Annals of Pure and Applied Mathematics Annals of
Vol. 10, No.2, 2015, 273-283

ISSN: 2279-087X (P), 2279-0888(online) Pure and Applied

Published on 3 December 2015

www.researchmathsci.org Mathematics

Algebraic Structures of Certain Lie Algebras of
Polynomial Fields

H.S.G. Ravelonirina
Department of Mathematics and Computer Science
Faculty of Sciences, University of Antananarivo
Antananarivo 101, BP 906, MADAGASCAR
Email: rhsammy@yahoo.fr

Received 4 October 2015; accepted 2 November 2015
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1. Introduction

In [12], R -subalgebras of Lie polynomial vector field® on R that contain all the

constant fields and Euler field was studied by mgvia kind of classification. The
classification of complex simple Lie algebras (agal) is well known. This is partly due to
the work of Elie Cartan, Dynkin and Killing. In thipaper, our work is to study the
algebraic structures of the Lie algebra of the polgial (vectors) fields. To do this, we

classify the Lie subalgebras polynomial fiel®s onR" after giving the properties of
sets of polynomial vector fields following to gradion of P and Euler field. We find
that the Lie algebra of affine fields dR "has a centralizer zero, the Lie algebra coincides
with its normalizer, all its derivation is inner ropared to a vector field and its first
Chevalley-Eilenberg cohomology space is zero. Kngvall abelian Lie subalgebras of
P , we obtain some nilpotent and also solvable Lgeltas of polynomial vectors fields.
Moreover, we find that every Lie algebra polynonfialds P on R",n>1 (integer),
containing all the constant fields, diagonal linfelds and the diagonal fields of degrée

is semisimple. Then we identify the Lie subalgebr& of denombrable
infinite-dimensional. Finally, we note that any lakebra of polynomial vector fieldP
admits a corresponding Lie group connected and Igimpnnected onR". Examples
were given to illustrate the results. In the nexpgr, we will examine some geometric
aspects of the Lie algebras of the polynomial fiedd valid connections to Lie algebras of

affine fields cf. [6, 7,8,9] as well as those definby a vector form cf. [5]. We adopt the
convention of Einstein on the index summation wEberwise stated.
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2. Notationsand prdiminary
We denote by)(( ”) the Lie algebra of vector fields oR" . Throughout this section, we

consider aR -Lie subalgebraP (consisting) of polynomial vector fields oR" that

. ' , s
contains all constant fields and the Euler field, where E=x'a—i in local
X

coordinates,N its normalizer inR"; H, the vector space of homogeneous fields of
degreei with i ON O{-1}. We will denotedH_ the set of all diagonal linear fields,

H, the set of quadratic ﬁeldsl,—iijk (resp. I-|i“<) the set of mixed fields (resp.the mixed
fields not containing simultaneously of vector digl generated in local coordinates by

(x")i % with j#k (resp. (x"")r % (xc)s% where (a¢ b,czd, r=2, 321)

with (a = d where b =c); HS the set of compound fields of degréegenerated by

a. g Q’n a . o . .
(xl)l(xz)z...(x”) Fv with Zja'j =i,i=2 . In particular, constant fields are
homogeneous of degreel, linear fields of degredd and the quadratic fields are
homogeneous of degrele We denotel, the Lie derivative with respect t&X D)(( ”)

. The bracket of two vector fieldsX :X‘% and Y:Y"% of )(( ”) in
X X

coordinates(xi )L

<i<n

is given by:

AV Ay
[X,Y]=| X! O _yioX 19 1)
ox' ox' Jox'

Lie subalgebras LieP of polynomial fields are finite-dimensional or denbrable

infinite-dimensional. They are made of fields whosenponents are polynomials dR".
They decompose in subspaces formed by their cdnbteear and quadratic fields and this
decomposition is respected by the Lie bracket. \Afe mow define the notion of graded

subalgebra)((R“) using the formula (1):

Definition 2.1.[12] A subalgebraP of )(( ”) is graduated if it admits the graduation
P = 00 P, , where everyP, is a finite-dimensional subspace bf, such that

iz-1

P.,P,]={0} and i, j 2 -1 wherei + j 2 -1,|P,,P, | O P,,, (2)

Proposition 2.2. [12]A polynomial vector fieldsX of P is homogeneous of degreg
if and only iffE, X] = pX ..

Definition 2.3. We say that an elemerX of a Lie algebrag is separable if it can be
written in terms of element components of the "l'sbasis of g.
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Example 2.4. In R?, the vector fieldsX D(i,i,xi, yi>, that isX UH_, O H,
ox 0y O0x ~ oy
is separable whileX D(i,i,xi + yi) =H_ UO(E) isnot.
ox dy o0Ox ~ oy

Remark 2.5. The Euler field has an important role in algebrd gaometry.
We give some of the properties of the followindeg dield:

Properties 2.6.
* The Euler field E is the commutant oH . It commutes to all vector fields of

homogeneous degre@, that is, [E, HO] ={0},
» The radial field E is a stabilizer ofH, with k=0, that s, [E, HO] ={0},

e Forall XOP , we can not haveEE, X] = E exceptin the case wherX is

separable.
Proof. Immediate, by using the graduation defined in Bigéin 2.1 or by taking the
polynomial fields of the set of vector fields catesied, in local coordinates, the only use of
the Lie brackets is enough.

Example 2.7. In local coordinates(xa)kﬂ% O Hfb, azb E=X % we have
a a —_ a a al
{E, (x )kﬁ} = (k-1)(x )kﬁm "

In the following, we suppose that the Euler fisldeparable.

Remark 2.8.0n R", mixed fields of H} and compound fields oHZ homogenous of

degreek exist only for n=2. For example, in local coordinate);,ai is a mixed field
y

and, (x)(y)aaiy is a compound field orR?.

The sets of mixed fieIdsHE and I:-IE admit the following properties:

Properties 2.9.
lHE’HFJ:i4LW
A AY =10y,

E.Hi|=Hi, [EAY|=A),
W$H“:HL'W$QH:HL’
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HY =H) =H, if k=-1,
HI =HJ ={0} if k<-1.

Proof. Reasoning analogous to the previous one.
For linear diagonal fields, we give some propsrtie

Properties 2.10.
HY =H_ and[H_,H,]=0,
|.H17H8J:H—1’
[HLHE|=HE =|HE HE,
[He Hy = Hy
[He He|= s,
[H. HE|=HE, forall k>1
[Hid,H;’J: HS,, foranyi, j=-1.
Proof. Immediate.

Definition 2.11. [12] Let g be a Lie algebra.

* The normalizerg denoted byN(g) is defined by
N (g)={xDx(P")[x.0]0 g}

s The centralizerC(g) of g is defined byC(g) ={X D)((R")/[X, g] ={0}} .

* Anideal (resp. characteristic ideal) gf is a stable subspace by inner derivations
(resp any derivation.)

Example2.12. The ideal A (g) = [g, g] and the centelz(g) are the characteristic ideals
of g.

3. Study of certain Lie algebra of polynomial fields
Definition 3.1. [12] We denote byA, the degree of homogeneity of an homogeneous

field X of P, Ag is the maximum degree of homogeneity of any homeges fields
of SO P . The latter can be infinite.

Theorem 3.2. [12] Any derivation of P is inner compared to normalizéd of P .
Moreover D = L,y with XUH, and FUP —H,.

Definition 3.3. [2] Let g be a Lie algebra oK . Pose, for all
j=0,A"g= [A 'g,A jg] the derived algebra of +1 order of Lie algebrag with
A°g=g. The lower sequence of ideals’g D A'gd...OA 'g... is called the derived
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series ofg. A Lie algebra nontrivialg on K is said to be solvable if the sequence of
commutators cancel each other from a certain thakis, if there exists an integér=1
such thatA*g={0} .

Theorem 3.4. Let H_, [0 H, be a Lie algebra of affine fields dR". Its centralizer is

zero, this Lie algebra coincides to its normalizdirits derivation is inner compared to a
vector fields and its first conomology space of Ghiey-Eilenberg is zero.

Proof. Note A the Lie algebraH_ 1 H, in local coordinates(xi <i<n» 9€Nerated by
9 9
ox' ' ox
Chevalley-Eilenberg. With the simple calculatiows, show that the centralizer &% is

zero and this Lie algebra coincides with its noir@al N . By Theorem 2.9, p 90 cf. [12],

any derivation of the Lie algebra of affine fields is inner compared with a vector field
of A. And by Theorem 2.12, p 91 cf[12], the firstohomology space of

Chevalley-EilenbergH 1(A) is zero. Where the evidence.

, N its normalizer and,Hl(A) its first cohomology space of

Remark 3.5. The Lie algebra of polynomial vector fieldd_, 1 H, [0 H, forms a Lie
triple system then by [4] this Lie algebra admitge@ametrical subject.

Proposition 3.6. The Lie algebra of polynomial fields , OHS OHX, iON, is

solvable of order less than or equalito
Proof. Using a definition of solvability of Lie algebradunder the Properties 2.9, we get
the result.

Example 3.7. Let P =H_ OHZ OHX wherei >0 be a Lie algebra of polynomial

¢ 0

fields does not contains simultaneously the fie@é‘) a_b and (xb)s% with
X X

r>2,s=1. The Lie algebraP is solvable of ordei3, the inner derivation with respect
to its normalizer, centralizer void, and its ficehomology space of Chevalley-Eilenberg is
HY(P)=H/ g

Definition 3.8.We define the descending central seriegoby :
X4(g)=g,X(g)=[g,9] and for alli, j 21, lXi (g),x! (g)J 0 X*1(g), as well as for all
k=2, Xk+l(g) = lg,Xk (g)J We see that foi 21, every Xl(g) is an characteristic ideal

of g, and X (g)/Xi+l is a central ideal (i.e, contained in the cerﬂ)érg/x

i+1(g) -

(9)

Definition 3.9. We say thatg is nilpotent of ordern if there existsn such that
X" (g) = (O) Note that any abelian Lie algebra is nilpotent.
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Theorem 3.10. Any Lie algebras of diagonal (vector) fieldsiid on R", with
iONO{-1} are commutatives.

Proof. Immediate, by using the Lie bracket &f® with i ONO{-1}, we find that
[HidyHidJ:{O} :

Example 3.11. The Lie algebra of polynomial fields oR" generated by constant fields
is abelian so nilpotent.

Proposition 3.12. [2] Let g be a Lie algebraJ and J its two ideals. The quotient
algebrasg/(y 1, 9/(1.5), 9/(1.,) and g/, ;) are quotient abelian Lie algebras.

Remark 3.13. The previous Proposition 3.12 of [2] is not veudfiy virtue of a result of

[10] in general for the Lie algebra of polynomieldls. For example, oiR?, consider the

Lie algebra g generated byai,i,xi,yi,yi
X

> 0
, — . There are any two
dy O0x ~dy ~ox (y) 0x Y

ideals | and J of g such that their Lie bracket is an ideal generb;ed;—. Then the
X

quotient algebrag/, ;) is not commutative.

Definition 3.14. [2] Let K be a field of characteristi®, g a Lie algebra over a field
K of finite-dimensional. We say thay is semisimple if the only commutative ideal of g
is {0} . Moreover, if g is a semisimple Lie algebra of finite-dimensionglen it
coincides with its derived algebra.

Theorem 3.15. Any Lie algebra of polynomial fieldsP on R", n=1 (integer)

containing all the constant fields, diagonal linfelds and the diagonal fields of degrée
is semisimple.

Proof. On R, the Lie algebraP is generated byai,xi,(x)zai. Using the
X X

0x
multiplication tables (Lie bracket) oP , we find that[P,P] =P . It's immediate to

check that the only commutative ideal Bf is {0} . Analogously onR? we find the
same result. In making a reasoning by recurrenc®8nwe obtain the result.

Example 3.16. In R?, the Lie algebraH_, 0 H with i0{0,1}, in local coordinates,

0 0 0 > 0 2 0 . . . .
—, X—,y—,|X)"—, — is semisimple, all its derivation is
o “oxVay ) ay p

inner, it coincides with its derived algebra ance tfirst cohomology space of

generated byi,
0x
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Chevalley-Eilenberg of this Lie algebra is zero.

Definition 3.17. [1] A Lie algebra is said to be sympatheticgf= [g, g],
Der(g) = ad(g) and Z(g)={0} .

Theorem 3.18. Any Lie algebra of polynomials fields verifying tiiéheorem 3.15 is a
sympathetic Lie algebra.
Proof. Immediate.

Remark 3.19. The semisimple Lie algebras of polynomial fieldsifyeresults on the
sympathy and the local sympathy in [1].

Theorem 3.20. The Lie subalgebred_, O HJ OH! of P on R" with n>2,i ON’

coincides to its derived algebra, all its derivati®inner compared with a vector fields and
its first conomology space of Chevalley-Eilenbergéro yet it is not semisimple.

Proof. Let H_,OHJ O H® be a Lie subalgebra d on R" with n>2,iON. By

making successive calculations of Lie brackets hen élements ofH_, OHJ OH?,
successive applications properties 2.10 assurdnatstite degrees of homogeneity of
[Hf,HfJ: H?,., for all j,k=2 run overN, thus the Lie algebra coincides to its

derived algebra and has a denombrable infinite-d#iomal. Therefore, it is not
semisimple. Finally, the Corollary 2.13 and the diteen 2.12 in [12] lead us to finish the
proof.

Remark 3.21. Any semisimple Lie algebra is reductive cf.[2] thallssemisimple Lie
algebras of polynomial field$® are reductives.

Corollary 3.22. [12] In local coordinates()g )]Sisn
and only if

(Ei £i/x -2 xix i) or (Ei £/ i,(xj)zi) or [Ei / (x‘fi_j
ox' ox! ox' ox! ox'
appearing in the expression of a nonzero elemem of

Therefore, any Lie algebr® satisfying the Corollary 3.22 is a Lie algebra of

denombrable infinite-dimensional whose inner ddibra centralizer and first
cohomology space of Chevalley-Eilenberg are zero.

ofR", the values ofd,, is infinite if

Lemma 3.23. Let g be aR -vector space containing all the constant fielts, Euler
field and a compound field of degree>1 (finite). In order thatg is a R -Lie algebra of

polynomial fields, all compound fields of lower deg and mixed fields obtained from of
initial compound field must be iy .

Proof. With a rather long calculation of the successiietirackets and given the role of
constant fields and field Euleg would be stable by the bracket as soon as all the
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compound fields of degree with S<r —1 belong tog. But these compound fields of

lower order can be mixed fields when all variabiteshe head of the vector fields have
exponent zero except for one and only one variddléch completes our proof.

Proposition 3.24. In R?, any Lie algebra of polynomial field® who contains a
compound fields is of denombrable infinite-dimemsi of inner derivation compared
with its normalizerN and of nul centralizer. IIR" with n>3, any Lie algebra of
polynomial fields P who contain simultaneously at least a mixed faadd a compound

field, the foot of one being in the head of theeotlis of denombrable infinite-dimensional,
its derivation is inner and its centralizer is zeBoherwise, this Lie algebra is solvable of
order 3.

Proof. This follows from Lemma 3.23, of the Corollary 3,Proposition 2.11 in [12] and
of the Definition 3.3.

Example 3.25.
» The Lie algebra of polynomial vector fields geated, in local coordinates bga—J
X

X! %,...(xj)r % with jO{1,...,n} andr an integer greater than or equal to
X X
3 is denombrable infinite-dimensional, coincideshwis derived ideal, do not admit any
other commutative ideal thaf0} , of inner derivation, centralizer zero and of ffirs
cohomology space of Chevalley-Eilenberg zero.
» The Lie algebra of polynomial vector fieldsf oP of denombrable

infinite-dimensional generated, in local coordisate by
o , 0 ¢ 0 s 0 : .
— X —{x*) —,... X’ — with a,b,c,d,jO{1,...,n} and r=>1,s>2
axj axj ( )axb ( )axd J { }
(nonnegative integers) such that=d or c=b admits a nontrivial commutative ideal
generated byi, Ji(yJ)ri , where i, j0{1,...,n} and r nonnegative
Ox' ox' Ox'

integers. Its derivation is inner, its centralizerzero and, its derived ideal is strictly
included in this algebra.

« In R®, let g be the R -vector space generated, in local coordinates by

90 0 i E, xyai. In order thatg is a Lie algebra, all the mixed fields formed by t
z

ax’ 9y’ oz
compound fieldsxyai and constant fields off must be ing. Then the Lie algebray
z

is solvable of order3, of zero centralizer, of inner derivation from itesrmalizer and of
first cohomology space of Chevalley—EiIenbeIrgl(g) =Hy/(g -
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4. Link of Liegroup and Lie algebra of polynomial vector fields
Definition 4.1.[3] We call X category a collection of points or objec},Y,... (Resp
arrows or morphismsf , g,...) in such a way that two points are associatecéh arrow
f (resp. point X ): its source (or domain)X and goal (or codomainY , what note that
f :domain) X and goal (or codomainy , noted thatf : X — Y (resp is associated
an arrow: its identity id, : X - X ); and each pair of consecutive arrows
f:X 5Y,9:Y - Z is associated with an arrow : its composgd f : X - Z. It
satisfies the following properties:
oforall f:X - Y,g:Y - Z,h:Z - T,wehave(hog)o f =ho(go f): X = T,
eforall f:X - Y,wehavefoid, =f andid,of ="f.

We note Hom, (X,Y), or X(X,Y), the set of arrows oK of source X and
of goal Y.

Definition 4.2[3] Let two categoriesX and A . A functor F: X — A is a function
F, (resp. a functionF, ) or simply F of points (resp. arrows) dX to the points (resp.

arrows) of A such that the following properties are verified :
«forallarrow f: X - Y in X, we haveF(f): F(X) - F(Y) in A,
« for all point X in X, we haveF(id, )=id.(X) in A,
« for all pair of consecutive arrows$ : X - Y,g:Y - Z in X, we have

F(go f)=F(g)oF(f) in &.

Proposition 4.3. Let P and Q two real Lie groups of Lie algebras of polynonfialds
P and Q respectively. If f : P - Q is a morphism of Lie groups then the differential
df of f defined by df(l):P - Q is a morphism of Lie algebras of polynomial

fields.

Proof. Just check that there exists a functor nofedf the category of real Lie groups de
Lie to the category of LieR -algebras of polynomial fields. Moreover, we casoathow
that for Lie groupsP and Q of Lie algebrasP and Q respectively, if f :P - Q

is a morphism of Lie groups thef,f :P — Q is a morphism of Lie algebras of
polynomials fields, wheree is a neutral element of Lie grou and T, f denotes
tangente application off to the pointe.

Proposition 4.4. Let P be a real Lie group oR". There is a connected and simply
connected Lie groupP whose applicationzi of P to P is a covering; then the
tangential applicationds of Lie aIgebrasLie(P) to Lie(P) is an universal covering of

P.
Proof. Let P be a Lie group. OrR", we know that there exists another connected and

simply connected Lie grou@ such that the applicationr: P_Pisa morphism of
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Lie groups. So7 is a covering. Taking the differenti@l;z of 77 and under Theorems
and Propositions (3.22-26) of [13], we obtain tltht is a isomorphism of Lie algebras of
polynomial fields Lie(ﬁ) to Lie(P). As Kerr is a central normal subgroup  such

that 5/Kem is isomorphic toP then P is unique to up isomorphism. Henebn is an
universal covering.

Theorem 4.5. Let P and Q two real Lie groups of Lie algebraP and Q
respectively andg: P - Q a morphisme of Lie algebras. P is simply connected
then there exists a unique morphism of Lie groupsociated f : P » Q such that
df =¢.

Proof. This follows from Theorem 3.27 of [13].

Coroallary 4.6. Any connected and simply connect& of R" is completely determined
by its Lie algebra of polynomial field® on R".
Proof. It's immediate, becaus® and Q are connected and simply connected spaces of

R" then ¢ is an unique and global isomorphism.

Theorem 4.7. There is an algebraic correspondence betweerrdpenies of Lie algebras
of polynomial vector fields and the associateddrieups.

Proof. Let P and Q two Lie groups onR" , an application C® noted

Y. PxQ - Q such that pl—)l//(p,.) is a morphism ofP in the automorphism
groups Q, so Px, Q is a Lie group. The differentiap/(p) of ¢/(p,.) in identity of

Q is a morphismC” of P in the automorphism ofQ . Its differential ng is a
homomorphism ofP in Der, (Q) and the Lie algebra oPx,Q is P DdIZQ'
Conversely, asP and Q are connected and simply connected Lie groups and
considering an algebra homomorphisgsP - Der(Q) then there exists an unique
action ¢ of P on Q such thatdgz=¢ and Px,Q is a connected and simply

connected Lie group and of Lie aIgebPaDd@ Q. This finishes our proof.

Corollary 4.8. A Lie group P is said solvable, nilpotent, semisimple or

infinite-dimensional if its Lie algebra of polynoatifields onR" is solvable, nilpotent,
semi-simple or denombrable infinite-dimensional.
Proof. This follows from Theorem 4.7.
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