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Abstract. The aim of this communication is to introduce tloaeepts ofj — generelized

d - semi closed sets anifl— generelized - semi open sets and study their fundamental
basic properties. Also we defing — g6s continuous functionsjj — g&s irresolute
functions in bitopological spaces and investigai®aes of their properties. Furthermore by
using this set, we introduce and defifeTyss, ij — g8s Ty, bitopological spaces. Also
we study some properties igf— g8s closure and interior operators.
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1. Introduction

In 1987, Banerjee [2] introduced the notién— open sets in bitopologicapace.
Khedr[9], introduced and study more abdjut & open sets. Using — 6 open, Edward
Samuel and Balan introduced one kindjof 6 semi open sets in bitopologicgace and
investigated some of their properties in [6]. IN9Q9 Arya and Nour [1] defined
generalized semi closed sets. Generalized closédyaneralized semi closed sets are
independent notions. In this paper, we introdueertbtion ofij — Generalized - semi
closed sets in bitopological spaces. Moreover theldmental properties of this new
concept will be studied. As application gf— Generalizeds - semi closed sets, we

introduce and study some notions like- gds closure,ij — g&s interior andij- Ty,
ij — g8s Ty, spaces.

2. Preliminaries

Throughout the present pap€¥,t,,7,) (or briefly X) always mean a bitopological
space on which no separation axioms are assumedsuakplicitly stated. Alspj =
1,2 andi # j. Let A be a subset @¢¥,1,,7,). Byi— Int(4) andi — Cl(A), we mean
respectively the interior and the closure of Alia topological spacg, t;) fori = 1,2.
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A subset A of X is calledj — semi open[8,9] (respectively — a open,ij — regular
open) ifA € j — cl[i — int(A)] (respectivelyd € i — int[j — cl[i — int(A)]], ASi—
int[j — cl(A)]). A pointx of X is called anj — § — cluster point of A ifi — Int(j —
ClL(U)) n A + ¢ for everyr; — open set U containing x. The set ofigl- § — cluster
points of A is called thej — § — closure of A and is denoted by— §CI(A).

Definition 2.1. [9] A subset A is said to b& — & closed ifij — 6ClL(A) = A. The
complement of amj — & closed set is said to Bg— § open. The set of alj — & open
(respectivelyij — § closed) sets of X will be denoted by— §O(X)( respectively
ij — 6C(X)).

Definition 2.2. [6] A subset A of a bitopological spa€¥,t,,t,) is calledij — § semi
open if there exists aij — § open set U such th&t € A € j — CI(U). Complement of
ij — & semi open is calledj — § semi closed. The family ofij — § semi open
(respectivelyij — & semi closed) set of X is denoted fy— §SO(X) ( respectively
ij — 65C(X)).

Recall that, arbitrary union @f(4;),i € I is contained in closure of arbitrary union
of subsetsl; in any topological space. The equality holds & tollection{A;,i € I} is
locally finite.

3. ij - Generalized 6 - semi closed sets

Definition 3.1. A subset A of a bitopological spa¢¥, t,,1,) is calledij — generalized
- semi closedif- gds closed) ifji — scl(A) € U wheneverd < U and U isij — 6 open
in X.

Example3.1. LetX ={a,b,c,d}, 7, = {(Z),X, {a},{a, b}, {qa,c, d}}, 7, ={0,X,{a},{d},
{a,d}}. Then12 - g&s closed sets antil - gds closed sets are P(X).

Theorem 3.1. Let (X, 14, T,) be a bitopological space addc X. Then the following are
true,

(@) If Aist; — closed set, then A ig- g&s closed.

(b) If A'is ji — semi closed set, then Aiis- gds closed.

Proof. (a) Suppose that A is; — closed set in a bitopological spacg, t4,7;). Let
A< U andUis anj — §open in X. Since A is; — closed, we havg— cl(A) = A c U.
Thenji — scl(A) € j —cl(A) = A € U. Therefore A igj- gds closed.

(b) Suppose that A igi — semi closed, theli —scl(A) =A< U and U is anj —
S open in X. Therefore A i§- gés semi closed.

Theorem 3.2. If A is ij- gds closed set in a bitopological spacgt,,7,) andA € B <

ji —scl(A), then B isij- gds closed.

Proof. Suppose that A igj- gds closed set in a bitopological spac¥,t,,7,) and
A C B Cji— scl(A). LetB € U and U is arij — § open in X. Sincel € B andB € U,

we haveA c U. Since A isij-gds closed set, theni — scl(A) € U. Also since
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B < ji — scl(A), thenji — scl(B) € ji — scl[ji — scl(A)] € ji — scl(A) < U. Therefore
B isij- gds closed.

Preposition 3.1. If A and B areij- gds closed sets in a bitopological spaégt,,1,),
thenA U B is also &j- gds closed set.

Proof. Suppose A and B aig- gds closed sets in a bitopological spd&et,, ;). Let U
be aij — 6 open in X andd UB € U. SinceAUB c U, we haveA € U andB € U.
Since U isij — § open in X and A and B arig- gds closed sets, we hayé— scl(A) <
U andji — scl(B) € U. Therefore| ji — scl(A)] U [ji — scl(B)] € U U U. This implies
ji — scl(AUB) € U. Henced U B is also dj- gds closed set.

Preposition 3.2. If A and B areij- gds closed sets in a bitopological spacgty,1,),
thenA n B is also &j- gds closed set.

Proof. Suppose A and B aig- gds closed sets in a bitopological spd&et,,7,). Let U
be aij —&open in X andAnB € U. SinceAnB < U, we haveA €U andB € U.
Since U isij — 6 open in X and A and B aiig- gds closed sets, we hayé— scl(A) <
U andji — scl(B) € U. Therefore[ji — scl(A)] n [ji — scl(B)] € U n U. This implies
ji— scl(ANnB) € U. Henced N B is also dj- gds closed set.

Theorem 3.3. The arbitrary union ofj- gés closed sets4;, i € I} in a bitopological
space(X, 1y, T;) isij- gés closed if the family{4;,i € I} ist;- locally finite.

Proof. Let{A;,i € I} bet;- locally finite and4; is ij- gés closed in X for each € I.
Let UA; € U and U isij — 6 open in X. TheM; € U and U isij — 6 open in X for
eachi. SinceA; is ij- gés closed in X for each € I, we haveji - scl(4;) € U.
ConsequentlyU| ji - scl(4;)] € U. Since the family{4;,i € I} is ;-locally finite,
ji - scl[U(A)] = U[ji- scl(A4)] € U. ThereforeU 4; is ij- g&s closed in X.

Theorem 3.4. Let B ¢ A c X where A isij — 6 open andj- gds closed in X. Then B is
ij- gds closed relative to A if and only if B ig- gJs closed relative to X.
Proof. Suppose thak c A c X where A isij — § open andj- gds closed in X. Suppose

that B isij- gds closed relative to A. LeR € U, U isij — & open in X. Sincel c X, A
is ij — & open we haveANnU isij—3& open in X. TherANn U is ij — & open in A.

Sincec A, B c U, we haveB c AnU. Thenji -scl(B,) € AN U, Since B isij- gds
closed relative to A. This implies that-scl(B,) € U. Since A isij — & open, A is
ij- 6sg closed in X. This implies thati - scl(By) = ji - scl(B) N A = ji -scl(B) € U,
sinceji -sc(B) < A. Therefore B isj- gds closed relative to X.

Conversely, Suppose that B ijs gds closed relative to X. LeB c U and U isij-6
open in A. Sinced c X, we have U igj-8 open in X. This implies thgt - scl(B) <
U. Now ji- scl(By) =ji-scl(B)NnA=ji-scl(B) S U. Therefore B isij-gds
closed relative to A.
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Theorem 3.5. A set A beij- gés closed in X if and only ifji - scl(4) — A contains no
non-emptyij- & closed set.

Proof. Suppose that A idj-gds closed in X. Let F beij-6 closed andF <
ji-scl(A) —A. Since F beij-& closed, we haveFCis ij-8§ open. SinceF €
ji - scl(A) — A, we have{ji- scl(A) — A}* € F¢. ThenA < F¢. Also since A is
ij-g6s closed in X, we have ji-scl(A) € F¢. This implies that
{FCY¢ c {ji - scl(A)}€ =ji- scl(A®). Then F Cji- scl(A®). Also since F C
ji - scl(A) — A, we have F C ji - scl(4). This implies that n F < {ji - scl(A9)} n
{ji- scl()} =ji-scl(A°nA) = ji-scl(¢). This implies F<¢p. Hence
ji - scl(A) — A contains no non-empty- § closed set.

Conversely, Suppose that- scl(4A) — A contains no non-emptij- 6 closed set. Let
A € U and U isij- § open in X. Suppose that - scl(4) € U. Thenji - scl(A) N U¢ #
¢. Since Ac U, we have U¢ < A¢. Then ji- scl(A) NUC € ji- scl(A) N A¢ =
ji - scl(A) — A. Since isij-& open in X, we havéJ¢ is ij-§ closed in X. Then
ji - scl(A) nUCisij-§ closed in X. Which is contradiction, therefoje- scl(4) € U.
Hence A isij- gés closed in X.

Theorem 3.6. A set A beij- gds closed in X. Then A isji — semi closed if and only if
ji-scl(A) — Aisij- 8 closed set.

Proof. Suppose that A i§- gds closed in X andr; — semi closed. Since A igi — semi
closed, we havgi-scl(A) = A. Thenji-scl(A) — A = ¢ isij- 8§ closed.

Conversely, Suppose that Aijs gés closed andi-scl(4) — A isij-8 closed. Since
Ais ij- gds closed, we have by theorem 3i5;scl(A) — A contains no non-empty- &
closed set. Sincg-scl(4) — A is itself ij- 6 closed, we hav@i-scl(A) — A = ¢. Then
ji-scl(A) = A. Hence A igi — semi closed.

Theorem 3.7. If A is ij- gds closed in X andd c B c ji-scl(A), thenji-scl(B) — B
contains no non-empty — 6 closed set.

Proof. Let A beij- gés closed in X andd c B c ji-scl(A), then by theorem 3.2, B is
ij- gés closed. By theorem 3.6i- scl(B) — B contains no non-empty — & closed set.

Definition 3.2. A subset A of a bitopological spa¢¥, 4, 1,) is calledij — generalized
- semi open setj- gés open set) if X — A idj- gds closed.

Theorem 3.8. A set A isij- gbs open if and only iff € ji- sint(4), wheneverF c A
and F isij - & closed.

Proof. Suppose that A igj- g6s open. Thend® is ij- g&s closed. Suppose that F is
ij - & closed and’ € A. ThenFCisij - § open andA® € F¢. SinceA® isij- gés closed.
Therefore ji-scl(A%) € F¢.  Since ji-scl(A¢) = [ji-sint(4)]¢>, we have
[ji- sint(A)]¢ € F¢. HenceF C ji-sint(A).

Conversely, Suppose thatc ji- sint(A) whenevelF € A and F igj - 6§ closed.
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Then A¢ c Ffand F¢ is ij- 8 open. Take U =F¢, since F C ji-sint(4),
[ji-sint(4)]¢ € F¢ = U. Sinceji-scl(A) = [ji-sint(4)]¢, we haveji-scl(A¢) € U.
ThenAC¢ isij- gés closed. Therefore A ig- g&s open.

Preposition 3.3. If A and B areij- gds open sets in a bitopological spaCg t,,1;),
thenA U B is also &j- gds open set.

Proof. Suppose A and B aig¢- gds open sets in a bitopological spaégz,,7,). Let U
be aij - 6 closed in X andJ € AU B. SinceU € AUB, we have & A andU < B.
Since U isij - § closed in X and A and B ang- gés open sets, we havé c ji —
sint(A) and U € ji — sint(B). ThereforeU U U < ji — sint(A)] U [ji — sint(B)]. This
impliesU < ji — sint(A U B). HenceAd U B is also aj- g&s open set.

Preposition 3.4. If A and B areij- gds open sets in a bitopological spaCg t4,1,),
thenA n B is also &j- gds open set.

Proof. Suppose A and B aig¢- gds open sets in a bitopological spaégz,,7,). Let U
be aij - & closed in X andJ € An B. SinceU € An B, we havel € A andU < B.
Since U isij - dclosed in X and A and B arg- gds open sets, we havé c ji —
sint(A) and U € ji — sint(B). ThereforeU U U < ji — sint(A)] N [ji — sint(B)]. This
impliesU < ji — sint(A N B). Henced n B is also aj- gds open set.

Theorem 3.9. The arbitrary intersection ofj-gds open sets{4;, i € I} in a
bitopological spac€X,t;,t,) is ij- g8s open if the family{A¢,i € I} is j- locally
finite.

Proof. Let{Af,i € I} bej - locally finite and4; is ij- g&s open in X for each € I.
Then A¢ is ij- g&s closed in X for eacli € I. Then by theorem we hauvg Af is

ij- g&s closed. Consequentlf§f(4;)}¢ is ij- g&s closed in X. Therefor@) 4; isij- gds
open in X.

Theorem 3.10. If A is ij- gds open andi-sint(A) € B < A, then B isij- gbs open
Proof. Suppose that A i§- gés open angi-sint(4) € B < A. Let F be dj — 6 closed
andF <€ B. SinceF € B, B € A, we haveF < A. Since A isij- gés open, we have
F C ji-sint(4). Since ji-sint(4) € B, we have ji- sint[ji- sint(A)] € ji- sint(B).
Then ji-sint(A) € ji-sint(B). Since F € ji-sint(A4), then ji-sint(F) € ji- sint(B)
Therefore B is igj- gés open.

Theorem 3.11. A set A isij- gds closed in X if and only if ji-scl(A) — A is ij- gJs
open.

Proof. Suppose that A igj-gds closed in X. Let F be dj — 6 closed andF <
ji-scl(A) — A. Since A is isij- gbs closed in X,ji-scl(A) — A contains no non-empty
ij — & closed set. SinceF € ji-scl(A) — A, F = ¢ < ji-sint[ji-scl(4) — A]. Then
ji-scl(A) — A isij- gds open.
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Conversely, Suppose thatscl(4A) — A is ij- gds open and suppose that Uijs— &

open,A € U. Sinced € U, we havel¢ € AC. Thereforgji-scl(4A) N U¢ = ji-scl(4) —
A. Since U isj — § open in X, we hav&/¢ isij — & closed in X. Also sincgi-scl(4) is
ij- & closed in X andJ¢ is ij — & closed in X. Therjji-scl(4)] n U¢ is ij- & closed in
X. Sinceji-scl(A) — A is ij- g&s open. Therji- scl(4)] n UC < ji- sint[ji- scl(4) —
A] = ji-sint[ji-scl(4) N AS] = ¢. That is ji-scl(4) € U. Therefore A is ij- g&s
closed.

Theorem 3.12. The intersection of &- gds open set and § -6 open set is always
ij- gds open.

Proof. Suppose that A i§- g&s open and B igj- & open. Since B i§- & open, therB¢
is ij- & closed. Since everij-§ closed set igj- gds closed. Therefor®¢ is ij- gés

closed. This implies that B ig- gds open. By Preposition 3.2, we hade B isij- gds
open.

Theorem 3.13. If a set A isij— gés open in a bitopological spa¢¥, t,,75,), thenG = X
whenever G igj - § open andji- sint(A)] U A® c G.

Proof. Suppose that A i§- gds open in a bitopological spa¢&, t4,7,) and G isij- 6
open and[ji-sint(A)] U A® € G. Then G¢ c {[ji-sint(A)] U A®}¢ = [ji-sint(A)]¢ N
(AS)C = ji-sint(A®) N A = ji-sint(A®) — AC. Since G igj- 8 open, G¢ isij- § closed
and A isij- g&s open A¢ isij- g&s closed. This implies thati-scl(4¢) — A¢ contains
no non-emptyj-§ closed set in X. Thei¢ = ¢. ThereforeG = X.

Remark 3.1. The converse of the above theorem is not trueimergl.

Definition 3.3. Theij — generalizedd — semi closure of a subset A of a bitopological
space(X, 14, T,) is the intersection of alfj- gds closed sets containing A and is denoted
by ij- gdscl(A).

Theorem 3.14. Let A be a subset of a bitopological spd&et;,7,). ThenAd < ij —
goscl(A) € ji—scl(A) € j—cl(A).

Proof. It follows from the facts that everny — closed set igi — semi closed and every
ji — semi-closed set ig — gds closed.

Theorem 3.15. If Ais ij — gds closed set, theA = ij — gdscl(A).
Proof. By above theorend < ij — gdscl(4). Now, we show thatj — gdscl(4) < A.
Since ij — géscl(A) =n {F: A € FandFisij — gdsclosedinX} and A is ij —
gds closed set, theij — gbscl(A) € A. ThusA = ij — gdscl(A).

Definition 3.4. A point x of a bitopological spac€X, t,,t,) is called anj-generalized
6 — semi limit point (brieflyij — gd&s limit point) of a subsef of X, if for eachij — gds
open setJ containingx, A N U\{x} # ¢. The set of alij — gds limit points of A will
be denoted byj — gdsd(A) and is called thg — generalized — semi derived set of A.
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Theorem 3.16. Let A andB be subsets of a bitopological spdégt,,1;). If A c B,
thenij — gésd(A) c ij — g6sd(B).
Proof. Obvious.

Theorem 3.17. If Ais a subset of a bitopological spddet,, 1,), thenij — gdscl(A) =
AU ij— gébsd(A).

Proof. First we prove thatd Uij — gdsd(A) < ij — gdscl(A). By Definition 3.25,
ij —gbsd(A) < ij — gbscl(A). SinceA c ij — gdscl(A), thenA U ij — gdsd(A) c
ij — géscl(4).

Conversely, suppose that¢ (AU ij — g6sd(A)). Thenx ¢ A andx & ij — gésd(A).
Sincex & ij — gdsd(A), then there exists aii — gés open set such thatc € U and
AN U\{x} = ¢. SincexgA, thenUNA = ¢. Since x € X\U where X\U is
ij — gés closed andd c X\U. Thenx & ij — géscl(A). Henceij — géscl(A) c AU
ij — gésd(A) and consequently — gdscl(A) = AU ij — gésd(4).

Theorem 3.18. A pointx € ij — géscl(A) if and only if everyij — gés open setU
containingx, U N A #+ ¢.

Proof. Letx € ij — gdscl(A) andU be anij — gés open set containing Suppose that
UnA = ¢. ThenA c X\U whereX\U is ij — gds closed set. Thus € X\U which
is a contradiction. Therefolé N A # ¢.

Conversely, suppose that for evéfy- gds open setU containingx, U UA # ¢. Let
x & ij — gdscl(A), then there exist§ — gds closedF in X such thad ¢ F andx & F.
Hence x € X\F where X\F is ij — gds open set and{\F N A = ¢, which is a
contradiction. Therefore € ij — gdscl(A).

Theorem 3.19. If A andB are subsets of a bitopological spé¥er,, 7,), then the
following are true:

() ij — gdsd(AUB) = ij — gdsd(A) Uij — gdsd(B)

(i) ij — gdscl(AU B) = ij — gbscl(A) VU ij — gdscl(B)

(i) ij — gdscl(A) = ij — gdscl(ij — gdscl(A)).

Proof. (i) Let A andB be subsets ak. SinceA € AU B andB € AU B. By Theorem
3.16, andij — gésd(A) < ij —gdsd(AUB) andij — gésd(B) < ij — gésd(A U B).
Henceij — gdsd(A) U ij — gésd(B) € ij — gésd(A U B).

Conversely, letx ¢ ij — gdsd(A) Uij — gdsd(B). Thenx & ij — gdsd(4), x & ij —
go6sd(B) and there exist twaj — gds open setdJ, V such thatx e U, x eV, An
U\{x} = ¢ andBnV\{x} = ¢. Hencex e UNV, whereU nV is anij — gds open
set of X by Preposition 3.2. This implie/ nV)\{x}n (AUB) = ¢ andx & ij —
g6sd(AUB). Thus ij —gdsd(AUB) <€ ij —gdsd(4) VU ij — gésd(B) and ij —
g6sd(AUB) = ij —gbsd(A) VUij— gdsd(B).

(ii) the proof is similar to (i).

(i) By Theorem 3.19(iii), ij — gbscl(A) < ij — gdscl(ij — gdscl(A)). Now, let
x & ij — géscl(A). This means that by Theorem 3.31, there exisig aryds open set
of X containingx andU N A = ¢. Suppose thall N ij — géscl(A) # ¢. Then there is
y e Unij— gdscl(A), soy € ij — gdscl(A). This implies for everyj — gds open set
V containingy we havel/ N A # ¢. ButU is anij — gds open set containing Hence
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UnA #+ ¢, which is a contradiction. Thu¥ nij — gdscl(4A) = ¢ and x & ij —
goscl(ij — gbscl(A)). Henceij — gdscl(A) = ij — gdscl(ij — gbscl(4)).

Definition 3.5. Theij — generalizeds — semi interior of a subsét of a bitopological
space(X, t4,T,) is the union of alij — gds open sets contained Aand is denoted by
ij — gosint(A).

Theorem 3.20. For any subsef of a bitopological spacé€X,t,,7,), we havej —
int(A) € ji —sint(A) < ij — gdsint(A).

Proof. The proof follows from the facts that every— open set igi — semi open and
everyji — semi open set ig — gds open.

Theorem 3.21. For any subsek of a bitopological spacgX, t4,7,), we have:

() ij — gdscl(X\A) = X\ij — gdsint(4)

(i) ij — gosint(X\A) = X\ij — gdscl(A).

Proof. (i) Letx & ij — gdscl(X\A), there exists aifj — gds open set of X containingx
such thatU n (X\A) = ¢. Hencex e U c A and x € ij — gdsint(A). Thus x ¢
X\ij — gdsint(A).

Conversely, letx & X\ij — gdsint(A). Thus x € ij — gésint(A) and there exists an
ij — gds open sel of X such thatx € U c A. HenceU n (X\A) = ¢ andx & ij —
goscl(X\A).

(ii) The proof is similar to that of (i).

4. ij- g8s continuous functions
Definition 4.1. A function f: (X,t4,7,) — (Y,04,0,) Iis said to béj- gds continuous,
if f~1(V) isij- gds closed setin X for every; — closed set Vin Y.

Example 4.1. Let X =Y ={a,b,c,d}, 1, = {qf),X, {a}, {a, b}, {aq, c,d}}, = {¢,
X, {a}, {d}, {a' d}, 01 = {¢;X; {a}, {b}' {a,b}, {b, C}, {a' b' C}, {a' b'd}}! 0y = {(;le'
{c},{d} {c,d},{a,b},{a b,c},{a b,d}}. Let f:(X,tq,7,) — (Y,0.,0,) defined by
fda}) = f({d}) = {c}, f({b}) = {d}, f({c}) = {a}. Thenf isij- gés continuous.

Theorem 4.1. Every pairwise continuous functioniis- gds continuous.
Proof. Letf:(X,t4,72) — (Y, 01,0,) be pairwise continuous function. Let U bg-a

closed setin Y. Thefi"1(U) isj — closed set in X. Since evefy- closed set igj- g&s
closed,i # j andi,j = 1,2, we havef is ij- gds continuous.

Theorem 4.2. The following are equivalent for a function 8 (X, 74,7,) — (Y, 0y,05),
(@) f is ij-gds continuous.
(b) £F7X(U) is ij- gbs open for eachs; —opensetU inYi #j andi,j = 1,2.
Proof. (@)= (b) Suppose thatis ij- gs continuous. Let A be a; — open in Y. Then
A€ is oj —closed in Y. Sincef is ij- g6s continuous, we havg~1(A°) is ij- gbs
closed in X,i # j andi,j = 1,2. Consequentlyf ~1(4) is ij- g&s open in X.
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(b) = (a) Suppose that~1 (V) is ij- g&s open for eachs; —open set U in Y,
i#jandi,j=12. Let V be g; —closed set in Y. Thel¥¢ is g; —open in Y.
Therefore by our assumptiofi; *(V°) is ij- g&s open in X,i # j andi,j = 1,2. Hence
f~Y(V) isij- gbs closed in X. Thereforg is ij- gs continuous.

Definition 4.2. A function f: (X, t,,7,) — (Y,04,0,) is ij- g&s irresolute iff ~1(U) is
ij- gés closed for eacly- gds closed set U in Yi # j andi,j = 1,2.

Example4.2. LetX =Y = {a,b,c,d}, 7, = {¢,X, {a}, {a, b}, {qa, c,d}}, ,={¢ X
{a},{d}{a,d},  oy= {¢,X {a},{b}{ab}{bc}{abc}{abd}}, o,={dX
{c},{d},{c,d},{a,b},{a b,c}{a b,d}}. Let f:(X,71,7,) — (Y,0q,0,) defined by
f{a}) = f({d}) = {c}, f({b}) = {d}, f({c}) = {a}. Thenf isij- gbs irresolute.

Theorem 4.3. Everyij- gds continuous function ig- gds irresolute function.

Proof. Let A bej-closed set in Y. Since evely closed set igj- gds closed in Y,
i,j =12 andi # j. Sincef is ij- g6s continuous function. Thefi1(A) is ij- gés
closed in X. Thereforg isij- gds irresolute function.

Theorem 4.4. Let f: (X,14,7,) — (Y,0y,0,) andg: (Y,0y,0,) — (Z,uq, 12) be two
functions. Then

(a) If f andg areij- gds continuous, theg o f isij- gds continuous.

(b) If f andg areij- gds irresolute, thery o f isij- gds irresolute.

(c) If f is ij-gds irresolute andg is ij- gds continuous, thery o f is ij- gds

continuous.

Proof. (a) Let f: (X, 1q,7) — (Y,01,00) and g: (Y,a0y,0,) — (Z,uq,1z) beij-gds
continuous. Let U bg — closed set in Zj,j =12 andi #j. Sinceg is ij-gds
continuousg~1(U) is ij- g&s closed in Y . Sinc¢ is ij- gds continuous(g o )™t =
f gt (V)] isij- gbs closed in X. Thereforg; o f isij- g&s continuous.
The proofs of (b) and (c) are similar.

Definition 4.3. A function f: (X,t,,7,) — (Y,04,0;) is ij —predsg continuous if
f~1(U) isij- g&s closed for eacky - & semi closed set U in Y,j = 1,2 andi # j.

Definition 4.4. A function f: (X, t4,72) — (Y, 01,03) is ij — pre gds closed iff(U) is
ij- gds closed for eacly- 6 semi closed set U in X,j = 1,2 andi # j.

Theorem 45. Let f:(X,14,7,) — (Y,04,0,) is ij-gds continuous, thenf(ij -
g6scl(A)) € j —cl(f(A)) for every subset A of X.

Proof. SinceA < f71(f(4)), we haved < f~1[j — cl(f(A))]. Now j — cl(f(A)) is a
j — closed set in Y and hengel[j — cl(f(A))] is aij- gds closed set containing A.
Consequently ij — g8scl(A) € f~[j — cl(f(A))]. Therefore (ij —géscl(A))
FIF = cl(f@)1 € j — cl(f(A) .
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Theorem 4.6. Let f: (X,14,7,) — (Y, 0y,0,) be a function and lgg: XxX — Y be the
bitopological graph function of defined byg(x) = (x, f(x)) for everyx € X. If g is
ij- g8s continuous, thelfi isij- gds continuous.

Proof. Let U be anj —closed in Y. TherkxU is anij —closed inXxX. Sinceg isij- gds
continuous, therf~1(U) = g~1(XxU) is ij- g&s closed in X. Thereforg is ij- g&s
continuous.

Definition 4.5. A subset A of a bitopological spa€¥, t,,1,) is said to béj- gés dense
if ij —gdscl(A) =X.

Theorem 4.7. Assume thatij — G6SO(X) is closed under any intersection. If
f:(X,11,7) — (Y,04,0,) andg: (X,7t4,72) — (Y, 04,0,) areij- gés continuous and
Y is pairwise Urysohn, thefi = {x € X: f(x) = g(x)} isij- gds closed in X.

Proof Letx € X — E, thenf (x) # g(x). Since Y is a pairwise Urysohn, there exists
open set V ang — open set W such thgt(x) e V,g(x) e W andj—cl(V)Nni—
cl(W) = ¢. Sincef andg areij- g&s continuousf~1[j — cl(V)] andg~[i — cI(W)]
areij- gés closed in X. Let = f~1[j — cl(V)] andG = g~ [i — cIl(W)].

Then U and G aréj- gds closed sets containing SetA = U n G, thus A isij-gds
closed in X. Hence fAANgA)=fUNGNgUNG)<SfU)NgGg(G)=j—
cl(V) noy — cl(W) = ¢. Therefored N E = ¢. This impliesx ¢ ij — gdscl(E). Hence
E isij- gds closed in X.

Theorem 4.8. Assume thatij — G6SO(X) is closed under any intersection. If
f:(X,14,7,) — (Y,04,0,) andg: (X,1,,7,) — (Y, 04,0,) areij- gds continuous, Y is
pairwise Urysohn anfl = g onij- gds dense sed c X, then f =g on X.

Proof Sincef andg areij- gds continuous, Y is pairwise Urysohn by theorem 4.14,
E={xeX:f(x) =g} is ij-gds closed in X. By assumptiorf; = g on ij- gés
dense setd c X. SinceAc E and A isij-gds dense set in X, theX =ij —
goscl(A) € ij — gdscl(E) = E. Hencef = g on X.

Definition 4.6. A bitopological spacéX, t;,,) is calledij- Tys;, if everyij- gds closed
setist; — closed,j = 1,2 andi # j.

Theorem 4.9. Let f: (X, 14,7,) — (Y, 01, 0,) be ontoij- gds irresolute andj- pregds

closed map. If X'igj-Tyss, then Y is als@j- Ty

Proof. Let A be aij-gds closed subset of Yi,j =1,2 andi # j. Sincef is onto
ij- g&s irresolute, f~1(A4) is ij- g6s closed subset of X. Since X ig- Tyss Space,
f1(A) is j— closed in X,i,j =1,2 andi # j. Sincef is ij-pregds closed map,
fIf~1(A)] = Aisj- closed in Y. Therefore Y ig- Tyss.

Definition 4.7. A bitopological spacéX,t,,1,) is calledij- gdsT, ,, if everyij- gds
closed set igi — semi closed;,j = 1,2 andi # j.
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Theorem 4.10. A bitopological spac€X,1,,7,) is ij-gdsT,, if and only if every
singleton igi — semi open oij — semi closed.

Proof. Suppose{x} is nott; — semi closed. TheX\{x} is ij - gds closed. Since
(X,71,72) isij - g&sTy, spaceX\{x} isji — semi closed anfic} is ji — semi open.
Conversely, let F bg - gés closed. For any € ji — scl(F), {X} is ji — semi open or
ij — semi closed by assumption.

Case 1. Suppode} isji — semi open. Sincgc} N F # ¢, thenx € F.

Case 2. Supposge} is ij — semi closed. Ifx ¢ F, then this contradicts Theorem 3.9
since{x} c ji —scl(F)\ F. Thusx € F.

From the above two cases we conclude fhigtaji — semi-closed. HendgX, 74, 7,) is a
ij - gdbsTy, space.

Definition 4.8. A functionf: (X, t,,t,) — (Y,04,0,) is said to béj- gds closed, if
for eachr; — closed set U of Xf (V) isij- gés closed setin Y. If is12 - gds closed
and21 - gds closed, therf is called pairwisgds — closed.

Theorem 4.11. Everyji — semi closed function ig- gds closed function.
Proof. The proof follows from, everji — semi closed set ig- gds closed set.

Theorem 4.12. For a functiorf: (X, t,,7,) — (Y, 04, 0), the following are equivalent:

(i) fisij-gds open.

@iy flj —int(A)] cij — gdsint[f(A)], for each subset A of X.

(i) For eacht € X and forj — open setJ containingx, there is arij- gés open set

V containingf (x) such thaV c f(U).
(iv) If f is surjective, therf ~1[ij — g&sint(B)] c j — cl[f~1(B)], for each subset
B of Y.

Proof. (i) = (ii) Let A be a subset of a bitopological spacg t,,7,). Sincej —
int(A) c A, then f[j —int(A)] c f(A). But j —int(A) is j— open set of X, then
flj — int(A)] is ij- gds open set in Y, sincg is ij- gds open. Hencg[j — int(A)] c
ij — gosint[f[j — int(A)]] c ij — gdsint[f(A)]. Thus flj —int(A)] cij —
gosint[f(A)].
(i) = (iii)) Let x € X andU be aj— open set containing. Then by (i), f[j —
int(U)] c ij — gésint[f(U)] and this impliesf(U) c ij — gdsint[f(U)]. Thus there
exists anj- gds open set V such th@(x) € V andV c f(U).
(i) = (iv) Let Bc Y andx € f~[ij — gdsint(B)]. Thenf(x) € ij — gésint(B). If
x & j—cl[f~1(B)], thenx € U, whereU = X\j — cl[f~1(B)], and hence by (iii), there
is anij- g&s open set V such th#t(x) € V c f(U). NowV c f(U) c f[X\f"1(B)] c
Y\V. Now f(x) € ij — gdsint(B). Hence f(x) € V which is contradiction. Thus
f1ij — gbsine(B)] < j — cl[f 1 (B)].

Theorem 4.13. Let f: (X,14,72) — (Y,01,03) andg: (Y,04,0,) — (Z,n4,1n,) are two
functions, then
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() If fisj-closed angy isij- gds closed, thery o f isij- gds closed.
(i) If f isij-& continuous surjection angle f is ij- gds closed, thery is ij- gds
closed.

Proof. Obvious.
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