Annals of Pure and Applied Mathematics Vol. 10, No.2, 2015, 255-266 ISSN: 2279-087X (P), 2279-0888(online) Published on 25 November 2015 www.researchmathsci.org

ij-Generalized Delta Semi Closed Sets

A. Edward Samuel¹ and D. Balan²

Ramanujan Research Centre PG & Research Department of Mathematics Government Arts College (Autonomous) Kumbakonam – 612002, Tamil Nadu, India ¹Email: aedward74_thrc@yahoo.co.in ²Email: dh.balan@yahoo.com

Received 7 September 2015; accepted 21 September 2015

Abstract. The aim of this communication is to introduce the concepts of ij – generelized δ - semi closed sets and ij – generelized δ - semi open sets and study their fundamental basic properties. Also we define $ij - g\delta s$ continuous functions, $ij - g\delta s$ irresolute functions in bitopological spaces and investigate some of their properties. Furthermore by using this set, we introduce and define $ij - T_{g\delta s}$, $ij - g\delta s T_{1/2}$ bitopological spaces. Also we study some properties of $ij - g\delta s$ closure and interior operators.

Keywords: $ij - \delta$ open set, $ij - \delta$ semi open set, $ij - g\delta s$ closed set, $ij - g\delta s$ continuous function, $ij - g\delta s$ irresolute function, $ij - g\delta s$ closure, $ij - g\delta s$ interior, $ij - T_{g\delta s}$ space, $ij - g\delta s T_{1/2}$ space.

AMS Subject Classification (2010): 54A10, 54A25, 54D10, 54E55

1. Introduction

In 1987, Banerjee [2] introduced the notion δ – open sets in bitopological space. Khedr[9], introduced and study more about $ij - \delta$ open sets. Using $ij - \delta$ open, Edward Samuel and Balan introduced one kind of $ij - \delta$ semi open sets in bitopological space and investigated some of their properties in [6]. In 1990, Arya and Nour [1] defined generalized semi closed sets. Generalized closed and generalized semi closed sets are independent notions. In this paper, we introduce the notion of ij – Generalized δ - semi closed sets in bitopological spaces. Moreover the fundamental properties of this new concept will be studied. As application of ij – Generalized δ - semi closed sets, we introduce and study some notions like $ij - g\delta s$ closure, $ij - g\delta s$ interior and $ij - T_{g\delta s}$, $ij - g\delta s T_{1/2}$ spaces.

2. Preliminaries

Throughout the present paper, (X, τ_1, τ_2) (or briefly X) always mean a bitopological space on which no separation axioms are assumed unless explicitly stated. Also i, j = 1, 2 and $i \neq j$. Let A be a subset of (X, τ_1, τ_2) . By i - Int(A) and i - Cl(A), we mean respectively the interior and the closure of A in the topological space (X, τ_i) for i = 1, 2.

A subset A of X is called ij – semi open[8,9] (respectively $ij - \alpha$ open, ij – regular open) if $A \subseteq j - cl[i - int(A)]$ (respectively $A \subseteq i - int[j - cl[i - int(A)]]$, $A \subseteq i - int[j - cl(A)]$). A point x of X is called an $ij - \delta$ – cluster point of A if $i - Int(j - cl(U)) \cap A \neq \emptyset$ for every τ_i – open set U containing x. The set of all $ij - \delta$ – cluster points of A is called the $ij - \delta$ – closure of A and is denoted by $ij - \delta Cl(A)$.

Definition 2.1. [9] A subset A is said to be $ij - \delta$ closed if $ij - \delta Cl(A) = A$. The complement of an $ij - \delta$ closed set is said to be $ij - \delta$ open. The set of all $ij - \delta$ open (respectively $ij - \delta$ closed) sets of X will be denoted by $ij - \delta O(X)$ (respectively $ij - \delta C(X)$).

Definition 2.2. [6] A subset A of a bitopological space (X, τ_1, τ_2) is called $ij - \delta$ semi open if there exists an $ij - \delta$ open set U such that $U \subseteq A \subseteq j - Cl(U)$. Complement of $ij - \delta$ semi open is called $ij - \delta$ semi closed. The family of $ij - \delta$ semi open (respectively $ij - \delta$ semi closed) set of X is denoted by $ij - \delta SO(X)$ (respectively $ij - \delta SC(X)$).

Recall that, arbitrary union of $cl(A_i), i \in I$ is contained in closure of arbitrary union of subsets A_i in any topological space. The equality holds if the collection $\{A_i, i \in I\}$ is locally finite.

3. *ij* – Generalized δ - semi closed sets

Definition 3.1. A subset A of a bitopological space (X, τ_1, τ_2) is called ij – generalized δ - semi closed $(ij - g\delta s \text{ closed})$ if $ji - scl(A) \subseteq U$ whenever $A \subseteq U$ and U is $ij - \delta$ open in X.

Example 3.1. Let $X = \{a, b, c, d\}$, $\tau_1 = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c, d\}\}$, $\tau_2 = \{\emptyset, X, \{a\}, \{d\}, \{a, d\}\}$. Then 12 – $g\delta s$ closed sets and 21 – $g\delta s$ closed sets are P(X).

Theorem 3.1. Let (X, τ_1, τ_2) be a bitopological space and $A \subset X$. Then the following are true,

(a) If A is τ_i – closed set, then A is $ij - g\delta s$ closed.

(b) If A is ji - semi closed set, then A is $ij - g\delta s$ closed.

Proof. (a) Suppose that A is τ_j – closed set in a bitopological space (X, τ_1, τ_2) . Let $A \subseteq U$ and U is an $ij - \delta$ open in X. Since A is τ_j – closed, we have $j - cl(A) = A \subseteq U$. Then $ji - scl(A) \subseteq j - cl(A) = A \subseteq U$. Therefore A is $ij - g\delta s$ closed.

(b) Suppose that A is ji – semi closed, then $ji - scl(A) = A \subseteq U$ and U is an $ij - \delta$ open in X. Therefore A is $ij - g\delta s$ semi closed.

Theorem 3.2. If A is $ij - g\delta s$ closed set in a bitopological space (X, τ_1, τ_2) and $A \subseteq B \subseteq ji - scl(A)$, then B is $ij - g\delta s$ closed.

Proof. Suppose that A is $ij - g\delta s$ closed set in a bitopological space (X, τ_1, τ_2) and $A \subseteq B \subseteq ji - \text{scl}(A)$. Let $B \subseteq U$ and U is an $ij - \delta$ open in X. Since $A \subseteq B$ and $B \subseteq U$, we have $A \subseteq U$. Since A is $ij - g\delta s$ closed set, then $ji - \text{scl}(A) \subseteq U$. Also since

ij – Generalized Delta Semi Closed Sets

 $B \subseteq ji - \text{scl}(A)$, then $ji - \text{scl}(B) \subseteq ji - \text{scl}(ji - \text{scl}(A)] \subseteq ji - \text{scl}(A) \subseteq U$. Therefore B is $ij - g\delta s$ closed.

Preposition 3.1. If A and B are $ij - g\delta s$ closed sets in a bitopological space (X, τ_1, τ_2) , then $A \cup B$ is also a $ij - g\delta s$ closed set.

Proof. Suppose A and B are $ij - g\delta s$ closed sets in a bitopological space (X, τ_1, τ_2) . Let U be a $ij - \delta$ open in X and $A \cup B \subseteq U$. Since $A \cup B \subseteq U$, we have $A \subseteq U$ and $B \subseteq U$. Since U is $ij - \delta$ open in X and A and B are $ij - g\delta s$ closed sets, we have $ji - scl(A) \subseteq U$ and $ji - scl(B) \subseteq U$. Therefore $[ji - scl(A)] \cup [ji - scl(B)] \subseteq U \cup U$. This implies $ji - scl(A \cup B) \subseteq U$. Hence $A \cup B$ is also a $ij - g\delta s$ closed set.

Preposition 3.2. If A and B are $ij - g\delta s$ closed sets in a bitopological space (X, τ_1, τ_2) , then $A \cap B$ is also a $ij - g\delta s$ closed set.

Proof. Suppose A and B are $ij - g\delta s$ closed sets in a bitopological space (X, τ_1, τ_2) . Let U be a $ij - \delta$ open in X and $A \cap B \subseteq U$. Since $A \cap B \subseteq U$, we have $A \subseteq U$ and $B \subseteq U$. Since U is $ij - \delta$ open in X and A and B are $ij - g\delta s$ closed sets, we have $ji - \text{scl}(A) \subseteq U$ and $ji - \text{scl}(B) \subseteq U$. Therefore $[ji - \text{scl}(A)] \cap [ji - \text{scl}(B)] \subseteq U \cap U$. This implies $ji - \text{scl}(A \cap B) \subseteq U$. Hence $A \cap B$ is also a $ij - g\delta s$ closed set.

Theorem 3.3. The arbitrary union of $ij - g\delta s$ closed sets $\{A_i, i \in I\}$ in a bitopological space (X, τ_1, τ_2) is $ij - g\delta s$ closed if the family $\{A_i, i \in I\}$ is τ_j -locally finite.

Proof. Let $\{A_i, i \in I\}$ be τ_j - locally finite and A_i is $ij - g\delta s$ closed in X for each $i \in I$. Let $\bigcup A_i \subseteq U$ and U is $ij - \delta$ open in X. Then $A_i \subseteq U$ and U is $ij - \delta$ open in X for each i. Since A_i is $ij - g\delta s$ closed in X for each $i \in I$, we have $ji - scl(A_i) \subseteq U$. Consequently, $\bigcup [ji - scl(A_i)] \subseteq U$. Since the family $\{A_i, i \in I\}$ is τ_j -locally finite, $ji - scl[\bigcup (A_i)] = \bigcup [ji - scl(A_i)] \subseteq U$. Therefore, $\bigcup A_i$ is $ij - g\delta s$ closed in X.

Theorem 3.4. Let $B \subset A \subset X$ where A is $ij - \delta$ open and $ij - g\delta s$ closed in X. Then B is $ij - g\delta s$ closed relative to A if and only if B is $ij - g\delta s$ closed relative to X.

Proof. Suppose that $B \subset A \subset X$ where A is $ij - \delta$ open and $ij - g\delta s$ closed in X. Suppose that B is $ij - g\delta s$ closed relative to A. Let $B \subseteq U$, U is $ij - \delta$ open in X. Since $A \subset X$, A is $ij - \delta$ open we have $A \cap U$ is $ij - \delta$ open in X. Then $A \cap U$ is $ij - \delta$ open in A. Since $\subset A$, $B \subset U$, we have $B \subset A \cap U$. Then $ji - scl(B_A) \subseteq A \cap U$, Since B is $ij - g\delta s$ closed relative to A. This implies that $ji - scl(B_A) \subseteq U$. Since A is $ij - \delta$ open, A is $ij - \delta$ sg closed in X. This implies that $ji - scl(B_A) = ji - scl(B) \cap A = ji - scl(B) \subseteq U$, since $ji - sc(B) \subseteq A$. Therefore B is $ij - g\delta s$ closed relative to X.

Conversely, Suppose that B is $ij-g\delta s$ closed relative to X. Let $B \subset U$ and U is $ij-\delta$ open in A. Since $A \subset X$, we have U is $ij-\delta$ open in X. This implies that $ji - scl(B) \subseteq U$. Now $ji - scl(B_A) = ji - scl(B) \cap A = ji - scl(B) \subseteq U$. Therefore B is $ij-g\delta s$ closed relative to A.

Theorem 3.5. A set A be $ij - g\delta s$ closed in X if and only if ji - scl(A) - A contains no non-empty $ij - \delta$ closed set.

Proof. Suppose that A is $ij-g\delta s$ closed in X. Let F be $ij-\delta$ closed and $F \subseteq ji-scl(A) - A$. Since F be $ij-\delta$ closed, we have F^{C} is $ij-\delta$ open. Since $F \subseteq ji-scl(A) - A$, we have $\{ji-scl(A) - A\}^{C} \subseteq F^{C}$. Then $A \subseteq F^{C}$. Also since A is $ij-g\delta s$ closed in X, we have $ji-scl(A) \subseteq F^{C}$. This implies that $\{F^{C}\}^{C} \subseteq \{ji-scl(A)\}^{C} = ji-scl(A^{C})$. Then $F \subseteq ji-scl(A^{C})$. Also since $F \subseteq ji-scl(A) - A$, we have $F \subseteq ji-scl(A^{C})$. Also since $F \subseteq ji-scl(A) - A$, we have $F \subseteq ji-scl(A)$. This implies that $F \cap F \subseteq \{ji-scl(A^{C})\} \cap \{ji-scl(A)\} = ji-scl(A^{C} \cap A) = ji-scl(\phi)$. This implies $F \subseteq \phi$. Hence ji-scl(A) - A contains no non-empty $ij-\delta$ closed set.

Conversely, Suppose that ji - scl(A) - A contains no non-empty $ij - \delta$ closed set. Let $A \subseteq U$ and U is $ij - \delta$ open in X. Suppose that $ji - scl(A) \notin U$. Then $ji - scl(A) \cap U^C \neq \phi$. Since $A \subseteq U$, we have $U^C \subseteq A^C$. Then $ji - scl(A) \cap U^C \subseteq ji - scl(A) \cap A^C = ji - scl(A) - A$. Since is $ij - \delta$ open in X, we have U^C is $ij - \delta$ closed in X. Then $ji - scl(A) \cap U^C$ is $ij - \delta$ closed in X. Which is contradiction, therefore $ji - scl(A) \subseteq U$. Hence A is $ij - \delta \delta$ closed in X.

Theorem 3.6. A set A be $ij - g\delta s$ closed in X. Then A is ji - semi closed if and only if ji - scl(A) - A is $ij - \delta$ closed set.

Proof. Suppose that A is $ij - g\delta s$ closed in X and τ_j – semi closed. Since A is ji – semi closed, we have ji - scl(A) = A. Then $ji - scl(A) - A = \phi$ is $ij - \delta$ closed.

Conversely, Suppose that A is $ij - g\delta s$ closed and ji - scl(A) - A is $ij - \delta$ closed. Since A is $ij - g\delta s$ closed, we have by theorem 3.5, ji - scl(A) - A contains no non-empty $ij - \delta$ closed set. Since ji - scl(A) - A is itself $ij - \delta$ closed, we have $ji - scl(A) - A = \phi$. Then ji - scl(A) = A. Hence A is ji - semi closed.

Theorem 3.7. If A is $ij-g\delta s$ closed in X and $A \subset B \subset ji-scl(A)$, then ji-scl(B) - B contains no non-empty $ij - \delta$ closed set.

Proof. Let A be $ij-g\delta s$ closed in X and $A \subset B \subset ji-scl(A)$, then by theorem 3.2, B is $ij-g\delta s$ closed. By theorem 3.6, ji-scl(B) - B contains no non-empty $ij - \delta$ closed set.

Definition 3.2. A subset A of a bitopological space (X, τ_1, τ_2) is called ij – generalized δ - semi open set $(ij - g\delta s$ open set) if X – A is $ij - g\delta s$ closed.

Theorem 3.8. A set A is $ij - g\delta s$ open if and only if $F \subseteq ji - sint(A)$, whenever $F \subseteq A$ and F is $ij - \delta$ closed.

Proof. Suppose that A is $ij - g\delta s$ open. Then A^C is $ij - g\delta s$ closed. Suppose that F is $ij - \delta$ closed and $F \subseteq A$. Then F^C is $ij - \delta$ open and $A^C \subseteq F^C$. Since A^C is $ij - g\delta s$ closed. Therefore $ji - scl(A^C) \subseteq F^C$. Since $ji - scl(A^C) = [ji - sint(A)]^C$, we have $[ji - sint(A)]^C \subseteq F^C$. Hence $F \subseteq ji - sint(A)$.

Conversely, Suppose that $F \subseteq ji - sint(A)$ whenever $F \subseteq A$ and F is $ij - \delta$ closed.

ij - Generalized Delta Semi Closed Sets

Then $A^C \subseteq F^C$ and F^C is $ij - \delta$ open. Take $U = F^C$, since $F \subseteq ji - sint(A)$, $[ji - sint(A)]^C \subseteq F^C = U$. Since $ji - scl(A^C) = [ji - sint(A)]^C$, we have $ji - scl(A^C) \subseteq U$. Then A^C is $ij - g\delta s$ closed. Therefore A is $ij - g\delta s$ open.

Preposition 3.3. If A and B are $ij-g\delta s$ open sets in a bitopological space (X, τ_1, τ_2) , then $A \cup B$ is also a $ij-g\delta s$ open set.

Proof. Suppose A and B are $ij - g\delta s$ open sets in a bitopological space (X, τ_1, τ_2) . Let U be a $ij - \delta$ closed in X and $U \subseteq A \cup B$. Since $U \subseteq A \cup B$, we have $U \subseteq A$ and $U \subseteq B$. Since U is $ij - \delta$ closed in X and A and B are $ij - g\delta s$ open sets, we have $U \subseteq ji - sint(A)$ and $U \subseteq ji - sint(B)$. Therefore $U \cup U \subseteq ji - sint(A) \cup [ji - sint(B)]$. This implies $U \subseteq ji - sint(A \cup B)$. Hence $A \cup B$ is also a $ij - g\delta s$ open set.

Preposition 3.4. If A and B are $ij - g\delta s$ open sets in a bitopological space (X, τ_1, τ_2) , then $A \cap B$ is also a $ij - g\delta s$ open set.

Proof. Suppose A and B are $ij - g\delta s$ open sets in a bitopological space (X, τ_1, τ_2) . Let U be a $ij - \delta$ closed in X and $U \subseteq A \cap B$. Since $U \subseteq A \cap B$, we have $U \subseteq A$ and $U \subseteq B$. Since U is $ij - \delta$ closed in X and A and B are $ij - g\delta s$ open sets, we have $U \subseteq ji - sint(A)$ and $U \subseteq ji - sint(B)$. Therefore $U \cup U \subseteq ji - sint(A)] \cap [ji - sint(B)]$. This implies $U \subseteq ji - sint(A \cap B)$. Hence $A \cap B$ is also a $ij - g\delta s$ open set.

Theorem 3.9. The arbitrary intersection of $ij-g\delta s$ open sets $\{A_i, i \in I\}$ in a bitopological space (X, τ_1, τ_2) is $ij-g\delta s$ open if the family $\{A_i^C, i \in I\}$ is j-locally finite.

Proof. Let $\{A_i^c, i \in I\}$ be j – locally finite and A_i is $ij - g\delta s$ open in X for each $i \in I$. Then A_i^c is $ij - g\delta s$ closed in X for each $i \in I$. Then by theorem we have $\bigcup A_i^c$ is $ij - g\delta s$ closed. Consequently, $\{\bigcap (A_i)\}^c$ is $ij - g\delta s$ closed in X. Therefore $\bigcap A_i$ is $ij - g\delta s$ open in X.

Theorem 3.10. If A is $ij - g\delta s$ open and $ji - sint(A) \subseteq B \subseteq A$, then B is $ij - g\delta s$ open **Proof.** Suppose that A is $ij - g\delta s$ open and $ji - sint(A) \subseteq B \subseteq A$. Let F be a $ij - \delta$ closed and $F \subseteq B$. Since $F \subseteq B$, $B \subseteq A$, we have $F \subseteq A$. Since A is $ij - g\delta s$ open, we have $F \subseteq ji - sint(A)$. Since $ji - sint(A) \subseteq B$, we have $ji - sint[ji - sint(A)] \subseteq ji - sint(B)$. Then $ji - sint(A) \subseteq ji - sint(B)$. Since $F \subseteq ji - sint(A)$, then $ji - sint(F) \subseteq ji - sint(B)$ Therefore B is is $ij - g\delta s$ open.

Theorem 3.11. A set A is $ij-g\delta s$ closed in X if and only if ji-scl(A) - A is $ij-g\delta s$ open.

Proof. Suppose that A is $ij-g\delta s$ closed in X. Let F be a $ij-\delta$ closed and $F \subseteq ji-scl(A) - A$. Since A is $ij-g\delta s$ closed in X, ji-scl(A) - A contains no non-empty $ij-\delta$ closed set. Since $F \subseteq ji-scl(A) - A$, $F = \phi \subseteq ji-scl(A) - A$]. Then ji-scl(A) - A is $ij-g\delta s$ open.

Conversely, Suppose that $ji - \operatorname{scl}(A) - A$ is $ij - g\delta s$ open and suppose that U is $ij - \delta$ open, $A \subseteq U$. Since $A \subseteq U$, we have $U^C \subseteq A^C$. Therefore $ji - \operatorname{scl}(A) \cap U^C = ji - \operatorname{scl}(A) - A$. Since U is $ij - \delta$ open in X, we have U^C is $ij - \delta$ closed in X. Also since $ji - \operatorname{scl}(A)$ is $ij - \delta$ closed in X and U^C is $ij - \delta$ closed in X. Then $[ji - \operatorname{scl}(A)] \cap U^C$ is $ij - \delta$ closed in X. Since $ji - \operatorname{scl}(A) - A$ is $ij - g\delta s$ open. Then $[ji - \operatorname{scl}(A)] \cap U^C \subseteq ji - \operatorname{sint}[ji - \operatorname{scl}(A) - A] = ji - \operatorname{sint}[ji - \operatorname{scl}(A) \cap A^C] = \phi$. That is $ji - \operatorname{scl}(A) \subseteq U$. Therefore A is $ij - g\delta s$ closed.

Theorem 3.12. The intersection of a $ij-g\delta s$ open set and a $ij-\delta$ open set is always $ij-g\delta s$ open.

Proof. Suppose that A is $ij - g\delta s$ open and B is $ij - \delta$ open. Since B is $ij - \delta$ open, then B^C is $ij - \delta$ closed. Since every $ij - \delta$ closed set is $ij - g\delta s$ closed. Therefore B^C is $ij - g\delta s$ closed. This implies that B is $ij - g\delta s$ open. By Preposition 3.2, we have $A \cap B$ is $ij - g\delta s$ open.

Theorem 3.13. If a set A is $ij - g\delta s$ open in a bitopological space (X, τ_1, τ_2) , then G = X whenever G is $ij - \delta$ open and $[ji - sint(A)] \cup A^C \subseteq G$.

Proof. Suppose that A is $ij-g\delta s$ open in a bitopological space (X, τ_1, τ_2) and G is $ij-\delta$ open and $[ji-sint(A)] \cup A^C \subseteq G$. Then $G^C \subseteq \{[ji-sint(A)] \cup A^C\}^C = [ji-sint(A)]^C \cap (A^C)^C = ji-sint(A^C) \cap A = ji-sint(A^C) - A^C$. Since G is $ij-\delta$ open, G^C is $ij-\delta$ closed and A is $ij-g\delta s$ open, A^C is $ij-g\delta s$ closed. This implies that $ji-scl(A^C) - A^C$ contains no non-empty $ij-\delta$ closed set in X. Then $G^C = \phi$. Therefore G = X.

Remark 3.1. The converse of the above theorem is not true in general.

Definition 3.3. The ij – generalized δ – semi closure of a subset A of a bitopological space (X, τ_1, τ_2) is the intersection of all ij– $g\delta s$ closed sets containing A and is denoted by ij– $g\delta scl(A)$.

Theorem 3.14. Let A be a subset of a bitopological space (X, τ_1, τ_2) . Then $A \subseteq ij - g\delta scl(A) \subseteq ji - scl(A) \subseteq j - cl(A)$.

Proof. It follows from the facts that every τ_j – closed set is ji – semi closed and every ji – semi-closed set is $ij - g\delta s$ closed.

Theorem 3.15. If A is $ij - g\delta s$ closed set, then $A = ij - g\delta scl(A)$. **Proof.** By above theorem, $A \subseteq ij - g\delta scl(A)$. Now, we show that $ij - g\delta scl(A) \subseteq A$. Since $ij - g\delta scl(A) = \cap \{F : A \subseteq F \text{ and } F \text{ is } ij - g\delta s \text{ closed in } X\}$ and A is $ij - g\delta s$ closed set, then $ij - g\delta scl(A) \subseteq A$. Thus $A = ij - g\delta scl(A)$.

Definition 3.4. A point *x* of a bitopological space (X, τ_1, τ_2) is called an *ij*-generalized δ – semi limit point (briefly $ij - g\delta s$ limit point) of a subset *A* of *X*, if for each $ij - g\delta s$ open set *U* containing $x, A \cap U \setminus \{x\} \neq \phi$. The set of all $ij - g\delta s$ limit points of *A* will be denoted by $ij - g\delta sd(A)$ and is called the ij – generalized δ – semi derived set of A.

ij – Generalized Delta Semi Closed Sets

Theorem 3.16. Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . If $A \subset B$, then $ij - g\delta sd(A) \subset ij - g\delta sd(B)$. **Proof.** Obvious.

Theorem 3.17. If A is a subset of a bitopological space (X, τ_1, τ_2) , then $ij - g\delta scl(A) = A \cup ij - g\delta sd(A)$.

Proof. First we prove that $A \cup ij - g\delta sd(A) \subseteq ij - g\delta scl(A)$. By Definition 3.25, $ij - g\delta sd(A) \subseteq ij - g\delta scl(A)$. Since $A \subset ij - g\delta scl(A)$, then $A \cup ij - g\delta sd(A) \subset ij - g\delta scl(A)$.

Conversely, suppose that $x \notin (A \cup ij - g\delta sd(A))$. Then $x \notin A$ and $x \notin ij - g\delta sd(A)$. Since $x \notin ij - g\delta sd(A)$, then there exists an $ij - g\delta s$ open set U such that $x \in U$ and $A \cap U \setminus \{x\} = \phi$. Since $x \notin A$, then $U \cap A = \phi$. Since $x \notin X \setminus U$ where $X \setminus U$ is $ij - g\delta s$ closed and $A \subset X \setminus U$. Then $x \notin ij - g\delta scl(A)$. Hence $ij - g\delta scl(A) \subset A \cup ij - g\delta sd(A)$ and consequently $ij - g\delta scl(A) = A \cup ij - g\delta sd(A)$.

Theorem 3.18. A point $x \in ij - g\delta scl(A)$ if and only if every $ij - g\delta s$ open set U containing $x, U \cap A \neq \phi$.

Proof. Let $x \in ij - g\delta scl(A)$ and U be an $ij - g\delta s$ open set containing x. Suppose that $U \cap A = \phi$. Then $A \subset X \setminus U$ where $X \setminus U$ is $ij - g\delta s$ closed set. Thus $x \in X \setminus U$ which is a contradiction. Therefore $U \cap A \neq \phi$.

Conversely, suppose that for every $ij - g\delta s$ open set U containing x, $U \cup A \neq \phi$. Let $x \notin ij - g\delta scl(A)$, then there exists $ij - g\delta s$ closed F in X such that $A \subset F$ and $x \notin F$. Hence $x \in X \setminus F$ where $X \setminus F$ is $ij - g\delta s$ open set and $X \setminus F \cap A = \phi$, which is a contradiction. Therefore $x \in ij - g\delta scl(A)$.

Theorem 3.19. If *A* and *B* are subsets of a bitopological space (X, τ_1, τ_2) , then the following are true:

(i) $ij - g\delta sd(A \cup B) = ij - g\delta sd(A) \cup ij - g\delta sd(B)$

(ii) $ij - g\delta scl(A \cup B) = ij - g\delta scl(A) \cup ij - g\delta scl(B)$

(iii) $ij - g\delta scl(A) = ij - g\delta scl(ij - g\delta scl(A))$.

Proof. (i) Let *A* and *B* be subsets of *X*. Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$. By Theorem 3.16, and $ij - g\delta sd(A) \subseteq ij - g\delta sd(A \cup B)$ and $ij - g\delta sd(B) \subseteq ij - g\delta sd(A \cup B)$. Hence $ij - g\delta sd(A) \cup ij - g\delta sd(B) \subseteq ij - g\delta sd(A \cup B)$.

Conversely, let $x \notin ij - g\delta sd(A) \cup ij - g\delta sd(B)$. Then $x \notin ij - g\delta sd(A)$, $x \notin ij - g\delta sd(B)$ and there exist two $ij - g\delta s$ open sets U, V such that $x \in U$, $x \in V$, $A \cap U \setminus \{x\} = \phi$ and $B \cap V \setminus \{x\} = \phi$. Hence $x \in U \cap V$, where $U \cap V$ is an $ij - g\delta s$ open set of X by Preposition 3.2. This implies $(U \cap V) \setminus \{x\} \cap (A \cup B) = \phi$ and $x \notin ij - g\delta sd(A \cup B)$. Thus $ij - g\delta sd(A \cup B) \subseteq ij - g\delta sd(A) \cup ij - g\delta sd(B)$ and $ij - g\delta sd(A \cup B) = ij - g\delta sd(A) \cup ij - g\delta sd(B)$. (ii) the proof is similar to (i).

(iii) By Theorem 3.19(iii), $ij - g\delta scl(A) \subseteq ij - g\delta scl(ij - g\delta scl(A))$. Now, let $x \notin ij - g\delta scl(A)$. This means that by Theorem 3.31, there exists an $ij - g\delta s$ open set U of X containing x and $U \cap A = \phi$. Suppose that $U \cap ij - g\delta scl(A) \neq \phi$. Then there is $y \in U \cap ij - g\delta scl(A)$, so $y \in ij - g\delta scl(A)$. This implies for every $ij - g\delta s$ open set V containing y we have $V \cap A \neq \phi$. But U is an $ij - g\delta s$ open set containing y. Hence

 $U \cap A \neq \phi$, which is a contradiction. Thus $U \cap ij - g\delta scl(A) = \phi$ and $x \notin ij - g\delta scl(ij - g\delta scl(A))$. Hence $ij - g\delta scl(A) = ij - g\delta scl(ij - g\delta scl(A))$.

Definition 3.5. The ij – generalized δ – semi interior of a subset A of a bitopological space (X, τ_1, τ_2) is the union of all $ij - g\delta s$ open sets contained in A and is denoted by $ij - g\delta sint(A)$.

Theorem 3.20. For any subset A of a bitopological space (X, τ_1, τ_2) , we have $j - int(A) \subseteq ji - sint(A) \subseteq ij - g\delta sint(A)$.

Proof. The proof follows from the facts that every τ_j – open set is ji – semi open and every ji – semi open set is $ij - g\delta s$ open.

Theorem 3.21. For any subset *A* of a bitopological space (X, τ_1, τ_2) , we have:

(i) $ij - g\delta scl(X \setminus A) = X \setminus ij - g\delta sint(A)$ (ii) $ij - g\delta sint(X \setminus A) = X \setminus ij - g\delta scl(A)$. **Proof.** (i) Let $x \notin ij - g\delta scl(X \setminus A)$, there exists an $ij - g\delta s$ open set U of X containing x such that $U \cap (X \setminus A) = \phi$. Hence $x \in U \subset A$ and $x \in ij - g\delta sint(A)$. Thus $x \notin X \setminus ij - g\delta sint(A)$. Conversely, let $x \notin X \setminus ij - g\delta sint(A)$. Thus $x \in ij - g\delta sint(A)$ and there exists an $ij - g\delta s$ open set U of X such that $x \in U \subset A$. Hence $U \cap (X \setminus A) = \phi$ and $x \notin ij - g\delta scl(X \setminus A)$.

(ii) The proof is similar to that of (i).

4. $ij - g\delta s$ continuous functions

Definition 4.1. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be $ij - g\delta s$ continuous, if $f^{-1}(V)$ is $ij - g\delta s$ closed set in X for every σ_j – closed set V in Y.

Example 4.1. Let $X = Y = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{a\}, \{a, b\}, \{a, c, d\}\}, \tau_2 = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \sigma_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}, \sigma_2 = \{\phi, X, \{c\}, \{d\}, \{c, d\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}.$ Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ defined by $f(\{a\}) = f(\{d\}) = \{c\}, f(\{b\}) = \{d\}, f(\{c\}) = \{a\}$. Then f is $ij - g\delta s$ continuous.

Theorem 4.1. Every pairwise continuous function is $ij - g\delta s$ continuous.

Proof. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be pairwise continuous function. Let U be a j – closed set in Y. Then $f^{-1}(U)$ is j – closed set in X. Since every j – closed set is ij– $g\delta s$ closed, $i \neq j$ and i, j = 1, 2, we have f is ij– $g\delta s$ continuous.

Theorem 4.2. The following are equivalent for a function is $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$,

(a) f is $ij-g\delta s$ continuous.

(b) $f^{-1}(U)$ is $ij-g\delta s$ open for each σ_j – open set U in Y, $i \neq j$ and i, j = 1, 2. **Proof.** (a) \Rightarrow (b) Suppose that f is $ij-g\delta s$ continuous. Let A be a σ_j – open in Y. Then A^c is σ_j – closed in Y. Since f is $ij-g\delta s$ continuous, we have $f^{-1}(A^c)$ is $ij-g\delta s$ closed in X, $i \neq j$ and i, j = 1, 2. Consequently, $f^{-1}(A)$ is $ij-g\delta s$ open in X. ij - Generalized Delta Semi Closed Sets

(b) \Rightarrow (a) Suppose that $f^{-1}(U)$ is $ij - g\delta s$ open for each σ_j – open set U in Y, $i \neq j$ and i, j = 1, 2. Let V be σ_j – closed set in Y. Then V^c is σ_j – open in Y. Therefore by our assumption, $f^{-1}(V^c)$ is $ij - g\delta s$ open in X, $i \neq j$ and i, j = 1, 2. Hence $f^{-1}(V)$ is $ij - g\delta s$ closed in X. Therefore f is $ij - g\delta s$ continuous.

Definition 4.2. A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $ij - g\delta s$ irresolute if $f^{-1}(U)$ is $ij - g\delta s$ closed for each $ij - g\delta s$ closed set U in Y, $i \neq j$ and i, j = 1, 2.

Example 4.2. Let $X = Y = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{a\}, \{a, b\}, \{a, c, d\}\}, \tau_2 = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \sigma_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}, \sigma_2 = \{\phi, X, \{c\}, \{d\}, \{c, d\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}.$ Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ defined by $f(\{a\}) = f(\{d\}) = \{c\}, f(\{b\}) = \{d\}, f(\{c\}) = \{a\}$. Then f is $ij - g\delta s$ irresolute.

Theorem 4.3. Every $ij - g\delta s$ continuous function is $ij - g\delta s$ irresolute function. **Proof.** Let A be *j*-closed set in Y. Since every *j*-closed set is $ij - g\delta s$ closed in Y, i, j = 1,2 and $i \neq j$. Since *f* is $ij - g\delta s$ continuous function. Then $f^{-1}(A)$ is $ij - g\delta s$ closed in X. Therefore *f* is $ij - g\delta s$ irresolute function.

Theorem 4.4. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \to (Z, \mu_1, \mu_2)$ be two functions. Then

- (a) If f and g are $ij g\delta s$ continuous, then $g \circ f$ is $ij g\delta s$ continuous.
- (b) If f and g are $ij g\delta s$ irresolute, then $g \circ f$ is $ij g\delta s$ irresolute.
- (c) If f is $ij-g\delta s$ irresolute and g is $ij-g\delta s$ continuous, then $g \circ f$ is $ij-g\delta s$ continuous.

Proof. (a) Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ and $g:(Y, \sigma_1, \sigma_2) \to (Z, \mu_1, \mu_2)$ be $ij-g\delta s$ continuous. Let U be j - closed set in Z, i, j = 1, 2 and $i \neq j$. Since g is $ij-g\delta s$ continuous, $g^{-1}(U)$ is $ij-g\delta s$ closed in Y. Since f is $ij-g\delta s$ continuous, $(g \circ f)^{-1} = f^{-1}[g^{-1}(U)]$ is $ij-g\delta s$ closed in X. Therefore, $g \circ f$ is $ij-g\delta s$ continuous. The proofs of (b) and (c) are similar.

Definition 4.3. A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $ij - \text{pre}\delta sg$ continuous if $f^{-1}(U)$ is $ij - g\delta s$ closed for each $ij - \delta$ semi closed set U in Y, i, j = 1, 2 and $i \neq j$.

Definition 4.4. A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $ij - \text{pre g}\delta s$ closed if f(U) is $ij - g\delta s$ closed for each $ij - \delta$ semi closed set U in X, i, j = 1, 2 and $i \neq j$.

Theorem 4.5. Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $ij - g\delta s$ continuous, then $f(ij - g\delta scl(A)) \subseteq j - cl(f(A))$ for every subset A of X.

Proof. Since $A \subseteq f^{-1}(f(A))$, we have $A \subseteq f^{-1}[j - cl(f(A))]$. Now j - cl(f(A)) is a j - closed set in Y and hence $f^{-1}[j - cl(f(A))]$ is a $ij - g\delta s$ closed set containing A. Consequently $ij - g\delta scl(A) \subseteq f^{-1}[j - cl(f(A))]$. Therefore $(ij - g\delta scl(A)) \subseteq f[f^{-1}[j - cl(f(A))]] \subseteq j - cl(f(A))$.

Theorem 4.6. Let $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function and let $g: X \times X \rightarrow Y$ be the bitopological graph function of f defined by g(x) = (x, f(x)) for every $x \in X$. If g is $ij-g\delta s$ continuous, then f is $ij-g\delta s$ continuous.

Proof. Let U be an *j*-closed in Y. Then *X*x*U* is an *ij*-closed in *X*x*X*. Since *g* is *ij*- $g\delta s$ continuous, then $f^{-1}(U) = g^{-1}(XxU)$ is $ij - g\delta s$ closed in X. Therefore *f* is $ij - g\delta s$ continuous.

Definition 4.5. A subset A of a bitopological space (X, τ_1, τ_2) is said to be $ij - g\delta s$ dense if $ij - g\delta scl(A) = X$.

Theorem 4.7. Assume that $ij - G\delta SO(X)$ is closed under any intersection. If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and $g: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ are $ij - g\delta s$ continuous and Y is pairwise Urysohn, then $E = \{x \in X: f(x) = g(x)\}$ is $ij - g\delta s$ closed in X.

Proof Let $x \in X - E$, then $f(x) \neq g(x)$. Since Y is a pairwise Urysohn, there exists i – open set V and j – open set W such that $f(x) \in V$, $g(x) \in W$ and $j - cl(V) \cap i - cl(W) = \phi$. Since f and g are $ij-g\delta s$ continuous, $f^{-1}[j - cl(V)]$ and $g^{-1}[i - cl(W)]$ are $ij-g\delta s$ closed in X. Let $U = f^{-1}[j - cl(V)]$ and $G = g^{-1}[i - cl(W)]$.

Then U and G are $ij-g\delta s$ closed sets containing x. Set $A = U \cap G$, thus A is $ij-g\delta s$ closed in X. Hence $f(A) \cap g(A) = f(U \cap G) \cap g(U \cap G) \subseteq f(U) \cap g(G) = j - cl(V) \cap \sigma_1 - cl(W) = \phi$. Therefore $A \cap E = \phi$. This implies $x \notin ij - g\delta scl(E)$. Hence E is $ij-g\delta s$ closed in X.

Theorem 4.8. Assume that $ij - G\delta SO(X)$ is closed under any intersection. If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and $g: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ are $ij - g\delta s$ continuous, Y is pairwise Urysohn and f = g on $ij - g\delta s$ dense set $A \subset X$, then f = g on X.

Proof Since f and g are $ij-g\delta s$ continuous, Y is pairwise Urysohn by theorem 4.14, $E = \{x \in X: f(x) = g(x)\}$ is $ij-g\delta s$ closed in X. By assumption, f = g on $ij-g\delta s$ dense set $A \subset X$. Since $A \subset E$ and A is $ij-g\delta s$ dense set in X, then $X = ij - g\delta scl(A) \subseteq ij - g\delta scl(E) = E$. Hence f = g on X.

Definition 4.6. A bitopological space (X, τ_1, τ_2) is called $ij - T_{g\delta s}$, if every $ij - g\delta s$ closed set is τ_j - closed, i, j = 1, 2 and $i \neq j$.

Theorem 4.9. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be onto $ij - g\delta s$ irresolute and $ij - \operatorname{pre} g\delta s$ closed map. If X is $ij - T_{g\delta s}$, then Y is also $ij - T_{g\delta s}$.

Proof. Let A be a $ij-g\delta s$ closed subset of Y, i, j = 1, 2 and $i \neq j$. Since f is onto $ij-g\delta s$ irresolute, $f^{-1}(A)$ is $ij-g\delta s$ closed subset of X. Since X is $ij-T_{g\delta s}$ space, $f^{-1}(A)$ is j - closed in X, i, j = 1, 2 and $i \neq j$. Since f is ij-preg δs closed map, $f[f^{-1}(A)] = A$ is j- closed in Y. Therefore Y is $ij-T_{g\delta s}$.

Definition 4.7. A bitopological space (X, τ_1, τ_2) is called $ij - g\delta sT_{1/2}$, if every $ij - g\delta s$ closed set is ji - semi closed, i, j = 1, 2 and $i \neq j$.

ij - Generalized Delta Semi Closed Sets

Theorem 4.10. A bitopological space (X, τ_1, τ_2) is $ij - g\delta sT_{1/2}$ if and only if every singleton is ji – semi open or ij – semi closed.

Proof. Suppose $\{x\}$ is not τ_i – semi closed. Then $X \setminus \{x\}$ is $ij - g\delta s$ closed. Since (X, τ_1, τ_2) is $ij - g\delta sT_{1/2}$ space, $X \setminus \{x\}$ is ji – semi closed and $\{x\}$ is ji – semi open.

Conversely, let F be $ij - g\delta s$ closed. For any $x \in ji - scl(F)$, $\{x\}$ is ji - semi open or ij - semi closed by assumption.

Case 1. Suppose $\{x\}$ is ji – semi open. Since $\{x\} \cap F \neq \phi$, then $x \in F$.

Case 2. Suppose $\{x\}$ is ij – semi closed. If $x \notin F$, then this contradicts Theorem 3.9 since $\{x\} \subset ji - scl(F) \setminus F$. Thus $x \in F$.

From the above two cases we conclude that *F* is a ji – semi-closed. Hence (X, τ_1, τ_2) is a $ij - g\delta sT_{1/2}$ space.

Definition 4.8. A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be $ij - g\delta s$ closed, if for each τ_j – closed set U of X, f(U) is $ij - g\delta s$ closed set in Y. If f is $12 - g\delta s$ closed and $21 - g\delta s$ closed, then f is called pairwise $g\delta s$ – closed.

Theorem 4.11. Every ji – semi closed function is ij- $g\delta s$ closed function. **Proof.** The proof follows from, every ji – semi closed set is ij- $g\delta s$ closed set.

Theorem 4.12. For a function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following are equivalent:

- (i) f is $ij g\delta s$ open.
- (ii) $f[j int(A)] \subset ij g\delta sint[f(A)]$, for each subset A of X.
- (iii) For each $x \in X$ and for j open set U containing x, there is an ij- $g\delta s$ open set V containing f(x) such that $V \subset f(U)$.
- (iv) If f is surjective, then $f^{-1}[ij g\delta sint(B)] \subset j cl[f^{-1}(B)]$, for each subset B of Y.

Proof. (i) \Rightarrow (ii) Let A be a subset of a bitopological space (X, τ_1, τ_2) . Since $j - int(A) \subset A$, then $f[j - int(A)] \subset f(A)$. But j - int(A) is j - open set of X, then f[j - int(A)] is $ij - g\delta s$ open set in Y, since f is $ij - g\delta s$ open. Hence $f[j - int(A)] \subset ij - g\delta sint[f[j - int(A)]] \subset ij - g\delta sint[f(A)]$. Thus $f[j - int(A)] \subset ij - g\delta sint[f(A)]$.

(ii) \Rightarrow (iii) Let $x \in X$ and U be a j – open set containing x. Then by (ii), $f[j - int(U)] \subset ij - g\delta sint[f(U)]$ and this implies $f(U) \subset ij - g\delta sint[f(U)]$. Thus there exists an ij- $g\delta s$ open set V such that $f(x) \in V$ and $V \subset f(U)$.

(iii) \Rightarrow (iv) Let $B \subset Y$ and $x \in f^{-1}[ij - g\delta sint(B)]$. Then $f(x) \in ij - g\delta sint(B)$. If $x \notin j - cl[f^{-1}(B)]$, then $x \in U$, where $U = X \setminus j - cl[f^{-1}(B)]$, and hence by (iii), there is an $ij - g\delta s$ open set V such that $f(x) \in V \subset f(U)$. Now $V \subset f(U) \subset f[X \setminus f^{-1}(B)] \subset Y \setminus V$. Now $f(x) \in ij - g\delta sint(B)$. Hence $f(x) \notin V$ which is contradiction. Thus $f^{-1}[ij - g\delta sint(B)] \subset j - cl[f^{-1}(B)]$.

Theorem 4.13. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ are two functions, then

- (i) If f is j closed and g is $ij g\delta s$ closed, then $g \circ f$ is $ij g\delta s$ closed.
- (ii) If f is $ij-\delta$ continuous surjection and $g \circ f$ is $ij-g\delta s$ closed, then g is $ij-g\delta s$ closed.

Proof. Obvious.

Acknowledgement. The authors would like to thank the referees for the useful comments and valuable suggestions for improvement of the paper.

REFERENCES

- 1. S.P.Arya and T.M.Nour, Characterization of s-normal spaces, *Indian J. Pure Appl. Math.*, 8(21) (1990) 717-719.
- 2. G.K.Banerjee, On pairwise almost strongly θ continuous mapping, *Bulletin of Calcutta Mathematical Society*, 79(1987) 314-320.
- 3. M.C.Caldas, Semi-generalized continuous maps in topological spaces, *Portugal. Math.*, 52(4) (1995) 399–407.
- 4. K.Chandrasekhara Rao and K.Joseph, Semi star generalized closed sets, *Bulletin of Pure and Applied Sciences*, 19E(No 2) (2000) 281-290
- 5. K.Chandrasekhara Rao and K.Kannan, Semi star generalized closed sets and semi star generalized open sets in bitopological spaces, *Varahimir Journal of Mathematics*, 5 (2)(2005) 473–485.
- 6. A.Edward Samuel, D.Balan, Some aspects of $ij \delta$ semi open sets in bitopological spaces, Global Journal of Pure and Applied Mathematics, (Accepted).
- 7. T.Indira and K.Rekha, Applications of *b-open sets and ** b-open sets in topological spaces, *Annals of Pure and Applied Mathematics*, 1(1) (2012) 32-43.
- 8. A.B.Khalaf and A.M.Omer, S_i –open sets and S_i –continuity in bitopological spaces, *Tamkang journal of Mathematics*, 43(1) (2012) 81-97.
- 9. F.H.Khedr, Properties of *ij*-delta open sets, *Fasciculi Mathematici*, 52 (2014) 65-81.
- 10. F.H.Khedr and A.M.Alshibani, On pairwise super continuous mappings in bitopological spaces, *Fasciculi International journal of Mathematics & Mathematical science*, 14(4) (1991) 715-722.
- 11. S.N.Maheshwari and R.Prasad, Semi open sets and semi continuous functions in bitopological spaces, *Mathematical Notae*, 26 (1977-1978) 29-37.
- 12. H.Maki, P.Sundaram and K.Balachandran, Semi-generalized continuous maps and semi-T1/2 spaces, *Bull. Fukuoka Univ. Ed. Part III*, 40 (1991), 33–40.
- 13. N.Meenakumari and T.Indira, Weakly * g closed sets in Topological spaces, *Annals of Pure and Applied Mathematics*, 8(1) (2014) 67-75.
- 14. D. Narasimhan, An overview of separation axioms in recent research, *International Journal of Pure and Applied Mathematics*, 70(4) (2012) 529-548.
- 15. R.S.Wali and Vivekananda Dembre, On pre generalized pre regular weakly open sets and pre generalized pre regular weakly neighbourhoods in topological spaces, *Annals of Pure and Applied Mathematics*, 10(1) (2015) 15-20.