
, ��), 
then � ∪ < is also a ��– �%1 closed set. 
Proof. Suppose A and B are ��– �%1 closed sets in a bitopological space (�, �
, ��). Let U 
be a �� − δ open in X and � ∪ < ⊆ &. Since � ∪ < ⊆ &, we have � ⊆ & and < ⊆ &. 
Since U is �� − δ	open in X and A and B are ��– �%1 closed sets, we have �� − 	scl(A) ⊆
& and �� − 	scl(B) ⊆ &. Therefore [	�� − 	scl(A)] ∪ [�� − 	scl(B)] ⊆ & ∪ &. This implies 
�� − 	scl(� ∪ B) ⊆ &. Hence � ∪ < is also a ��– �%1 closed set.  
  
Preposition 3.2. If A and B are ��– �%1 closed sets in a bitopological space (�, �
, ��), 
then � ∩ < is also a ��– �%1 closed set. 
Proof. Suppose A and B are ��– �%1 closed sets in a bitopological space (�, �
, ��). Let U 
be a �� − δ	open in X and � ∩ < ⊆ &. Since � ∩ < ⊆ &, we have � ⊆ & and < ⊆ &. 
Since U is  �� − δ	open in X and A and B are ��– �%1 closed sets, we have �� − 	scl(A) ⊆
& and �� − 	scl(B) ⊆ &. Therefore [�� − 	scl(A)] ∩ [�� − 	scl(B)] ⊆ & ∩ &. This implies 
�� − 	scl(� ∩ B) ⊆ &. Hence � ∩ < is also a ��– �%1 closed set. 
  
Theorem 3.3. The arbitrary union of ��– �%1 closed sets {�� , �	 ∈ 	�} in a bitopological 
space (�, �
, ��) is ��– �%1 closed if the family {��, �	 ∈ 	�} is �8– locally finite.  

Proof.  Let {�� , �	 ∈ 	�} be �8– locally finite and �� is ��– �%1 closed in X for each �	 ∈ 	�. 
Let ⋃�� 	⊆ 	& and U is �� − δ open in X. Then �� ⊆ 	& and U is �� − δ open in X for 
each �. Since �� is ��– �%1 closed in X for each �	 ∈ 	�, we have ��	– 	1"�(��) ⊆ 	U. 
Consequently, ⋃C	��	– 	1"�(��)D	 ⊆ 	U	. Since the family {��, �	 ∈ 	�} is �8–locally finite, 

��	– 	1"�[⋃(��)] 	= 	⋃C	��	– 	1"�(��)D 	⊆ 	&. Therefore, ⋃�� is ��– �%1 closed in X.   
   
Theorem 3.4. Let < ⊂ � ⊂ � where A is �� − δ open and ��– �%1 closed in X. Then B is 
��– �%1 closed relative to A if and only if B is ��– �%1 closed relative to X. 
Proof. Suppose that < ⊂ � ⊂ � where A is �� − δ	open and ��– �%1 closed in X. Suppose 
that B is ��– �%1 closed relative to A. Let < ⊆ &, U is �� − δ	 open in X. Since � ⊂ �, A 
is �� − δ		open we have  � ∩ & is �� − δ	 open in X. Then � ∩ & is �� − δ open in A.                 
Since ⊂ � , < ⊂ &, we have < ⊂ � ∩ &. Then ��	– s"�(<E) ⊆ � ∩ &, Since B is ��– �%1 
closed relative to A. This implies that ��	– s"�(<E) ⊆ &. Since A is �� − δ open, A is 
��– δsg closed in X. This implies that  ��	– 	s"�(<E) = ��	– 	s"�(<) ∩ � = ��	– s"�(<) ⊆ &, 
since ��	– s"(<) ⊆ �. Therefore B is ��– �%1 closed relative to X.  
Conversely, Suppose that B is ��– �%1 closed relative to X. Let < ⊂ & and U is ��– δ  
open in A. Since � ⊂ �, we have U is ��– δ  open in X. This implies that ��	– 	s"�(<) ⊆
&. Now ��	– 	s"�(<E) = ��	– 	s"�(<) ∩ � = ��	– 	s"�(<) ⊆ &. Therefore B is ��– �%1 
closed relative to A.  
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Theorem 3.5. A set A be ��– �%1 closed in X if and only if  ��	– 	s"�(�) − � contains no 
non-empty ��– δ closed set. 
Proof. Suppose that A is ��– �%1 closed in X. Let F be ��	– δ closed and H ⊆
��	– s"�(�) − �. Since F be ��– δ closed, we have HIis ��– δ  open. Since H ⊆
��	– 	s"�(�) − �, we have {��	– 	s"�(�) − �}I ⊆ HI. Then � ⊆ 	HI. Also since A is 
��– �%1 closed in X, we have ��	– 	s"�(�) ⊆ HI. This implies that  
{HI}I ⊆ {��	– 	s"�(�)}I = ��	– 	s"�(�I). Then H ⊆ ��	– 	s"�(�I). Also since H ⊆
��	– 	s"�(�) − �, we have  H ⊆ ��	– 	s"�(�). This implies that H ∩ H ⊆ 5��	– 	s"�(�I)6 ∩
5��	– 	s"�(�)6 = ��	– 	s"�(�I ∩ �) = ��	– 	s"�(J). This implies H ⊆ J. Hence 
��	– 	s"�(�) − � contains no non-empty ��– δ closed set. 
Conversely,  Suppose that ��	– 	s"�(�) − � contains no non-empty ��– δ closed set. Let 
� ⊆ & and U is ��– δ open in X. Suppose that  ��	– 	s"�(�) ⊈ &. Then ��	– 	s"�(�) ∩ &I ≠
J. Since � ⊆ &, we have  &I ⊆ �I. Then ��	– 	s"�(�) ∩ &I ⊆ ��	– 	s"�(�) ∩ �I =
��	– 	s"�(�) − �. Since is ��– δ  open in X, we have &I is ��– δ closed in X. Then 
��	– 	s"�(�) ∩ &Iis ��– δ  closed in X. Which is contradiction, therefore  ��	– 	s"�(�) ⊆ &. 
Hence A is ��– �%1 closed in X. 
 
Theorem 3.6. A set A be ��– �%1 closed in X. Then A is  �� −	semi closed if and only if  
��– s"�(�) − � is ��– δ  closed set. 
Proof. Suppose that A is ��– �%1 closed in X and  �8 −	semi closed. Since A is  �� −	semi 

closed, we have  ��– s"�(�) = �. Then ��– s"�(�) − � = J is ��– δ  closed. 
Conversely,  Suppose that A is ��– �%1 closed and ��– s"�(�) − � is ��– δ  closed. Since 
A is ��– �%1 closed, we have by theorem 3.5, ��– s"�(�) − � contains no non-empty ��– δ  
closed set. Since ��– s"�(�) − � is itself  ��– δ closed, we have ��– s"�(�) − � = J. Then 
��– s"�(�) = �. Hence A is �� −	semi closed.  
 
Theorem 3.7. If A is ��– �%1 closed in X and � ⊂ < ⊂ ��– s"�(�), then ��– s"�(<) − < 
contains no non-empty �� − δ closed set. 
Proof. Let A be ��– �%1 closed in X and � ⊂ < ⊂ ��– s"�(�), then by theorem 3.2, B is 
��– �%1 closed. By theorem 3.6, ��– s"�(<) − < contains no non-empty �� − δ closed set.  
 
Definition 3.2. A subset A of a bitopological space (�, �
, ��) is called �� −	generalized δ 
- semi open set (��– �%1	open set) if X − A is ��– �%1	closed. 
 
Theorem 3.8. A set A is ��– �%1 open if and only if H ⊆ ��– sint(�), whenever H ⊆ � 
and F is ��	– 	δ closed. 
Proof. Suppose that A is ��– �%1 open. Then �I is ��– �%1 closed. Suppose that F is 
��	– 	δ closed and H ⊆ �. Then HIis ��	– 	δ	open and �I ⊆ HI. Since �I is ��– �%1 closed. 
Therefore ��– s"�(�I) ⊆ HI. Since ��– s"�(�I) = [	��– sint(�)]I, we have 
[��– sint(�)]I ⊆ HI. Hence H ⊆ ��– sint(�). 
Conversely,  Suppose that H ⊆ ��– sint(�) whenever H ⊆ � and F is ��	– 	δ	closed. 
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Then �I ⊆ HIand HI is ��	– 	δ open. Take & = HI, since H ⊆ ��– sint(�), 
[��– sint(�)]I ⊆ HI = &. Since ��– s"�(�I) = [��– sint(�)]I, we have ��– s"�(�I) ⊆ &. 
Then �I is ��– �%1 closed. Therefore A is ��– �%1 open. 
 
Preposition 3.3. If A and B are ��– �%1 open sets in a bitopological space (�, �
, ��), 
then � ∪ < is also a ��– �%1 open set. 
Proof. Suppose A and B are ��– �%1 open sets in a bitopological space (�, �
, ��). Let U 
be a ��	– 	δ closed in X and & ⊆ � ∪ <. Since & ⊆ � ∪ <, we have U⊆ � and & ⊆ <. 
Since U is ��	– 	δ closed in X and A and B are ��– �%1 open sets, we have & ⊆ �� −
sint(A) and & ⊆ �� − sint(B). Therefore & ∪ & ⊆ �� − sint(A)] ∪ [�� − sint(B)]. This 
implies & ⊆ �� − sint(� ∪ B). Hence � ∪ < is also a ��– �%1 open set. 
 
Preposition 3.4. If A and B are ��– �%1 open sets in a bitopological space (�, �
, ��), 
then � ∩ < is also a ��– �%1 open set. 
Proof. Suppose A and B are ��– �%1 open sets in a bitopological space (�, �
, ��). Let U 
be a ��	– 	δ closed in X and & ⊆ � ∩ <. Since & ⊆ � ∩ <, we have & ⊆ � and & ⊆ <. 
Since U is ��	– 	δ	closed in X and A and B are ��– �%1 open sets, we have & ⊆ �� −
sint(A) and & ⊆ �� − sint(B). Therefore & ∪ & ⊆ �� − sint(A)] ∩ [�� − sint(B)]. This 
implies & ⊆ �� − sint(� ∩ B).  Hence � ∩ < is also a ��– �%1 open set. 
 
Theorem 3.9. The arbitrary intersection of ��– �%1 open sets {��, �	 ∈ 	�} in a 
bitopological space (�, �
, ��) is ��– �%1 open if the family {��

I, �	 ∈ 	�} is �– locally 
finite.  
Proof.  Let {��

I, �	 ∈ 	�} be �	– locally finite and �� is ��– �%1 open in X  for each �	 ∈ 	�. 
Then ��

I is ��– �%1 closed in X  for each �	 ∈ 	�. Then by theorem we have ⋃��
I is 

��– �%1 closed. Consequently, {⋂(��)}I is ��– �%1 closed in X. Therefore ⋂�� is ��– �%1 
open in X. 
 
Theorem 3.10. If A is ��– �%1 open and ��– sint(�) ⊆ < ⊆ �, then B is ��– �%1 open 
Proof. Suppose that A is ��– �%1 open and ��– sint(�) ⊆ < ⊆ �. Let F be a �� − δ closed 
and H ⊆ <. Since H ⊆ <, < ⊆ �, we have F	 ⊆ �. Since A is ��– �%1 open, we have 
H ⊆ ��– sint(�). Since ��– sint(�) ⊆ <, we have ��– sint[��– sint(A)] ⊆ ��– sint(<). 
Then ��– sint(�) ⊆ ��– sint(<). Since H ⊆ ��– sint(�), then ��– sint(H) ⊆ ��– sint(<)  
Therefore B is is ��– �%1 open.    
  
Theorem 3.11. A set A is ��– �%1 closed in X if and only if  ��– scl(A) − A is ��– �%1 
open. 
Proof. Suppose that A is ��– �%1 closed in X. Let F be a �� − δ	closed and H ⊆
��– scl(�) − �. Since A is is ��– �%1 closed in X, ��– scl(�) − � contains no non-empty 
�� − δ	closed set. Since H ⊆ ��– scl(�) − �, H = J ⊆ ��– sint[��– scl(�) − �]. Then 
��– scl(�) − � is ��– �%1 open.  



A.Edward Samuel and D.Balan 

260 
 

Conversely, Suppose that ��– scl(�) − � is ��– �%1 open and suppose that U is �� − δ	 
open, � ⊆ &. Since � ⊆ &, we have &I ⊆ �I. Therefore ��– scl(�) ∩ &I = ��– scl(�) −
�. Since U is �� − δ	open in X, we have &I is �� − δ	closed in X. Also since ��– scl(�) is 
��– δ closed in X and &I is �� − δ	closed in X. Then [��– scl(�)] ∩ &I is ��– δ closed in 
X. Since ��– scl(�) − � is ��– �%1 open. Then C��– scl(�)D ∩ &I ⊆ ��– sintC��– scl(�) −
�D = ��– sintC��– scl(�) ∩ �ID = J. That is ��– scl(�) ⊆ &.	Therefore A is ��– �%1 
closed.  
 
Theorem 3.12. The intersection of a ��– �%1 open set and a ��	– δ open set is always 
��– �%1 open. 
Proof. Suppose that A is ��– �%1 open and B is ��– δ open. Since B is ��– δ open, then <I 
is ��– δ closed. Since every ��– δ closed set is ��– �%1 closed. Therefore <I is ��– �%1 
closed. This implies that B is ��– �%1 open. By Preposition 3.2, we have � ∩ < is ��– �%1 
open. 
 
Theorem 3.13. If a set A is ��– �%1 open in a bitopological space (�, �
, ��), then P = � 
whenever G is ��	– δ open and [��– sint(A)] ∪ AQ ⊆ G. 
Proof. Suppose that A is ��– �%1 open in a bitopological space (�, �
, ��) and G is ��– δ 
open and [��– sint(A)] ∪ AQ ⊆ G. Then PI ⊆ {[��– sint(A)] ∪ AQ}I = [��– sint(A)]I ∩
(AQ)I = ��– sintSAQT ∩ A = ��– sintSAQT − AQ. Since G is ��– δ open,  PI is ��– δ closed 

and A is ��– �%1 open , �I is ��– �%1 closed. This implies that  ��– scl(�I) − �I contains 
no non-empty ��– δ closed set in X. Then  PI = J. Therefore  P = �.  
 
Remark 3.1. The converse of the above theorem is not true in general. 
 
Definition 3.3. The �� − generalized % − semi closure of a subset A of a bitopological 
space (�, �
, ��) is the intersection of all ��– �%1 closed sets containing A and is denoted 
by ��– �%1"�(�).  
  
Theorem 3.14. Let A be a subset of a bitopological space (�, �
, ��). Then �	 ⊆ 	�� −
�%1"�(�) 	⊆ 		�� − 1"�(�) 	⊆ 	� − "�(�). 
Proof. It follows from the facts that every �8 − closed set is �� − semi closed and every 
�� − semi-closed set is �� − �%1 closed.  
 
Theorem 3.15. If A is �� − �%1 closed set, then �	 = 	�� − �%1"�(�). 
Proof. By above theorem, �	 ⊆ 	�� − �%1"�(�). Now, we show that �� − �%1"�(�) 	⊆ 	�. 
Since �� − �%1"�(�) 	=	∩	 {	H ∶ 	�	 ⊆ 	H	and	H	is	�� − �%1	closed	in	X} and A is �� −
�%1	closed set, then �� − �%1"�(�) 	⊆ 	�. Thus �	 = 	�� − �%1"�(�). 
 
Definition 3.4. A point x of a bitopological space (�, �
, ��) is called an ��-generalized 
% −	semi limit point (briefly �� − �%1 limit point) of a subset A of X, if for each �� − �%1 
open set U containing x, �	 ∩ 	&\{\} 	≠ 	J. The set of all �� − �%1 limit points of A will 
be denoted by �� − �%14(�) and is called the �� − generalized % − semi derived set of A. 
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Theorem 3.16. Let A and B be subsets of a bitopological space (�, �
, ��). If �	 ⊂ 	<, 
then �� − �%14(�) 	⊂ 	�� − �%14(<). 
Proof. Obvious. 
 
Theorem 3.17. If A is a subset of a bitopological space (�, �
, ��), then �� − �%1"�(�) 	=
	� ∪ �� − �%14(�).	
Proof. First we prove that � ∪ �� − �%14(�) 	⊆ 	�� − �%1"�(�). By Definition 3.25, 
�� − �%14(�) 	⊆ 	�� − �%1"�(�). Since �	 ⊂ 	�� − �%1"�(�), then � ∪ �� − �%14(�) 	⊂
	�� − �%1"�(�). 
Conversely, suppose that \ ∉ (� ∪ �� − �%14(�)). Then \ ∉ � and \ ∉ �� − �%14(�). 
Since \ ∉ �� − �%14(�), then there exists an �� − �%1 open set U such that \ ∈ & and 
�	 ∩ 	&\{\} 	= 	J. Since \ ∉ �, then & ∩ �	 = 	J. Since \ ∉ �\& where �\& is 
�� − �%1 closed and �	 ⊂ 	�\&. Then \ ∉ �� − �%1"�(�). Hence �� − �%1"�(�) 	⊂ 	� ∪
�� − �%14(�) and consequently �� − �%1"�(�) 	= 	� ∪ 	�� − �%14(�). 
 
Theorem 3.18. A point	\ ∈ �� − �%1"�(�) if and only if every �� − �%1 open set U 
containing x, &	 ∩ 	�	 ≠ 	J. 
Proof. Let \ ∈ �� − �%1"�(�) and U be an �� − �%1 open set containing x. Suppose that 
&	 ∩ 	�	 = 	J. Then �	 ⊂ 	�\& where �\& is �� − �%1 closed set. Thus \ ∈ �\& which 
is a contradiction. Therefore &	 ∩ 	�	 ≠ 	J. 
Conversely, suppose that for every �� − �%1 open set U containing x, &	 ∪ � ≠ 	J. Let 
\ ∉ �� − �%1"�(�), then there exists �� − �%1 closed F in X such that �	 ⊂ 	H and \ ∉ 	H. 
Hence \ ∈ �\H where �\H is �� − �%1 open set and �\H	 ∩ 	�	 = 	J, which is a 
contradiction. Therefore \ ∈ �� − �%1"�(�). 
 
Theorem 3.19. If A and B are subsets of a bitopological space (�, �
, ��), then the 
following are true: 
(i) �� − �%14(� ∪ <) 	= 	�� − �%14(�) 	∪ �� − �%14(<) 
(ii) �� − �%1"�(� ∪ <) 	= 	�� − �%1"�(�)	∪ �� − �%1"�(<) 
(iii) �� − �%1"�(�) 	= 	�� − �%1"�(�� − �%1"�(�)).  
Proof. (i) Let A and B be subsets of X. Since � ⊆ � ∪ < and < ⊆ � ∪ <. By Theorem 
3.16, and �� − �%14(�) 	⊆ �� − �%14(� ∪ <) and �� − �%14(<) 	⊆ �� − �%14(� ∪ <). 
Hence �� − �%14(�)	∪ 	�� − �%14(<) 	⊆ 	�� − �%14(� ∪ <).	
Conversely, let \ ∉ �� − �%14(�) 	∪ �� − �%14(<). Then \ ∉ �� − �%14(�), \ ∉ �� −
�%14(<) and there exist two �� − �%1 open sets U, V such that \ ∈ &, \ ∈ ^, � ∩
&\{\} 	= 	J and < ∩ ^\{\} 	= 	J. Hence \ ∈ & ∩ ^, where & ∩ ^ is an �� − �%1	open 
set of X by Preposition 3.2. This implies (& ∩ ^)\{\} ∩	(� ∪ <) 	= 	J and \ ∉ �� −
�%14(� ∪ <). Thus �� − �%14(� ∪ <) 	⊆ 	�� − �%14(�) 	∪ 	�� − �%14(<) and �� −
�%14(� ∪ <) 	= 	�� − �%14(�)	∪ �� − �%14(<). 
(ii) the proof is similar to (i). 
(iii) By Theorem 3.19(iii), �� − �%1"�(�) 	⊆ 	�� − �%1"�(�� − �%1"�(�)). Now, let 
\ ∉ �� − �%1"�(�). This means that by Theorem 3.31, there exists an �� − �%1 open set U 
of X containing x and & ∩ �	 = 	J. Suppose that & ∩ �� − �%1"�(�) 	≠ 	J. Then there is 
_ ∈ & ∩ �� − �%1"�(�), so _ ∈ �� − �%1"�(�). This implies for every �� − �%1 open set 
V containing y we have ̂ ∩ �	 ≠ 	J. But U is an �� − �%1 open set containing y. Hence 
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& ∩ �	 ≠ 	J, which is a contradiction. Thus & ∩ �� − �%1"�(�) 	= 	J and \ ∉ �� −
�%1"�(�� − �%1"�(�)). Hence �� − �%1"�(�) 	= 	�� − �%1"�(�� − �%1"�(�)).	
 
Definition 3.5. The �� − generalized % − semi interior of a subset A of a bitopological 
space (�, �
, ��) is the union of all �� − �%1 open sets contained in A and is denoted by 
�� − �%1���(�).  
 
Theorem 3.20. For any subset A of a bitopological space (�, �
, ��), we have � −
���(�) ⊆ 	�� − 1���(�) 	⊆ 	�� − �%1���(�). 
Proof. The proof follows from the facts that every �8 − open set is �� − semi open and 
every �� − semi open set is �� − �%1 open. 
 
Theorem 3.21. For any subset A of a bitopological space (�, �
, ��), we have: 
(i) �� − �%1"�(�\�) 	= 	�\�� − �%1���(�) 
(ii) �� − �%1���(�\�) 	= 	�\�� − �%1"�(�). 
Proof. (i) Let \ ∉ �� − �%1"�(�\�), there exists an �� − �%1 open set U of X containing x 
such that & ∩ (�\�) 	= 	J. Hence \ ∈ &	 ⊂ 	� and \ ∈ �� − �%1���(�). Thus \ ∉
�\�� − �%1���(�). 
Conversely, let \ ∉ �\�� − �%1���(�). Thus \ ∈ �� − �%1���(�) and there exists an 
�� − �%1 open set U of X such that \ ∈ & ⊂ �. Hence &	 ∩	(�\�) 	= 	J and \ ∉ �� −
�%1"�(�\�). 
(ii) The proof is similar to that of (i).  
 
4. ./–`ab continuous functions 
Definition 4.1. A function c: (�, �
, ��) ⟶	(f, g
, g�)  is said to be ��– �%1 continuous, 
if ch
(^) is ��– �%1 closed set in X for every  g8 − closed set V in Y.  
 
Example 4.1. Let �	 = 	f	 = {2, 3, ", 4},	�
 = 5J, �, {2}, {2, 3}, {2, ", 4}6,	�� = 	{	J,
�, {2}, {4}, {2, 4}, g
 =	 5J, �, {2}, {3}, {2, 3}, {3, "}, {2, 3, "}, {2, 3, 4}6, g� = {J, �,
{"}, {4}, {", 4}, {2, 3}, {2, 3, "}, {2, 3, 4}}. Let c: (�, �
, ��) ⟶	(f, g
, g�) defined by  
c({2}) = c({4}) = {"}, c({3}) = {4}, c({"}) = {2}. Then c is ��– �%1 continuous.  
  
Theorem 4.1. Every pairwise continuous function is ��– �%1 continuous. 
Proof.  Let c: (�, �
, ��) ⟶	(f, g
, g�) be pairwise continuous  function. Let U be a � −	 
closed set in Y. Then ch
(&) is � − closed set in X. Since every � − closed set is ��– �%1 
closed, � ≠ � and �, � = 1,2,  we have c is  ��– �%1 continuous. 
 
Theorem 4.2. The following  are equivalent for a function is c: (�, �
, ��) ⟶	(f, g
, g�),  

(a) c	 is   ��– �%1 continuous.   
(b) ch
(&)  is  ��– �%1 open for each 	g8 −	open set U in Y, � ≠ � and �, � = 1,2 .  

Proof.  (a) ⇒ (b) Suppose that c	is ��– �%1 continuous. Let A be a 	g8 −		open in Y. Then 

�I is 	g8 −	closed in Y. Since c	 is ��– �%1 continuous, we have ch
(�i) is ��– �%1 
closed in X, � ≠ � and �, � = 1,2. Consequently, ch
(�) is ��– �%1 open in X.   
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(b) ⇒ (a) Suppose that ch
(&) is ��– �%1 open for each 	g8 −	open set U in Y, 
� ≠ � and �, � = 1,2. Let V be 	g8 −	closed set in Y. Then ̂i is 	g8 −	open  in Y. 

Therefore by our assumption, ch
(^i) is ��– �%1 open in X, � ≠ � and �, � = 1,2. Hence 
ch
(^) is ��– �%1 closed in X. Therefore c	 is   ��– �%1 continuous.   
 
Definition 4.2. A function c: (�, �
, ��) ⟶	(f, g
, g�) is ��– �%1 irresolute if ch
(&) is 
��– �%1 closed for each ��– �%1 closed set U in Y , � ≠ � and �, � = 1,2.   
 
Example 4.2. Let � = f = {2, 3, ", 4},	�
 = 5J, �, {2}, {2, 3}, {2, ", 4}6,	�� =	 {	J, �,	 
{2}, {4}, {2, 4}, g
 =	 5J, �, {2}, {3}, {2, 3}, {3, "}, {2, 3, "}, {2, 3, 4}6, g� = {J, �,
{"}, {4}, {", 4}, {2, 3}, {2, 3, "}, {2, 3, 4}}. Let c: (�, �
, ��) ⟶	(f, g
, g�) defined by  
c({2}) = c({4}) = {"}, c({3}) = {4}, c({"}) = {2}. Then c is ��– �%1 irresolute.  
 
Theorem 4.3. Every ��– �%1 continuous function is ��– �%1 irresolute function. 
Proof. Let A be �–	closed set in Y. Since every �–	closed set is ��– �%1 closed in Y,  
�, � = 1,2 and � ≠ �. Since c is ��– �%1 continuous function. Then ch
(�) is ��– �%1 
closed in X. Therefore c is ��– �%1 irresolute function. 
 
Theorem 4.4. Let		c: (�, �
, ��) ⟶	(f, g
, g�) and �: (f, g
, g�) ⟶	(j, k
, k�) be two 
functions. Then 

(a) If c and � are ��– �%1 continuous, then � ∘ c is ��– �%1 continuous. 
(b) If c and � are ��– �%1 irresolute, then � ∘ c is ��– �%1 irresolute. 
(c) If c is ��– �%1 irresolute and � is ��– �%1 continuous, then � ∘ c is ��– �%1 

continuous. 
Proof. (a) Let		c: (�, �
, ��) ⟶	(f, g
, g�) and �: (f, g
, g�) ⟶	(j, k
, k�) be ��– �%1 
continuous. Let U be � − closed set in Z, �, � = 1,2 and � ≠ �.  Since � is ��– �%1 
continuous, �h
(&) is ��– �%1 closed in Y . Since c is ��– �%1 continuous, (� ∘ c)h
 	=
	ch
[�h
(&)] is ��– �%1 closed in X. Therefore, � ∘ c	is ��– �%1 continuous. 
The proofs of (b) and (c) are similar. 
 
Definition 4.3. A function c: (�, �
, ��) ⟶	(f, g
, g�) is �� − pre%1� continuous if 
ch
(&) is ��– �%1 closed for each ��	– 	δ semi closed set U in Y, �, � = 1,2	 and � ≠ �. 
 
Definition 4.4. A function c: (�, �
, ��) ⟶	 (f, g
, g�) is �� − pre	g%1 closed if c(&) is 
��– �%1 closed for each ��– 	δ semi closed set U in X, �, � = 1,2	 and � ≠ �. 
 
Theorem 4.5. Let c: (�, �
, ��) ⟶	(f, g
, g�) is ��– �%1 continuous, then cS�� −
�%1"�(�)T ⊆ � − "�(c(�))  for every subset A of X. 
Proof. Since � ⊆ ch
(c(�)), we have � ⊆ ch
[� − "�Sc(�)T]. Now � − "�(c(�)) is a 

� − closed set in Y and hence ch
[� − "�Sc(�)T] is a ��– �%1 closed set containing A. 
Consequently �� − �%1"�(�) 	⊆ 	ch
[� − "�Sc(�)T]. Therefore S�� − �%1"�(�)T ⊆
c[ch
C� − "�Sc(�)TD] ⊆ � − "�(c(�)) .  
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Theorem 4.6. Let c: (�, �
, ��) ⟶	(f, g
, g�) be a function and let �:�x� ⟶ f be the 
bitopological graph function of c defined by �(\) = (\, c(\)) for every \ ∈ �. If � is 
��– �%1 continuous, then c is ��– �%1 continuous. 
Proof. Let U be an � −closed in Y. Then �x& is an �� −closed in �x�. Since � is ��– �%1 
continuous, then ch
(&) = �h
(�x&) is ��– �%1 closed in X. Therefore c is ��– �%1 
continuous.  
 
Definition 4.5. A subset A of a bitopological space (�, �
, ��) is said to be ��– �%1 dense 
if �� − �%1"�(�) = �. 
 
Theorem 4.7. Assume that �� − P%)O(X) is closed under any intersection. If 
c: (�, �
, ��) ⟶	(f, g
, g�) and �: (�, �
, ��) ⟶	(f, g
, g�) are ��– �%1 continuous and 
Y is pairwise Urysohn, then p = {\ ∈ �: c(\) = �(\)} is ��– �%1 closed in X. 
Proof Let \ ∈ � − p, then c(\) ≠ �(\). Since Y is a pairwise Urysohn, there exists � − 
open set V and � − open set W such that c(\) ∈ ^, �(\) ∈ q and � − "�(^) ∩ � −
"�(q) = J. Since c and � are ��– �%1 continuous, ch
[� − "�(^)] and �h
[� − "�(q)] 
are ��– �%1 closed in X. Let & = ch
[� − "�(^)] and P = �h
[� − "�(q)].   
Then U and G are ��– �%1 closed sets containing x. Set � = & ∩ P, thus A is ��– �%1 
closed in X. Hence c(�) ∩ �(�) = c(& ∩ P) ∩ �(& ∩ P) ⊆ c(&) ∩ �(P) = � −
"�(^) ∩ g
 − "�(q) = J. Therefore � ∩ p = J. This implies \ ∉ �� − �%1"�(p). Hence 
E is ��– �%1 closed in X.  
 
Theorem 4.8. Assume that �� − P%)O(X) is closed under any intersection. If 
c: (�, �
, ��) ⟶	(f, g
, g�) and �: (�, �
, ��) ⟶	 (f, g
, g�) are ��– �%1 continuous, Y is 
pairwise Urysohn and c = � on ��– �%1 dense set � ⊂ �, then   c = � on X.  
Proof Since c and � are ��– �%1 continuous, Y is pairwise Urysohn by theorem 4.14, 
p = {\ ∈ �: c(\) = �(\)} is ��– �%1 closed in X. By assumption, c = � on ��– �%1 
dense set � ⊂ �. Since � ⊂ p and A is ��– �%1 dense set in X, then � = �� −
�%1"�(�) ⊆ �� − �%1"�(p) = p. Hence c = � on X.     
 
Definition 4.6. A bitopological space (�, �
, ��) is called ��– 	
��, if every ��– �%1 closed 
set is �8 − closed, �, � = 1,2	 and � ≠ �.  
Theorem 4.9. Let c: (�, �
, ��) ⟶	(f, g
, g�) be onto ��– �%1 irresolute and ��– pre�%1 
closed map. If X is ��– 	
��, then Y is also ��– 	
��. 
Proof. Let A be a ��– �%1 closed subset of Y, �, � = 1,2	 and � ≠ �. Since c is onto 
��– �%1 irresolute, ch
(�) is ��– �%1 closed subset of X. Since X is ��– 	
�� space,  

ch
(�) is � − closed in X, �, � = 1,2	 and � ≠ �. Since c is ��– pre�%1 closed map, 
c[ch
(�)] = � is �– closed in Y. Therefore Y is ��– 	
��.    
 
Definition 4.7. A bitopological space (�, �
, ��) is called ��– �%1	
/�, if every ��– �%1 
closed set is �� − semi closed, �, � = 1,2	 and � ≠ �. 
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Theorem 4.10. A bitopological space (�, �
, ��) is ��– �%1	
/� if and only if every 
singleton is �� − semi open or �� − semi closed.  
Proof. Suppose {\} is not �� − semi closed. Then �\{\} is ��	– 		�%1 closed. Since 
(�, �
, ��) is ��	– 		�%1	
/� space, �\{\} is �� − semi closed and {\} is �� − semi open. 

Conversely, let F be ��	– 		�%1 closed. For any \	 ∈ 	�� − 1"�(H), {x} is �� − semi open or 
�� − semi closed by assumption.    
Case 1. Suppose {\} is �� − semi open. Since {\} 	∩ 	H	 ≠ 	J, then \	 ∈ 	H. 
Case 2. Suppose {\} is �� − semi closed. If \	 ∉ 	H, then this contradicts Theorem 3.9 
since {\} ⊂ 	�� − 1"�(H)\	H. Thus \	 ∈ 	H. 
From the above two cases we conclude that F is a �� − semi-closed. Hence (�, �
, ��) is a 
��	– 		�%1	
/� space.     
 
Definition 4.8. A function c: (�, �
, ��) ⟶	(f, g
, g�)  is said to be ��– �%1 closed, if  
for each �8 − closed set U of X, c(&) is ��– �%1 closed set in Y. If c is 12	–�%1 closed 

and 21	–�%1 closed, then c is called pairwise �%1 − closed.  
 
Theorem 4.11. Every �� − semi closed function is ��– �%1 closed function.   
Proof. The proof follows from, every �� − semi closed set is ��– �%1 closed set. 
 
Theorem 4.12. For a function c: (�, �
, ��) ⟶	(f, g
, g�), the following are equivalent: 

(i) c	is ��– �%1 open. 
(ii)  c[� − ���(�)] ⊂ �� − �%1���[c(�)], for each subset A of X.   
(iii)  For each \ ∈ � and for � − open set U containing \, there is an ��– �%1 open set 

V containing c(\) such that ̂ ⊂ c(&). 
(iv) If c is surjective, then ch
[�� − �%1���(<)] ⊂ � − "�[ch
(<)], for each subset 

B of Y. 
Proof. (i) ⟹ (ii) Let A be a subset of a bitopological space (�, �
, ��). Since � −
���(�) ⊂ �, then c[� − ���(�)] ⊂ c(�). But � − ���(�) is � − open set of X, then 
c[� − ���(�)] is ��– �%1 open set in Y, since c	is ��– �%1 open. Hence c[� − ���(�)] ⊂
�� − �%1���[c[� − ���(�)]] ⊂ �� − �%1���[c(�)]. Thus c[� − ���(�)] ⊂ �� −
�%1���[c(�)]. 
(ii) ⟹ (iii) Let \ ∈ � and U be a � − open set containing \. Then by (ii), c[� −
���(&)] ⊂ �� − �%1���[c(&)] and this implies c(&) ⊂ �� − �%1���[c(&)]. Thus there 
exists an ��– �%1 open set V such that c(\) ∈ ^ and ̂ ⊂ c(&).      
(iii) ⟹ (iv) Let < ⊂ f and \ ∈ ch
[�� − �%1���(<)]. Then c(\) ∈ �� − �%1���(<). If 
\ ∉ � − "�[ch
(<)], then \ ∈ &, where & = �\� − "�[ch
(<)], and hence by (iii), there 
is an ��– �%1 open set V such that c(\) ∈ ^ ⊂ c(&). Now ̂ ⊂ c(&) ⊂ c[�\ch
(<)] ⊂
f\^. Now c(\) ∈ �� − �%1���(<). Hence c(\) ∉ ^ which is contradiction. Thus 
ch
[�� − �%1���(<)] ⊂ � − "�[ch
(<)].   
   
Theorem 4.13. Let c: (�, �
, ��) ⟶	(f, g
, g�) and �: (f, g
, g�) ⟶	(j, s
, s�) are two 
functions, then 
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(i) If c is �	– closed and � is ��– �%1 closed, then � ∘ c is ��– �%1 closed. 
(ii)  If c is ��– % continuous surjection and � ∘ c is ��– �%1 closed, then � is ��– �%1 

closed.  
Proof. Obvious. 
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