
Annals of Pure and Applied Mathematics 
Vol. 10, No.2, 2015, 273-283 
ISSN: 2279-087X (P), 2279-0888(online) 
Published on 3 December 2015 
www.researchmathsci.org 
 

273 
 

Annals of 

Algebraic Structures of Certain Lie Algebras of 
Polynomial Fields 

 H.S.G. Ravelonirina 
Department of Mathematics and Computer Science 

Faculty of Sciences, University of Antananarivo 
Antananarivo 101, BP 906, MADAGASCAR 

Email: rhsammy@yahoo.fr 

Received 4 October 2015; accepted 2 November 2015 

Abstract. We study some Lie algebra of polynomial vector fields on nR  that contains all 
constant fields and the Euler field in order to find some algebraic structures. We then show 
that any Lie algebra polynomial fields on nR  admits a corresponding Lie group.  

Keywords:Lie algebras of polynomials fields, Lie groups, Polynomial fields, Euler field, 
Derivation.  

AMS Mathematics Subject Classification (2010): 17B66; 17B56; 17B40; 17B70 

1. Introduction 
In [12], R -subalgebras of Lie polynomial vector fields P  on R  that contain all the 
constant fields and Euler field was studied by giving a kind of classification. The 
classification of complex simple Lie algebras (and real) is well known. This is partly due to 
the work of Elie Cartan, Dynkin and Killing. In this paper, our work is to study the 
algebraic structures of the Lie algebra of the polynomial (vectors) fields. To do this, we 

classify the Lie subalgebras polynomial fields P  on nR  after giving the properties of 

sets of polynomial vector fields following to graduation of P  and Euler field. We find 

that the Lie algebra of affine fields on nR has a centralizer zero, the Lie algebra coincides 
with its normalizer, all its derivation is inner compared to a vector field and its first 
Chevalley-Eilenberg cohomology space is zero. Knowing all abelian Lie subalgebras of 
P , we obtain some nilpotent and also solvable Lie algebras of polynomial vectors fields. 

Moreover, we find that every Lie algebra polynomial fields P  on 1, ≥nnR  (integer), 
containing all the constant fields, diagonal linear fields and the diagonal fields of degree 1 
is semisimple. Then we identify the Lie subalgebras P  of denombrable 

infinite-dimensional. Finally, we note that any Lie algebra of polynomial vector fields P  

admits a corresponding Lie group connected and simply connected on nR . Examples 
were given to illustrate the results. In the next paper, we will examine some geometric 
aspects of the Lie algebras of the polynomial fields as valid connections to Lie algebras of 
affine fields cf. [6, 7,8,9] as well as those defined by a vector form cf. [5]. We adopt the 
convention of Einstein on the index summation unless otherwise stated. 
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2. Notations and preliminary 
We denote by ( )nRχ  the Lie algebra of vector fields on nR . Throughout this section, we 

consider a R -Lie subalgebra P  (consisting) of polynomial vector fields on nR that 

contains all constant fields and the Euler field E , where 
i

i

x
xE

∂
∂

=  in local 

coordinates, N  its normalizer in nR ; iH  the vector space of homogeneous fields of 

degree i  with 1}{ −∪∈ Νi . We will denoted dH0  the set of all diagonal linear fields, 

1H  the set of quadratic fields, jk
iH  (resp. jk

iH
~

) the set of mixed fields (resp.the mixed 

fields not containing simultaneously of vector fields) generated in local coordinates by 

( )
k

ij

x
x

∂
∂

 with kj ≠  (resp. ( ) ( )
d

sc
b

ra

x
x

x
x

∂
∂

∂
∂

,  where ( )12,,, ≥≥≠≠ srdcba  

with (� = �		�ℎ���			 = 
); c
iH  the set of compound fields of degree i  generated by 

( ) ( ) ( )
k

nn

x
xxx

∂
∂ααα

K
2211  with 2,= ≥∑ iijj

α . In particular, constant fields are 

homogeneous of degree 1− , linear fields of degree 0  and the quadratic fields are 

homogeneous of degree 1. We denote XL  the Lie derivative with respect to ( )nX Rχ∈

. The bracket of two vector fields 
i

i

x
XX

∂
∂

=  and 
j

j

x
YY

∂
∂

=  of ( )nRχ  in 

coordinates ( ) ni
ix ≤≤1  is given by:  

 [ ]
ji

j
i

i

j
i

xx

X
Y

x

Y
XYX

∂
∂










∂
∂−

∂
∂

=, (1) 

 Lie subalgebras Lie P  of polynomial fields are finite-dimensional or denombrable 

infinite-dimensional. They are made of fields whose components are polynomials on nR . 
They decompose in subspaces formed by their constant, linear and quadratic fields and this 
decomposition is respected by the Lie bracket. We can now define the notion of graded 

subalgebra ( )nRχ  using the formula (1):  
 
Definition 2.1.[12] A subalgebra P  of ( )nRχ  is graduated if it admits the graduation 

i
i

PP
1

=
−≥

⊕  , where every iP  is a finite-dimensional subspace of iH  such that  

[ ] {0}=, 11 −− PP [ ] jijijiji +⊂−≥+−≥∀ PPP ,1,  where,1,  and (2) 

 
Proposition 2.2. [12]A polynomial vector fields X  of P  is homogeneous of degree p  

if and only if[ ] pXXE =, .  
 

Definition 2.3. We say that an element X  of a Lie algebra g  is separable if it can be 
written in terms of element components of the "usual" basis of g .  
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Example 2.4. In 2R , the vector fields 〉
∂
∂

∂
∂

∂
∂

∂
∂

〈∈
y

y
x

x
yx

X ,,, , that is 01 HHX ⊕∈ −

is separable while 〉〈⊕〉
∂
∂+

∂
∂

∂
∂

∂
∂

〈∈ − EH
y

y
x

x
yx

X 1=,,  is not.  

 
Remark 2.5. The Euler field has an important role in algebra and geometry.  

 We give some of the properties of the following Euler field:  
 
Properties 2.6. 
• The Euler field E  is the commutant of 0H . It commutes to all vector fields of 

homogeneous degree 0 , that is, [ ] {0}=, 0HE ,  

• The radial field E  is a stabilizer of kH  with 0=k , that is, [ ] {0}=, 0HE ,  

• For all P∈X , we can not have [ ] EXE =,  except in the case where X  is 
separable.  

Proof. Immediate, by using the graduation defined in Definition 2.1 or by taking the 
polynomial fields of the set of vector fields considered, in local coordinates, the only use of 
the Lie brackets is enough.  

 

Example 2.7. In local coordinates, ( )
i

iab
kb

ka

x
xEbaH

x
x

∂
∂≠∈

∂
∂+

=,,
1

 we have 

( ) ( )( ) ab
kb

ka
b

ka H
x

xk
x

xE ∈
∂
∂−





∂
∂

1=, .  

 In the following, we suppose that the Euler field is separable.  
 
Remark 2.8. On nR , mixed fields of ij

kH  and compound fields of c
kH  homogenous of 

degree k  exist only for 2≥n . For example, in local coordinates, 
y

x
∂
∂

 is a mixed field 

and, ( )( )
y

yx
∂
∂3

 is a compound field on 2R .  

 The sets of mixed fields ij
kH  and ij

kH
~

 admit the following properties:  

 
Properties 2.9. 

[ ] ij
lk

ij
l

ij
k HHH +=, ,  

[ ] {0}=
~

,
~ ij

l
ij
k HH ,  

[ ] ij
k

ij
k HHE =, , [ ] ij

k
ij
k HHE

~
=

~
, ,  

[ ] ij
k

ij
k HHH 11 =, −− , [ ] ij

k
ij
k HHH 11

~
=

~
, −− ,  
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1=
~

= −HHH ij
k

ij
k  if 1= −k ,  

{0}=
~

= ij
k

ij
k HH  if 1< −k .  

Proof. Reasoning analogous to the previous one.  
 For linear diagonal fields, we give some properties:  
 

Properties 2.10. 

11 = −− HH d  and [ ] 0=, 11 −− HH ,  

[ ] 101 =, −HHH d ,  

[ ] [ ]dddd HHHHH 00011 ,==, ,  

[ ] ddd HHH 110 =, ,  

[ ] ddd HHH 211 =, ,  

[ ] d
k

d
k HHH 11 =, −−  for all 1≥k  

[ ] d
ji

d
j

d
i HHH +=, , for any 1, −≥ji .  

Proof. Immediate.  
 

Definition 2.11. [12] Let g  be a Lie algebra.   

• The normalizer g  denoted by ( )gN  is defined by 

( ) ( ) [ ] },/{= ggXXg n ⊂∈ ΡχΝ .  

• The centralizer ( )gC  of g  is defined by ( ) ( ) [ ] {0}}=,/{= gXXg nRC χ∈ .  
• An ideal (resp. characteristic ideal) of g  is a stable subspace by inner derivations 

(resp any derivation.)  
 

Example 2.12. The ideal ( ) [ ]ggg ,=∆  and the center ( )gz  are the characteristic ideals 
of g .  

 
3. Study of certain Lie algebra of polynomial fields 
Definition 3.1. [12] We denote by Xλ  the degree of homogeneity of an homogeneous 

field X  of P , Sλ  is the maximum degree of homogeneity of any homogeneous fields 

of P⊂S . The latter can be infinite.  
 

Theorem 3.2. [12] Any derivation of P  is inner compared to normalizer N of P . 

Moreover ( )XFLD +=  with 0HX ∈  and 0HF −∈P .  

 
Definition 3.3. [2] Let g  be a Lie algebra on K . Pose, for all  

[ ]ggg jjjj ∆∆∆ ,=0, 1+≥  the derived algebra of 1+j  order of Lie algebra g  with 

gg =0∆ . The lower sequence of ideals KK ggg j∆∆∆ ⊇⊇⊇ 10  is called the derived 
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series of g . A Lie algebra nontrivial g  on K  is said to be solvable if the sequence of 

commutators cancel each other from a certain rank, that is, if there exists an integer 1≥k
such that {0}=gk∆ .  

 

Theorem 3.4. Let 01 HH ⊕−  be a Lie algebra of affine fields on nR . Its centralizer is 

zero, this Lie algebra coincides to its normalizer, all its derivation is inner compared to a 
vector fields and its first cohomology space of Chevalley-Eilenberg is zero.  

Proof. Note Α  the Lie algebra 01 HH ⊕− , in local coordinates ( ) ni
ix ≤≤1 , generated by 

i

j

i x
x

x ∂
∂

∂
∂

, , Ν  its normalizer and, ( )ΑΗ 1  its first cohomology space of 

Chevalley-Eilenberg. With the simple calculations, we show that the centralizer of Α  is 
zero and this Lie algebra coincides with its normalizer Ν . By Theorem 2.9, p 90 cf. [12], 
any derivation of the Lie algebra of affine fields Α  is inner compared with a vector field 
of A. And by Theorem 2.12, p 91 cf.[12], the first cohomology space of 

Chevalley-Eilenberg ( )ΑΗ 1  is zero. Where the evidence.  
 

Remark 3.5. The Lie algebra of polynomial vector fields 101 HHH ⊕⊕−  forms a Lie 

triple system then by [4] this Lie algebra admits a geometrical subject.  
 

Proposition 3.6. The Lie algebra of polynomial fields jk
i

d HHH
~

01 ⊕⊕− , Ν∈i , is 

solvable of order less than or equal to i .  
Proof. Using a definition of solvability of Lie algebra and under the Properties 2.9, we get 
the result.  

 

Example 3.7. Let jk
i

d HHH
~

= 01 ⊕⊕−P  where 0>i  be a Lie algebra of polynomial 

fields does not contains simultaneously the fields ( )
b

ra

x
x

∂
∂

 and ( )
a

sb

x
x

∂
∂

 with 

12, ≥≥ sr . The Lie algebra P  is solvable of order 3, the inner derivation with respect 
to its normalizer, centralizer void, and its first cohomology space of Chevalley-Eilenberg is 

( ) }{0
1 /= EHPΗ .  

 
Definition 3.8.We define the descending central series of g  by : 

( ) ( ) [ ]ggggg ,=,= 11 ΧΧ  and for all ( ) ( )[ ] ( )ggg jijiji +⊂≥ ΧΧΧ ,1,, , as well as for all 

( ) ( )[ ]ggg kkk ΧΧ ,=2, 1+≥ . We see that for 1≥i , every ( )g1Χ  is an characteristic ideal 

of g , and ( )
( )g

g 1/ +i
i

Χ
Χ  is a central ideal (i.e, contained in the center) of 

( )g
g 1/ +iΧ

.  

 
Definition 3.9. We say that g  is nilpotent of order n  if there exists n  such that 

( ) ( )0=gnΧ . Note that any abelian Lie algebra is nilpotent.  
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Theorem 3.10. Any Lie algebras of diagonal (vector) fields diH  on nR , with 

1}{ −∪∈ Νi  are commutatives.  

Proof. Immediate, by using the Lie bracket of diH  with 1}{ −∪∈ Νi , we find that 

[ ] {0}=, d
i

d
i HH .  

 
Example 3.11. The Lie algebra of polynomial fields on nR  generated by constant fields 
is abelian so nilpotent.  

 
Proposition 3.12. [2]  Let g  be a Lie algebra, I  and J  its two ideals. The quotient 

algebras [ ] ( ) ( )JIJI ∩+ /,/,/ , ggg gg  and [ ]JI ,/g  are quotient abelian Lie algebras.  

 
Remark 3.13. The previous Proposition 3.12 of [2] is not verified by virtue of a result of 

[10] in general for the Lie algebra of polynomial fields. For example, on 2R , consider the 

Lie algebra g  generated by ( )
x

y
x

y
y

y
x

x
yx ∂

∂
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂ 2,,,,, . There are any two 

ideals I  and J  of g  such that their Lie bracket is an ideal generated by 
x∂

∂
. Then the 

quotient algebra [ ]JIg ,/  is not commutative.  

 
Definition 3.14. [2] Let K  be a field of characteristic 0 , g  a Lie algebra over a field 

K  of finite-dimensional. We say that g  is semisimple if the only commutative ideal of g 

is {0} . Moreover, if g  is a semisimple Lie algebra of finite-dimensional, then it 
coincides with its derived algebra.  

 

Theorem 3.15. Any Lie algebra of polynomial fields P  on nR , 1≥n  (integer) 

containing all the constant fields, diagonal linear fields and the diagonal fields of degree 1 
is semisimple.  

Proof. On R , the Lie algebra P  is generated by ( )
x

x
x

x
x ∂

∂
∂
∂

∂
∂ 2,, . Using the 

multiplication tables (Lie bracket) of P , we find that [ ] PPP =, . It’s immediate to 

check that the only commutative ideal of P  is {0} . Analogously on 2R  we find the 

same result. In making a reasoning by recurrence on nR , we obtain the result.  
 

Example 3.16. In 2R , the Lie algebra d
iHH ⊕−1  with {0,1}∈i , in local coordinates, 

generated by ,,
yx ∂

∂
∂
∂ ( ) ( )

y
y

x
x

y
y

x
x

∂
∂

∂
∂

∂
∂

∂
∂ 22 ,,,  is semisimple, all its derivation is 

inner, it coincides with its derived algebra and the first cohomology space of 
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Chevalley-Eilenberg of this Lie algebra is zero.  
 

Definition 3.17. [1] A Lie algebra is said to be sympathetic if [ ]ggg ,= , 

( ) ( )gg adDer =  and ( ) {0}=gz .  
 

Theorem 3.18. Any Lie algebra of polynomials fields verifying the Theorem 3.15 is a 
sympathetic Lie algebra.  
Proof. Immediate.  

 
Remark 3.19. The semisimple Lie algebras of polynomial fields verify results on the 
sympathy and the local sympathy in [1].  

 

Theorem 3.20. The Lie subalgebra d
i

d HHH ⊕⊕− 01  of P  on nR  with *2, Ν∈≥ in  

coincides to its derived algebra, all its derivation is inner compared with a vector fields and 
its first cohomology space of Chevalley-Eilenberg is zero yet it is not semisimple.  

Proof. Let d
i

d HHH ⊕⊕− 01  be a Lie subalgebra of P  on nR  with Ν∈≥ in 2, . By 

making successive calculations of Lie brackets on the elements of d
i

d HHH ⊕⊕− 01 , 

successive applications properties 2.10 assure us that the degrees of homogeneity of 

[ ] d
kj

d
k

d
j HHH +=, , for all 2, ≥kj  run over Ν , thus the Lie algebra coincides to its 

derived algebra and has a denombrable infinite-dimensional. Therefore, it is not 
semisimple. Finally, the Corollary 2.13 and the Theorem 2.12 in [12] lead us to finish the 
proof.  

 
Remark 3.21. Any semisimple Lie algebra is reductive cf.[2] thus all semisimple Lie 
algebras of polynomial fields P  are reductives.  

 

Corollary 3.22. [12] In local coordinates ( ) niix ≤≤1  of nR , the values of Pλ  is infinite if 

and only if 









∂
∂

∂
∂≠∃

j
ji

i
j

x
xx

x
xji ,/  or ( ) 








∂
∂

∂
∂≠∃

j
j

i
j

x
x

x
xji

2
,/  or ( ) 








∂
∂∃

i
i

x
xi

3
/  

appearing in the expression of a nonzero element of P .  

 Therefore, any Lie algebra P  satisfying the Corollary 3.22 is a Lie algebra of 
denombrable infinite-dimensional whose inner derivation, centralizer and first 
cohomology space of Chevalley-Eilenberg are zero.  
 
Lemma 3.23. Let g  be a R -vector space containing all the constant fields, the Euler 

field and a compound field of degree 1≥r  (finite). In order that g  is a R -Lie algebra of 
polynomial fields, all compound fields of lower degree and mixed fields obtained from of 
initial compound field must be in g .  
Proof. With a rather long calculation of the successive Lie brackets and given the role of 
constant fields and field Euler g  would be stable by the bracket as soon as all the 
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compound fields of degree s with 1−≤ rs  belong to g . But these compound fields of 
lower order can be mixed fields when all variables in the head of the vector fields have 
exponent zero except for one and only one variable. Which completes our proof.  

 

Proposition 3.24. In 2R , any Lie algebra of polynomial fields P  who contains a 
compound fields is of denombrable infinite-dimensional, of inner derivation compared 

with its normalizer N  and of nul centralizer. In nR  with 3≥n , any Lie algebra of 
polynomial fields P  who contain simultaneously at least a mixed field and a compound 
field, the foot of one being in the head of the other, is of denombrable infinite-dimensional, 
its derivation is inner and its centralizer is zero. Otherwise, this Lie algebra is solvable of 
order 3.  
Proof. This follows from Lemma 3.23, of the Corollary 3.22, Proposition 2.11 in [12] and 
of the Definition 3.3.  

 
Example 3.25. 

 • The Lie algebra of polynomial vector fields generated, in local coordinates by ,
jx∂

∂

( ) KK ,,
j

rj
j

j

x
x

x
x

∂
∂

∂
∂

 with },{1, nj K∈  and r  an integer greater than or equal to 

3 is denombrable infinite-dimensional, coincides with its derived ideal, do not admit any 
other commutative ideal than {0} , of inner derivation, centralizer zero and of first 
cohomology space of Chevalley-Eilenberg zero.  
    • The Lie algebra of polynomial vector fields of P  of denombrable 
infinite-dimensional generated, in local coordinates by 

( ) ( )
d

sc
b

ra
j

j
j x

x
x

x
x

x
x ∂

∂
∂
∂

∂
∂

∂
∂

,,,, K  with },{1,,,,, njdcba K∈  and 21, ≥≥ sr  

(nonnegative integers) such that da =  or bc =  admits a nontrivial commutative ideal 

generated by ( ) K,,,
i

rj
i

j
i x

y
x

y
x ∂

∂
∂
∂

∂
∂

, where },{1,, nji K∈  and r  nonnegative 

integers. Its derivation is inner, its centralizer is zero and, its derived ideal is strictly 
included in this algebra.  

    • In 3R , let g  be the R -vector space generated, in local coordinates by 

,,,
zyx ∂

∂
∂
∂

∂
∂

z
xyE

∂
∂

, . In order that g  is a Lie algebra, all the mixed fields formed by the 

compound fields 
z

xy
∂
∂

 and constant fields of g  must be in g . Then the Lie algebra g  

is solvable of order 3, of zero centralizer, of inner derivation from its normalizer and of 

first cohomology space of Chevalley-Eilenberg ( ) }{0
1 /= EHgΗ .  
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4. Link of Lie group and Lie algebra of polynomial vector fields  
Definition 4.1.[3] We call Χ category a collection of points or objects K,,YX  (Resp 

arrows or morphisms K,, gf ) in such a way that two points are associated to each arrow 

f  (resp. point X ): its source (or domain) X  and goal (or codomain) Y , what note that 

f  : domain) X  and goal (or codomain) Y , noted that YXf →:  (resp is associated 

an arrow: its identity XXidX →: ); and each pair of consecutive arrows 

ZYgYXf →→ :,:  is associated with an arrow : its composed ZXfg →:o . It 
satisfies the following properties:   
 • for all TZhZYgYXf →→→ :,:,: , we have ( ) ( ) TXfghfgh →:= oooo , 

• for all YXf →: , we have fidf X =o  and ffidY =o .  

 We note ( )YXHomX , , or ( )YX,Χ , the set of arrows of Χ of source X  and 

of goal Y .  
 

Definition 4.2.[3] Let two categories Χ and ∆ . A functor ∆→XF :  is a function 

pF  (resp. a function fF ) or simply F  of points (resp. arrows) de Χ to the points (resp. 

arrows) of ∆  such that the following properties are verified :   
• for all arrow YXf →:  in Χ, we have ( ) ( ) ( )YFXFfF →:  in ∆ ,  

• for all point X  in Χ, we have ( ) ( )XididF FX =  in ∆ ,  

• for all pair of consecutive arrows ZYgYXf →→ :,:  in Χ, we have 

( ) ( ) ( )fFgFfgF oo =  in ∆ .  
 

Proposition 4.3. Let P  and Q  two real Lie groups of Lie algebras of polynomial fields 

P  and Q  respectively. If QPf →:  is a morphism of Lie groups then the differential 

df  of f  defined by ( ) QP →:1df  is a morphism of Lie algebras of polynomial 
fields.  
Proof. Just check that there exists a functor noted T  of the category of real Lie groups de 
Lie to the category of Lie R -algebras of polynomial fields. Moreover, we can also show 
that for Lie groups P  and Q  of Lie algebras P  and Q  respectively, if QPf →:  

is a morphism of Lie groups then QP →:fTe  is a morphism of Lie algebras of 

polynomials fields, where e is a neutral element of Lie group G  and fTx  denotes 

tangente application of f  to the point e.  
 

Proposition 4.4. Let P  be a real Lie group of nR . There is a connected and simply 

connected Lie group P
~

 whose application π  of P
~

 to P  is a covering; then the 

tangential application πd  of Lie algebras ( )PLie
~

 to ( )PLie  is an universal covering of 

P .  

Proof. Let P  be a Lie group. On nR , we know that there exists another connected and 

simply connected Lie group P
~

 such that the application PP →~
:π  is a morphism of 
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Lie groups. So π  is a covering. Taking the differential πd  of π  and under Theorems 
and Propositions (3.22-26) of [13], we obtain that πd  is a isomorphism of Lie algebras of 

polynomial fields ( )PLie
~

 to ( )PLie . As πKer  is a central normal subgroup of P
~

such 

that πKerP/
~

 is isomorphic to P  then P
~

 is unique to up isomorphism. Hence πd  is an 

universal covering.  
 

Theorem 4.5. Let P  and Q  two real Lie groups of Lie algebras P  and Q  

respectively and QP →:ϕ  a morphisme of Lie algebras. If P  is simply connected 

then there exists a unique morphism of Lie groups associated QPf →:  such that 

ϕ=df .  
Proof. This follows from Theorem 3.27 of [13].  

 

Corollary 4.6. Any connected and simply connected P  of nR  is completely determined 

by its Lie algebra of polynomial fields P on nR .  

Proof. It’s immediate, because P  and Q  are connected and simply connected spaces of 
nR  then ϕ  is an unique and global isomorphism.  

 
Theorem 4.7. There is an algebraic correspondence between the properties of Lie algebras 
of polynomial vector fields and the associated Lie groups.  

Proof. Let P  and Q  two Lie groups on nR , an application ∞C  noted 

QQP →×:ψ  such that ( ),.pp ψa  is a morphism of P  in the automorphism 

groups Q , so QP ψ×  is a Lie group. The differential ( )pψ  of ( ),.pψ  in identity of 

Q  is a morphism ∞C  of P  in the automorphism of Q . Its differential ψd  is a 

homomorphism of P  in ( )QDerR  and the Lie algebra of QP ψ×  is QP ψd
⊕ . 

Conversely, as P  and Q  are connected and simply connected Lie groups and 

considering an algebra homomorphisms ( )QP Der→:ϕ  then there exists an unique 

action ψ  of P  on Q  such that ϕψ =d  and QP ψ×  is a connected and simply 

connected Lie group and of Lie algebra QP ψd
⊕ . This finishes our proof.  

 
Corollary 4.8. A Lie group P  is said solvable, nilpotent, semisimple or 

infinite-dimensional if its Lie algebra of polynomial fields on nR  is solvable, nilpotent, 
semi-simple or denombrable infinite-dimensional.  
Proof. This follows from Theorem 4.7.  
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