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1. Introduction 
For several decades, it was discovered that the whole polytopes theory had very close 
links with the geometry of algebraic varieties. In fact, this will plunge the polytopes 
theory to problems in the wider world of the geometry of projective varieties. Ehrhart 
work on Diophantine equations that gave birth to the now Ehrhart polynomials on convex 
polytopes. The polyhedron associated with a linear Diophantine system is used for solve 
the combinatorial problem cf. [4] and [5]. Others use the convex polytopes in search of 
solving methods mathematical problems. At the latest, many researchers have worked on 
roots of Ehrhart polynomials and many of them have found the counterexamples of Beck 
and al. conjecture, see [2] '' All roots iα  of Ehrhart polynomials of an integral convex 
polytopes of dimension d  satisfy the relation ( ) 1−≤≤− dRed iα  for all i , with 

C∈iα  where ( )iRe α  name the real part of iα ''. In 2006, [7] analysed the behavior of 
the roots of general polynomials satisfying the conditions of Stanley Theorem and 
compared the behavior of known roots of all of the Ehrhart polynomials. In the same 
way, they gave a possible counterexample of the previous conjecture. In 2011, [8] had 
worked especially on the exhaustive calculation of Ehrhart polynomials. This led them, 
among other things, to presente two new corrective conjectures of the conjecture of Beck 
and al. on the Ehrhart polynomials roots of convex polytopes integrals of dimension d  
by a numerical method using the Maple and Maxima softwares. But in 2012, [10] have 
demonstrated that if the cycle length is 127  then Ehrhart polynomials have a root whose 
real part is superior or equal to the dimension with the help a smooth polytope of Fano, in 
other words, they were able to show that is a counterexample to both conjectures of [8]. 
In this paper, we propose to study a family of Ehrhart polynomials using an algebraic 
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method. By direct calculation using Maple 13  software in ''work sheet'' mode, we find 
some properties of these polynomials. We show that the dominant coefficients of the 
family of Ehrhart polynomials are equal to 1+m  and the gcd  of all coefficients other 
than the dominant term of this family is a divisor of 1+m . We get that the constant term 
of any family of Ehrhart polynomials dimension d  ( 3≥d ) is decomposable into 
decreasing factor products. Any family of Ehrhart polynomials kdmg ,,  has a unique 
special polynomial having the same dimension and degree than this family of 
polynomials. This special polynomial verifies the conjecture Beck and al. for a minimum 
dimension d  17( ≥d ) (resp. d  ( 20≥d )) for d  is odd (resp. d  is pair). We give 
some details of Higashitani counterexamples to the conjecture of Beck and al., that is, 
considering a convergent special sequence semigeometric of the family of Ehrhart 
polynomials of dimension d  and degree k , there exists always a threshold interval of 
integer m  containing counterexamples. Examples are given to illustrate our results.   l.   

 
2. Study of Ehrhart polynomials 
2.1. Preliminary and notations 
We denote by Pf  cf.[3], if there exists not notation confusion, the Ehrhart polynomials 
such that ( ) ( )d

P nPcardnf Z∩= , for all 1≥n . We study a family of Ehrhart 
polynomials of parameters kdm ,,  defined by  

 ( ) ( ) ( ).=
1

0=1=
,, jnmjnng
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kdm −++ ∏∏
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+−                             (1)
 

 Let's study a family of Ehrhart polynomials of parameters kdm ,,  defined by  

 ( ) ( ) ( ).=
1
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k

j

d

kdj
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                            (2) 

 We will denote by Sp  the derived special polynomial of the family of Ehrhart 
polynomials. In the Theorem 2.1 of paragraph 2 of [6], Higashitani constructs following 
the clever manner a convex polytope with integer vertices of dimension d , this Ehrhart 
polynomials verify:  

 ( ) ( ) ,1=1
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+                                      (3) 

 where kdm ,,  are integers verifying 
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 Hence we have  
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 When k  verifies 



 +

≥≥
2

11 dk , we can write  

 ( ) ( ) ( )jnng
d

nf
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j
kdmP +∏

−
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,,!

1=                                       (6) 

  

 ( ) ( ) ( )jnmjnngwhere
k
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d

kdj
kdm −++ ∏∏

−

+−

1

0=1=
,, =      (7) 

 is a family of polynomials in the variable n  of degree k , with k  positive integer, to 
integers coefficient which roots are considered in paragraph 3 of [6]. This family of 
polynomials belongs to the set of polynomial fonctions in [ ]xR , so all principle results of 
polynomials theory in [ ]xR , that is, euclidian division, Bezout theorem, roots of 
polynomial, factorisation, d'Alembert theorem, etc... apply also to the family of Ehrhart 
polynomials. To make the study easier, we distinguish two types of the family of 
polynomials according to the parity of dimension d  : kdmg ,,  for the family of Ehrhart 

polynomials of odd dimension and kdmg ′,,  for the pair dimension.  
Definition 2.1. We call family of Ehrhart polynomials the polynomials in n  variable, of 
dimension d  and degree k  (resp. k′ ) if d  is odd (resp. pair), defined by:  

  

 For d is odd ( ) ( ) ( )
1

, ,
= 1 =0

: =
d k

m d k
j d k j

g n n j m n j
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− +

+ + −∏ ∏
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For  d is   pair    ( ) ( ) ( )
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=0
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i
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2
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 The dominant coefficient of this polynomial is the one by monome of highest degree as 
well as the coefficient of monome of zero degree is called by its constant term noted by 

k
dJ  (resp. k

dJ ′  ) or 0a . To put a prominent position the counterexamples of the conjecture 
of Beck and al, Higashitani considere more particularly the limit cases where 

2
=,

2
1= dkdk ′+

. And in order to treat various examples, we use the following Maple 

code:  
 >  restart; 
>  with(plots): 
>  Digits:=16: 
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>  ehrhart:=proc(m,d,k) mul(n+i,i=1,…..,.d)+m*mul(n-k+i,i=1,…,..d); end proc: 
>  fung:=proc(m,d,k) mul(n+j,j=d-k+1,…, d)+m*mul(n-j,j=0,…,..k-1); end proc: 
>  g:=ehrhart(m,d,k) 
>  Iz:=[fsolve(fung(m,d,k),n,complex)];  
  

Properties 2.2. 
(a) The dominant coefficient of the family of Ehrhart polynomials kdmg ,,  is 1+m .  
(b) The gcd  of all coefficients except that of the coefficient of the dominant term of 

kdmg ,,  is a divisor of 1+m .  

(c) The constant term of the family of Ehrhart polynomials is given by jJ d

kdjd ∏ +− 1=
=  

(resp. jJ d

kdjd ∏ ′

+′− 1=
= ) with 



 +

2
1= dk  if d  is odd (resp. 



′

2
= dk  if d  is pair).  

Proof.  
(a) Result from the expression of kdmg ,, .  

(b) Let hdmg ,,  be a family of Ehrhart polynomials of n  variable, h  degree and d  

dimension in dR . This family can be written to ( ) d
h

h
h

hhdm Jnanang +++ −
− 

1
1,, =  

with 1= +mah  and dJa =0 . Suppose that ( )1, , =h dgcd a J l−  . If 1=l  then we 

have a trivial case, hence the family hdmg ,,  is a primitive polynomial. If 1≠l  then:   

        - for lah =  we have ( ), =hgcd a l l  so l  divides 1+m ,  

        - for 1>ha , ha  is decomposable in product of first factors such as 
n

nh pppa ααα


2
2

1
1= , with n  integer, N∈iα , ip  first numbers; ni ≤≤0  and when 

ipl =  where ni ≤≤0  we show that l  divide 1+m  whereas for ipl ≠ , it comes to the 
trivial case, that is ( ) 1=, lapgcd h .  
(c) Taking 0=n  from (4), we have the result.  

  
Remark 2.3. The sum of constant terms of the family of Ehrhart polynomials of 
dimension d  ( 3≥d ) is different from the constant term of the sum of dimensions of this 
family, that is, 

d
n

d

d
n

d
JJ
∑∑ ≠

3=

3=
 where dn > .  

  
Example 2.4. 
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Proposition 2.5. The constant term dJ  of all family of Ehrhart polynomials of dimension 
d  ( 3≥d ) is decomposable in decreasing factor products.  
Proof. This results from (6) and (7) expressions for 0=n . Because,  

( )!
!==

1= kd
djJ d

kdjd −∏ +−
 where k  verifies the condition on the parity of the 

dimension d .  
  

2.2. On the conjecture of Beck and al. 
We remind that the conjecture of Beck and al, cf.[6] given by the following relation  

 ( ) 1−≤≤− dRed iα                                               (12) 
 , for all nonnegative integer i , where C∈iα  and, ( )iRe α  refers to their real part which 
are the roots of Ehrhart polynomials of degree d . The counterexamples on this 
conjecture depend on the minimal dimension d  of these polynomials and of the 
threshold interval [ ]dd ba ,  where m  take its values, with da  is the lower bound and db  
the upper bound of this interval.  
 
Results of Higashitani 2.6   

    • For 1739 ≤≤ m , the minimum dimension for which the Higashitani method 
give a counterexample is 15=d  but for 200174 ≤≤ m , we obtain 17=d . So there is 
no hope of finding a value of 14≤d  for a counterexample by increasing beyond 200  
the value of m .  

    • For 9=m , Higashitani sais to have proven that kmg ,9,  admits a root of 

superior real part to 1−d  for 10015 ≤≤ d , and same for 10017 ≤≤ d  this maximum 
real part is superior to d . It turns out that when d  increases beyond 100 , the real part is 
strongly increasing. Higashitani was capable of going beyond the dimension 100=d  
with his numerical programs.  

 We find the same results that as Higashitani's results. Actually, we find some 
others result, for example: 621174 ≤≤ m  pour 17=d  et 18=d , we have also the 
counterexamples if [ ]6,515∈m , etc... We can make the programs using the Maple 13  
code ''work sheet'' mode below and we execute after that :  
 
Example 2.7. 
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• For the family of Ehrhart polynomials 174,17,9g : 
>  restart; 
>  with(plots): 
>  Digits:=16: 
>  ehrhart:=proc(m,d,k) mul(n+i,i=1....d) +m*mul(n-k+i,i=1.....d); end proc: 
fung:=proc(m,d,k) mul(n+j,j=d-k+1...d) + m*mul(n-j,j=0.....k-1); end proc: 
>  g:=ehrhart(174,17,9) 
>  Iz:[fsolve(fung(174,17,9),n,complex)];  

• The same for 621,17,9g  after replacing m  by 621  and keeping the compatible values of 

d  and k . And so on.  
 We can also apply the same programs to the case of pair dimension, for 

example, 6,18,9g  and 422,18,9g  so that 423,18,9g . Consequently, there are polynomials who 
verify the conjecture and others which do not verify, so therefore, we try to characterize 
the corresponding minimal dimension and threshold interval by which we obtain the 
counterexamples to the conjecture of Beck and al. An algebraic method with decimal 
constant, allows to calculate these dimensions and threshold intervals.  
 
2.3. Semigeometric and special semigeometric sequences  
Definitions 2.8. Let ( ) nii ≤≤1ν  be a numerical sequence.   
1. The sequence ( ) nii ≤≤1ν  is called semigeometric sequence of 1 order if it's in geometric 

progression of reason q , with 
i

iq
ν
ν 1= + .  

2. The sequence ( ) nii ≤≤1ν  is said semigeometric of 2  orders if there are exactly 2  and 2  

different reasons 1q  et 2q  such that 
i

iq
ν
ν 1

1 = +  and 
j

jq
ν
ν 1

2 = + , for all ji ≠ .  

3. We call semigeometric sequence of k  orders with 1>k  a numerical sequence 
( ) nii ≤≤1ν  if there are nk ≤  different reasons 2  to 2  such that for all 

2121 ;,, kkjinkk ≠≠≤  we have 
i

i
kq

ν
ν 1

1
= +  and 

j

j
kq

ν
ν 1

2
= + .   

Proposition 2.9.  Let ( ) nii ≤≤1ν  be a semigeometric sequence of k  order, with k  nonzero 
positive integer. The following assertions are equivalent:   

    • i) Each term iν  of the sequence ( ) nii ≤≤1ν  is nonzero,  
    • ii) The reasons kq  of ( ) nii ≤≤1ν  are nonzero  reals.  

Proof. )) iii ⇒ . Suppose that each term iν  of the sequence ( ) nii ≠≤1ν  is a nonzero real, 

then in accordance with the Definition 2.8., for all nkk ≤21, , 
i

i
kqkkji

ν
ν 1

121 =,, +≠≠  
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and 
j

j
kq

ν
ν 1

2
= +  that is to say 

i

i

i

i
kq

ν
ν

ν
ν 1

1
== 11 ×++  (for all nk ≤ ), with iν  and 1+iν  are 

nonzero reals. Then 
i

i ν
ν 1

1×+  is a nonzero real because ( )×+,,R  is a corps. That proves 

that kq  is a non nul real. 

 )) iii ⇒ . We suppose that 
i

i
kq

ν
ν 1= +  is a non null real, as ( )×+,,R  is a corps 

then 
i

ikq
ν

ν 1= 1×+  is also a nonzero real. Therefore each term iν  of the sequence 

( ) nii ≤≤1ν  is a nonzero real. Hence the proof.  
  

Proposition and definition 2.10. Suppose that the semigeometric sequence ( ) nii ≤≤1ν  is k  
order with 3≥k . There exists a sequence ( ) nkkq ≤≤1  called ''special semigeometric of r  
order with kr < '' verifying the assertions of the Proposition 2.9.  
Proof. Let ( ) nii ≤≤1ν  be a semigeometric sequence of k  order ( 3≥k ). By Definition 2.8. 
there are k  ( nk < ) different reasons 2  to 2  which enables us to obtain a sequence 

( ) nkkq ≤≤1  r  order ( kr < ) of general term 
i

i
kq

ν
ν 1= + . We distinguish the cases:           • If 

3=k , ( )iν  is a semigeometric sequence of 3  order such that there are different three 
reasons 2  to 2  kq  with 31 ≤≤ k . Considering the Definition 2.8. those three reasons 
form a special semigeometric ( ) 31 ≤≤kkq  of 2  order.      
• If 3≥k , ( )iν  is a semigeometric sequence of k  order ( 3≥k ) verifying the k  
different reasons of 2  to 2  constitute a special semigeometric ( ) nkkq <1≤  of r  ordre with 

kr <  by Definition 2.8. and in reasonning by recurrence. That finishes the proof.  
   

Theorem 2.11.  All special semigeometric sequence is semigeometric.   
Proof. Let ( ) kiiq <1≤  be a special semigeometric sequence of r  order where kr <  

verifying 
r

r
r q

q 1= +α , it gives that the rα  with kr <1≤  are possible different reasons of 

the special semigeometric. For 1=r , there exists a nonzero real 
1

2
1 =

q
qα  such that the 

terms 1q  and 2q  form a semigeometric of 1 order. For any r  with ( kr <2 ≤ ), by 

Proposition 2.9 we have 0= 1 ≠+

r

r
r q

qα . If there are two different nonzero and 
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nonnegative integers 1r  et 2r  strictly inferior to k  such that 
1

11
1

=
r

r
r q

q +
α  and 

2

12
2

=
r

r
r q

q +
α  

then we obtain a semigeometric sequence ( ) kiiq <1≤  of 2  order. Suppose that now 
1},{3, −∈ kr  , a reasonning by recurrence drives us to find a semigeometric sequence 

( ) kiiq <1≤  of r  order where ( kr < ). There is the proof.  
 In the next, suppose that all sequence ( )iiq  is a special semigeometric of r  

order, where r  is nonzero and nonnegative integer.  
 
Corollary 2.12. From all sequence ( )iiq  we can construct another special semigeometric 

( ) rss <1≤α  of s  order such that 
s

s
s q

q 1= +α .  

Proof. Let ( ) kiiq <1≤  be a special semigeometric of r  order, ( r  is nonzero and nonegative 
integer). By Theorem 2.11, ( ) kiiq <1≤  is a semigeometric sequence of r  order then in 
accordance with the Proposition 2.10, there exists a special semigeometric ( ) rii <1≤α  of s  

order verifying the assertions of the Proposition 2.9 such that 
s

s
s q

q 1= +α . It finishes the 

proof.  
  

Proposition 2.13. If the sequence ( ) rss <1≤α  constructed from ( )iiq  verifying the 
condition of Corollary 2.12 is a finite sequence of terms then from a certain rank, ( )iiq  is 
stationary.   
Proof. Let ( ) rii <1≤α  be a sequence constructed from ( ) niiq ≤≤1  with nr < . ( ) rii <1≤α  is a 
special semigeometric sequence satisfying the condition of Corollary 2.12. Then the 
sequence ( ) niiq ≤≤1  is also a special semigeometric of s  order. But ( ) rii <1≤α  is a finite 
sequence of terms (by hypothesys) thus ( ) niiq ≤≤1  as well. It is clear that if the sequence 
( )iiq  is stationary from a certain rank then it converges. Suppose that ( )iiq  converges to 
a real limit l . Let be 0>ε , there exists a nonnegative integer N  in such a way that for 

all nonnegative integer i  with Ni ≥  we have 
2

|<| εlqi − . Let be a nonnegative integer 

i where Ni ≥ , we have ( ) ( )| |=| | | | | |< =
2 2i N i N i Nq q q l l q q l q l ε ε ε− − + − ≤ − + − + . 

Since iq  and Nq  are reals, as a result Ni qq = . That proves that the sequence ( ) niiq ≤≤1  is 
stationary.  

  
Remark 2.14. The special semigeometric sequence ( )ssα  constructed from the special 
semigeometric sequence ( )iiq  maybe non-monotonous. For example in the case where 
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the dimension d  is odd. 
 Obtaining counterexamples of the conjecture (12) depends only on the minimal 
dimension d  and threshold interval of m  of the polynomials. Precisely to suitable 
dimension d  with 15≥d  (resp. 18≥d ) for odd dimension (resp. pair), we have 
counterexamples for m  belongs to the threshold interval though polynomials verify the 
conjecture (12) with the same dimension and outside this threshold interval of m . An 
algebraic method with only one decimal constant enables to calculate the minimum 
dimensions and the threshold interval of m  for which we obtain the counterexamples.  
 
Proposition 2.15. Let d  be a suitable dimension verifying the above condition of 

( )ng kdm ,,  (resp ( )ng kdm ′,, ), m  nonzero and nonnegative integer and, [ ]dd ba ,  a 

threshold interval, where da  and db  nonzero and nonnegative integers. If m  is not 
belong to [ ]dd ba ,  then the polynomials ( )ng kdm ,,  (resp. ( )ng kdm ′,, ) verify the formula 

(12) in [2]. If m  belong to [ ]dd ba ,  we find that the conjecture is not verified.   
Proof. Suppose that the nonzero and nonnegative integer m  belongs to threshold interval 
[ ]dd ba ,  where dd ba ,  nonzero and nonnegative integers with 9≥da , d  a suitable 
dimension or minimum dimension verifying: if d  is odd then 15≥d  and if d  is pair we 
have 18≥d . A worksheet on Maple 13  proves that all roots of the family of Ehrhart 
polynomials do not verify the conjecture of Beck and al. (12) cf. [2]; that is, we are in 
counterexamples cases. Otherwise, that is the integer m  does not belong to the threshold 
interval [ ]dd ba ,  where dd ba ,  are nonzero and nonnegative integers, the formula (12) is 
verified. There is the proof.  

 We give some examples to illustrate this Proposition.  
 
Example 2.16. If 15=d  and 174≥m , the conjecture of Beck and al. is verified.  
If 17=d  and [ ]9,173∈m  with 621>m  then no counterexamples appear.  
If 19=d  with [ ]1882622,∈m , so there are counterexamples.  
For 49=d  and 1971766754>m , there is not counterexamples.  
For 51=d  and [ ]4766545270,1971766755∈m  so we find the counterexamples to 
the conjecture.  

 We give some examples of the family of Ehrhart polynomials that for each value 
of the pair dimension 18≥d , we obtain a threshold interval in which we find the 
counterexamples to the conjecture of Beck and al.  
 
Example 2.17. For 18=d , on a [ ]6,515  the threshold interval who contains m .  

    For 20=d , the corresponding threshold interval is [ ]516,1590 .  
    If 22=d , we have [ ]1591,4516  the threshold interval of the integer m  

verifying of counterexamples.  
    When 24=d , [ ]4517,12262∈m  then there is always the counterexamples 



J. J. Rakoto and H.S.G. Ravelonirina 

294 
 

to the conjecture.  
    If 26=d , we obtain [ ]412263,3234  the threshold interval who contain m  

does not verifying the conjecture.  
    When 28=d , [ ]4517,12262∉m  then we have a verified conjecture.  
    For 30=d , inside to [ ]1591,4516  the threshold interval of the integer m , 

we always have the counterexamples.  
  

Remark 2.18. For the minimum dimension fixed d  and that the amplitude of the m  
threshold interval increases in semigeometric progression of order k  with 3<<2 kq  
one finds counterexample to the conjecture, however if dbm >  then we have a verified 
conjecture.  

  
Corollary 2.19.  Let d  be a appropriate dimension of any family of Ehrhart polynomials 

( )ng kdm ,,  according the conditions in (8) and (10), m  a nonzero and nonnegative 

integer, [ ]dd ba ,  a threshold interval, where da  and db  nonzero and nonnegative 
integers. If m  belonging to the threshold interval [ ]dd ba ,  then we have a 
counterexample to the conjecture of Beck and al. in [2]. Furthermore, for a pair 
dimension d  if dam =  then this family of polynomials has a root β  of real part ( )βRe  
superior to 1−d .  
Proof. It is immediately in accordance with the Proposition 2.15.  

 We give some examples where the conjecture of Beck and al. (12) is not verified 
for an odd dimension d .  
 
Example 2.20. For 15=0d  and [ ]9,173∈m  we have 

( ) ( ) ( )jnmjnng
jjm −++ ∏∏ 7

0=

15

8=,15,8 =  which have as roots 0α  with 

( ) 14>0αRe . Then the appropriate threshold interval [ ]9,173  of m  to find 
counterexamples to the conjecture for amplitude 165=19173=0 +−ν .  

In a similar way, for 17=1d  and [ ]621174,∈m , the family of polynomials 

( ) ( ) ( )jnmjnng
jjm −++ ∏∏ 8

0=

17

9=,17,9 =  has a root 1α  such that ( ) 16>1αRe . This 

gives us an amplitude 448=1174621=1 +−ν .  
Similarly, for 19=2d  and [ ]1882622,∈m , we have 

( ) ( ) ( )jnmjnng
jjm −++ ∏∏ 9

0=

19

10=,19,10 =  admit root 2α  with ( ) 18>2αRe . 

So its amplitude is 1261=16221882=2 +−ν .  
For 21=3d  and [ ]1883,5295∈m , ( )ngm,21,11  has a root 3α  with 

( ) 20>3αRe . Its amplitude is 3413=118835295=3 +−ν .  
    ................................  
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    For 31=8d  and [ ]617927245658,∈m  then 

( ) ( ) ( )jnmjnng
jjm −++ ∏∏ 15

0=

31

16=,31,16 =  and have a root 

i88.83791934332.1183820=8 +α . Hence ( ) 30>8αRe .  
  

Lemma 2.21. Let id , with ni ≤≤0  the minimum dimensions for counterexamples of 
12. Family ( ) niid ≤≤0  follows an arithmetic progression of the initial term 15=0d  and of 
reason 2=r .  
Proof. It's immediate using the demonstration by recurrence.  

 We give some examples where the conjecture of Beck and al. (12) is not verified 
for odd dimension d .  

 
Example 2.22. For 15=0d  et [ ]1739,∈m  we have 

( ) ( ) ( )jnmjnng
jjm −++ ∏∏ 7

0=

15

8=,15,8 =  whose root 0α  with ( ) 14>0αRe . 

Then the appropriate threshold interval [ ]9,173  of m  to find counterexamples to the 
conjecture for amplitude 165=19173=0 +−ν .  

    Analogously, for 17=1d  and [ ]621174,∈m , the family of polynomials 

( ) ( ) ( )jnmjnng
jjm −++ ∏∏ 8

0=

17

9=,17,9 =  has root 1α  such that ( ) 16>1αRe . This give 

us an amplitude 448=1174621=1 +−ν .  
    Similarly, for 19=2d  with [ ]1882622,∈m , 

( ) ( ) ( )jnmjnng
jjm −++ ∏∏ 9

0=

19

10=,19,10 =  admit root 2α  with ( ) 18>2αRe . So its 

amplitude is 1261=16221882=2 +−ν .  
    ................................  
    When 31=8d  and [ ]617927245658,∈m  then 

( ) ( ) ( )jnmjnng
jjm −+++ ∏∏ 15

0=

31

16=,31,16 =  have like root 

i88.83791934332.1183820=8 +α . 
Hence ( ) 30>8αRe .  
  

Lemma 2.23. Let id , with ni ≤≤0  the minimum dimensions for counterexamples of 
12. The family ( ) niid ≤≤0  follows an arithmetic progression of initial term 15=0d  and 
reason 2=r .  
Proof. This is immediate using the demonstration by recurrence.  

 Now, we denote by ν  the amplitude of the threshold interval of nonnegative 
integer m  satisfying 1= +− dd abν . So to every threshold interval a corresponding 
amplitude is associated.  



J. J. Rakoto and H.S.G. Ravelonirina 

296 
 

 
Proposition 2.24. The family of amplitudes ( ) nii ≤≤1ν  follows a semigeometric 

progression of order k  with nk < , of first term 448=1ν  obtained for 174=da , 
621=db  of corresponding dimension 17=d  and of reasons kq  between 2  and 3  (at 

constant decimal).  
Proof. By applying the reasoning by recurrence one can get the result.  

  
Proposition 2.25.  The family of amplitudes ( ) nii ≤≤1ν  defines a semigeometric sequence 

of order k  with nk < , of first term 905=1ν  obtained for 423=da , 1327=db , of 

corresponding dimension 20=d  and of reasons kq  included strict between 2  and 3 .  
Proof. Same reasoning as the Proposition 2.24.  

  
Proposition 2.26. Let ( ) nii ≤≤1ν  be a semigeometric sequence of order k , where nk < . 
From a certain rank onn ≥  the sequence ( ) nii ≤≤1ν  is a geometric sequence.   
Proof. Let ( ) nii ≤≤1ν  be a semigeometric sequence of order k , where nk < . According to 
the Proposition 2.10, there is a special semigeometric sequence ( ) krkq <1≤  which is also a 
semigeometric sequence of order r  where kr < , that is ( ) krkq <1≤  is constructed from 
( ) nii ≤≤1ν . By the Proposition 2.13, the sequence ( ) nii ≤≤1ν  is stationary from a certain rank 

0nn ≥ . Therefore, the sequence ( ) nii ≤≤1ν  is a geometric sequence from a certain rank 

0nn ≥ .  
  

Theorem 2.27. Let kdmg ,,  (resp. kdmg ′,, ) a family of Ehrhart polynomials of dimension 

d  with 15≥d  (resp. 18≥d ) for d  is odd (resp. pair) and of k  (resp. k′ ) degree. For 
all special semigeometric convergent sequence ( ) niiq ≤≤1  of kdmg ,,  (resp. kdmg ′,, ), there is 
a threshold interval of integer m  containing counterexamples.   
Proof. By Propositions 2.24, 2.25 and 2.26, we can verify that the special semigeometric 
sequence ( )iiq  is strictly decreasing and bounded below by a finite number 2≥l . So 
( )iiq  is a convergent sequence converges to 2 . Then there exists a map 

iqϕ  which, each 

iq  in ] [32,  associates m  that takes its values in the threshold interval [ ]dd ba ,  with an 
appropriate dimension d  such as 15≥d  (resp. 18≥d ) if it is odd (resp. pair) where 

9≥da . In other words, there is always a threshold interval of integer m  containing 

counterexamples for each ( )iiq  that takes values in the interval ] [32,  for a given 
minimum dimension. Hence the result.  

  
Example 2.28. For a suitable odd dimension d , we have the calculation results (mode 
'worksheet')   in Maple 13  code.   
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    • [ ]1739,15,=0 ∈md  so we obtain ( ) 165=19173=0 +−ν   

    • [ ]621174,17,=1 ∈md  then ( ) 448=1174621=1 +−ν   

    • [ ]1882622,19,=2 ∈md  we find 1261=2ν  so 28571432.81473214==
1

2
1 ν

νq .  

    • [ ]52951883,21,=3 ∈md  we have 3413=3ν  and 

77160982.70658207==
2

3
2 ν

νq .  

    • [ ]4766545270,197176675551,=18 ∈md  so 2794778516=18ν  thus 

04524582.41443789==
17

18
17 ν

νq .  

    
Example 2.29. When the suitable dimension d  is pair, we have   

    • [ ]5156,18,= ∈md  we obtain 510=16515=0 +−ν .  

    • [ ]1590516,20,= ∈md  we have 1075=1ν .  
    • [ ]45161591,22,= ∈md  the corresponding amplitude is 2926=2ν  so we 

have 51162792.72186046==
1

2
1 ν

νq .  

    • [ ]21315383636,30,= ∈md  we have 129518=6ν  then 

95172642.52516035==
5

6
5 ν

νq . And so on.  

 
Remark 2.30. For an appropriate pair dimension, we can have counterexamples outside 
the threshold interval. For example, for 22=d  and 4=m ; of even when 30=d  and 

3=m , etc ...  
  

2.4. Special polynomial 
Definition 2.31. We define sp  a special polynomial . ( )npk   is a polynomial of degree 
k  in variable n  without constant term, obtained from constant term of a family of 
Ehrhart polynomials whose coefficients are the terms of the decomposition product of 
decreasing factors of the constant term of this family of polynomials. Then  sp  is written 
by  

 ( ) ( ) 0= anpnp ks +  

where ( ) 1,= ,1=
≥∑ knCnp i

ik
k

ik  and ( )kdmodaJ d +≅ 0  cf. [1] and [9]. ikC ,  denote 

the coefficients of polynomial ( )npk  determined by ,1,=,1 +− kdCk  and dC kk =, .  
  



J. J. Rakoto and H.S.G. Ravelonirina 

298 
 

Example 2.32. For 3=5,= kd , we have 345=60=543= ××××dJ  with 
5=4,=3,= 3,33,23,1 CCC  then ( )8460= modJd ≅ . Thus  

 ( ) and== 3
3,3

2
3,23,13,

3

1=
nCnCnCnCnp i

i
i

k ++∑  

 ( ) 4.345= 23 +++ nnnnps  
  
Proposition 2.33. Any family of Ehrhart polynomials has a unique special polynomial 
having the same dimension and degree that this family of polynomials.   
Proof. Let kdmg ,,  (resp. kdmg ′′,, ) a family of Ehrhart polynomials verifying the 
conditions in (8) (resp. (10)). Its constant term can be decomposed into the product of 
decreasing factors, so because of the uniqueness of the decomposition of the constant 
term, the family of polynomials has a unique special polynomial of the same dimension 
and degree as kdmg ,,  or kdmg ′′,,  according to the parity of its dimension.  

  
Remark 2.34. If an integer 2≥m  is up to the threshold interval [ ]dd ba ,  compatible 
with the dimension d  of the family of Ehrhart polynomials where we have counter 
examples to the conjecture of Beck, then there is one and only one Ehrhart polynomial 
which has the same dominant coefficient than its Special polynomial, that is, dm =1+  
(resp. dm ′+ =1 ) for d  (resp. d ′ ) is odd (resp. pair).  
Proof. Immediate.  

  
Proposition 2.35. All special polynomial sp  or sp′  satisfies the conjecture of Beck and 
al, for a minimum odd dimension d  ( 17≥d ) (resp. pair d ′  ( 20≥′d )).  
Proof. In the Conjecture 2.1, if [ ]174,621∈m  and 17=d  we have a counterexample 
and the corresponding special polynomial has for dominant coefficient 1= +md , which 
gives us the value of 16=m  that does not belong to the threshold interval [ ]174,621 . 
According to the Corollary 2.19 , the special polynomial verifies the conjecture of Beck 
and al. It is the same for [ ]516,1590∈m  and 20=d ′ , we obtain a counterexample, the 
fact that the dominant coefficient of special polynomial is 1= +md  then 19=m  which 
do not belong to the threshold interval [ ]516,1590  so it verifies the conjecture. Suppose 
that m  belonging to the threshold interval [ ]dd ba ,  and d  is the dimension of the 
Ehrhart polynomial to have a counterexample then according the Proposition 2.33 there is 
a one special polynomial that has the same degree and dimension that the Ehrhart 
polynomial such as 1= +md , that is 1= −dm  does not belong to [ ]dd ba , . So we have 
a contradiction. This completes the proof.  

 Let dI  an interval containing a family of Ehrhart polynomials of dimension d , 

for all 2≥m ; dϕ  an application from dI  to [ ]nR  such that  

 [ ]nIdd R→:ϕ  
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 ( ),gg dϕ  
 where g  denote a family of Ehrhart polynomials of dimension d  into dI .  
Proposition 2.36. The map dϕ  is a diffeomorphism.  
Proof. The map dϕ  is bijective. Because, each family of polynomials g  of dI  
corresponds with one and only special polynomial sp  such as ( ) ( )npg sd =ϕ  and, sp  

has one and only antecedent g . Being dϕ  and 1−
dϕ  are ∞C  class then continues. Hence 

the proof.  
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