Annals of Pure and Applied Mathematics Vol. 10, No.2, 2015, 141-146 ISSN: 2279-087X (P), 2279-0888(online) Published on 27 August 2015 www.researchmathsci.org

Some Characterization of Neutral *n*-ideals and Distributive *n*-ideals of a Lattices

Md. Rakibul Hasan

Department of Computer Science & Engineering, Southeast University Dhaka-1213, Bangladesh. Email: <u>md.rakibul hasan@yahoo.com</u>

Received 8 June 2015; accepted 17 June 2015

Abstract. Standard and neutral elements (ideals) of a lattice were studied by many authors. In this paper, the author has given some characterizations of n -ideals and extended some of the results. He also includes a characterization of neutral n -ideals of a lattice when n is a neutral element and including some results on distributive n-ideals of a lattices.

Keywords: Neutral element, Standard *n*-congruence, Distributive *n*-ideals

AMS Mathematics Subject Classification (2010): 06A12, 06A99, 06B10

1. Introduction

Standard and neutral elements (ideals) in a lattice L were studied by G. Grätzer and Schmidt in [2] also see [1]. These concepts allow us to study a larger class of nondistributive lattices. Again in [4] and [5], Noor and Latif extended those concepts to study standard n-ideals in a lattice. In this paper I will examine some of the properties of standard and neutral n-ideals. I also discussed distributive n-ideals of lattices.

An element s of a lattice L is called neutral if

- (i) $x \land (s \lor y) = (x \land s) \lor (x \land y)$ for all $x, y \in L$ and
- (ii) for all $x, y \in L$, $s \land (x \lor y) = (s \land x) \lor (s \land y)$.

For a fixed element *n* of a lattice *L*, a convex sublattice containing *n* is called an *n*-ideal. The idea of *n*-ideals is a kind of generalization of both ideals and filters of lattices. The set of all *n*-ideals of a lattice *L* is denoted by $I_n(L)$, which is an algebraic lattice under set-inclusion. Moreover, $\{n\}$ and *L* are respectively the smallest and the largest elements of $I_n(L)$. For any two n-ideals *I* and *J* of *L* it is easy to check that $I \wedge J = I \cap J = \{x \in L : x = m(i, n, j) \text{ for } some \quad i \in I, j \in J\}$, where $m(x, y, z) = (x \wedge y) \vee (y \wedge z) \vee (z \wedge x)$ and $I \vee J = \{x \in L : i_1 \wedge j_1 \le x \le i_2 \vee j_2, \text{ for some } i_1, i_2 \in I \text{ and } j_1, j_2 \in J\}$. The *n*-ideal generated by a finite number of elements $a_1, a_2, ..., a_m$ is called a *finitely generated n-ideal* denoted by $< a_1, a_2, ..., a_m >_n$, which

Md. Rakibul Hasan

is the interval $[a_1 \land a_2 \land ... \land a_m \land n, a_1 \lor a_2 \lor ... \lor a_m \lor n >_n]$. The *n*-ideal generated by a single element a is called a principal *n*-ideal, denoted by $\langle a \rangle_n = [a \land n, a \lor n]$. For detailed literature on *n*-ideals we refer the reader to consult [3].

An *n*-ideal of a lattice *L* is called neutral *n*-ideal of *L* if it is a neutral element of $I_n(L)$. The following characterization of neutral *n*-ideals is due to [4].

For any two *n*-ideals *I* and *J* of *L*, it is easy to check that $I \wedge J = I \cap J$ ={ $x \in L: x = m(i,n,j)$ for some $i \in I, j \in J$ }, where $m(x,y,z) = (x \wedge y) \vee (y \wedge z) \vee (z \wedge x)$ and $I \vee J =$, { $x \in L: i_1 \wedge j_1 \leq x \leq i_2 \vee j_2$ for $i_1, i_2 \in I$ and $j_1, j_2 \in J$ }.

The *n*-ideal generated by a finite numbers of elements $a_1, a_2, ..., a_m$ is called a finitely generated *n*-ideal, denoted by $\langle a_1, a_2, ..., a_m \rangle_n$. Moreover, $\langle a_1, a_2, ..., a_m \rangle_n$ is the interval $[a_1 \land a_2 \land ... \land a_m \land n, a_1 \lor a_2 \lor ... \lor a_m \lor n]$. The *n*-ideal generated by single element *a* is called a *principal n*-ideal, denoted by $\langle a \rangle_n$ and $\langle a \rangle_n = [a \land n, a \lor n]$. For detailed literature on *n*-ideals we refer the reader to consult [3,5].

Theorem 1.1. Let n be a neutral element of a lattice L. An n-ideal S is a standard n-ideal if and only if for any n-ideal K,

 $S \lor K = \{x \in L : x = (x \land s_1) \lor (x \land k_1) \lor (x \land n)\}$ $= \{x \in L : x = (x \lor s_2) \land (x \lor k_2) \land (x \lor n)\} \text{ for some } s_1, s_2 \in S \text{ and } k_1, k_2 \in K.$

We start this paper with the following characterization of standard *n*-ideals.

Theorem 1.2. Let *n* be a neutral element of a lattice *L*, An *n*-ideal *S* of a lattice *L* is standard if and only if $\langle a \rangle_n \cap (S \lor \langle b \rangle_n) = (\langle a \rangle_n \cap S) \lor (\langle a \rangle_n \cap \langle b \rangle_n)$ for all $a, b \in L$.

Proof: Suppose *S* is standard. Then obviously the above relation holds.

Conversely, suppose above relation holds for all a, b $\in L$. Let K be an n-ideal of L and $x \in S \lor K$. Then $s_1 \land k_1 \le x \le s_2 \lor k_2$ for some $s_1, s_2 \in S$ and $k_1, k_2 \in K$. Now $n \le x \lor n \le s_2 \lor k_2 \lor n$ implies that $x \lor n \in \langle x \rangle_n \cap (S \lor \langle k_2 \lor n \rangle_n)$

 $= (\langle x \rangle_n \cap S) \lor (\langle x \rangle_n \cap \langle k_2 \lor n \rangle_n). \text{ Thus } x \lor n \leq t \lor r \text{ for some } t \in \langle x \rangle_n \cap S$ and $r \in \langle x \rangle_n \cap \langle k_2 \lor n \rangle_n.$ Then $t = (x \land s) \lor (x \land n) \lor (s \land n)$ for some $s \in S$ and $r \leq (x \lor n) \land (k_2 \lor n) = (x \land k_2) \lor n$, as *n* is neutral. Hence $x \lor n \leq (x \land s) \lor (x \land k_2) \lor n$, and so $x = x \land (x \lor n) \leq x \land ((x \land s) \lor (x \land k_2) \lor n) = (x \land s) \lor (x \land k_2) \lor (x \land n) \leq x$. Thus $x = (x \land s) \lor (x \land k_2) \lor (x \land n)$. By a dual proof of above we can prove that $x = (x \lor s') \land (x \lor k_1) \land (x \lor n)$ for some $s' \in S$. Therefore by Theorem 1.1, *S* is standard. \Box Some Characterization of Neutral n-ideals and Distributive n-ideals of a Lattices

An element $d \in L$ is called a dual distributive element if $d \wedge (x \vee y) = (d \wedge x) \vee (d \wedge y)$ for all $x, y \in L$. Hence an element which is both standard and dual distributive is a neutral element.

An *n*-ideal *D* is called a dual distributive *n*-ideal if it is a dual distributive element of $I_n(L)$. Now we give the following characterization of a dual distributive *n*-ideal.

Theorem 1.3. For $n \in L$, an *n*-ideal *D* is dual distributive if and only if $D \cap (\langle a \rangle_n \lor \langle b \rangle_n) = (D \cap \langle a \rangle_n) \lor (D \cap \langle b \rangle_n)$ for all $a, b \in L$.

Proof. If D is dual distributive, then clearly the relation holds.

Conversely, suppose the given relation holds for all $a, b \in L$. Suppose $I, J \in I_n(L)$. Let $x \in D \cap (I \lor J)$. Then $x \in D$ and $i_1 \land j_1 \le x \le i_2 \lor j_2$ for some $i_1, i_2 \in I, j_1, j_2 \in J$. Then $x \lor n \in D \cap (\langle i_2 \lor n \rangle_n \lor \langle j_2 \lor n \rangle_n)$ $= (D \cap \langle i_2 \lor n \rangle_n) \lor (D \cap \langle j_2 \lor n \rangle_n) \subseteq (D \cap I) \lor (D \cap J)$.

A dual proof also shows that $x \land n \in (D \cap I) \lor (D \cap J)$. Then by convexity of n-ideal $x \in (D \cap I) \lor (D \cap J)$. Therefore, $D \cap (I \lor J) \subseteq (D \cap I) \lor (D \cap J)$. Since the reverse inclusion is trivial, so D is dual distributive. \square

2. Distributive *n*-ideal

An *n*-ideal *I* of a lattice *L* is called a *distributive n-ideal* if it is a distributive element of the lattice $I_n(L)$. That is, *I* is called distributive if for all $J, K \in I_n(L)$, $I \lor (J \cap K) = (I \lor J) \cap (I \lor K)$.

We start this section with the following characterization of distributive n-ideals.

Theorem 2.1. An *n*-ideal *I* of a lattice *L* is distributive if and only if
$$I \lor (\langle a \rangle_n \cap \langle b \rangle_n) = (I \lor \langle a \rangle_n) \cap (I \lor \langle b \rangle_n)$$
 for all $a, b \in L$.

Proof: If *I* is distributive, then the condition clearly holds form the definition. To prove the converse, suppose given equation holds for all $a, b \in L$. Let *J* and *K* be any two *n*-ideals of *L*. Obviously $I \lor (J \cap K) \subseteq (I \lor J) \cap (I \lor K)$. To prove the reverse inclusion, let $x \in (I \lor J) \cap (I \lor K)$. Then $x \in I \lor J$ and $x \in I \lor K$. Then $i_1 \land j_1 \le x \le i_2 \lor j_2$ and $i_3 \land k_3 \le x \le i_4 \lor k_4$ for some $i_1, i_2, i_3, i_4 \in I$, $j_1, j_2 \in J$ and $k_3, k_4 \in K$. Now $n \le x \lor n \le i_2 \lor j_2 \lor n$ implies that $x \lor n \in I \lor < j_2 \lor n >_n$. Similarly $n \le x \lor n \le i_4 \lor k_4 \lor n$ implies that $x \lor n \in I \lor < k_4 \lor n >_n$. Thus, $x \lor n \in (I \lor (j_2 \lor n >_n) \cap (I \lor < k_4 \lor n >_n) = I \lor (< j_2 \lor n >_n \cap < k_4 \lor n >_n) \subseteq I \lor (J \cap K)$. By a dual proof of above, we can show that $x \land n \in I \lor (J \cap K)$. Thus by convexity, $x \in I \lor (J \cap K)$. Therefore, $I \lor (J \cap K) = (I \lor J) \cap (I \lor K)$, and so *I* is distributive. \Box

Md. Rakibul Hasan

Now we give another characterization of distributive n-ideal. To prove this we need the following lemma which is well known and is due to [1, Theorem-2, Page-139].

Lemma 2.2. An element a of a lattice *L* is distributive if and only if the relation θ_a defined by $x \equiv y \theta_a$ if and only if $x \lor a = y \lor a$ is a congruence. \Box

Theorem 2.3. An *n*-ideal *I* of a lattice *L* is distributive if and only if the relation $\Theta(I)$ defined by $x \equiv y \Theta(I)(x, y \in L)$ if and only if $x \lor i_1 = y \lor i_1$ and $x \land i_2 = y \land i_2$ for some $i_1, i_2 \in I$ is the congruence generated by *I*.

Proof: At first we shall show that $x \equiv y \Theta(I)$ if and only if $\langle x \rangle_n \equiv \langle y \rangle_n \Theta_I$ in $I_n(L)$. Let $x \equiv y \Theta(I)$. Then $x \lor i_1 = y \lor i_1$ and $x \land i_2 = y \land i_2$ for some $i_1, i_2 \in I$. Now $x \land i_2 = y \land i_2 \leq y \leq y \lor i_1 = x \lor i_1$ implies that $y \in \langle x \rangle_n \lor I$. Similarly $x \in \langle y \rangle_n \lor I$. Therefore, $\langle x \rangle_n \lor I = \langle y \rangle_n \lor I$, which implies that, in $I_n(L)$. Conversely, if $\langle x \rangle_n \equiv \langle y \rangle_n \Theta_I$ in $I_n(L)$, then

 $\langle x \rangle_n \equiv \langle y \rangle_n \Theta_I \langle x \rangle_n \lor I = \langle y \rangle_n \lor I.$ Then $x \in \langle y \rangle_n \lor I$ and so $y \land n \land i_1 \leq x \leq y \lor n \lor i_2$. Similarly, $x \land n \land i_3 \leq y \leq x \lor n \lor i_4$. Thus $x \leq y \lor n \lor i_2 \leq x \lor n \lor i_2 \lor i_4$ which implies $x \lor n \lor i_2 \lor i_4 = y \lor n \lor i_2 \lor i_4$. Similarly, $x \land n \land i_1 \land i_3 = y \land n \land i_1 \land i_3$. That is, $x \lor i = y \lor i$ and $x \land i' = y \land i'$ where $i = n \lor i_2 \lor i_4$ and $i' = n \land i_1 \land i_3$. Therefore, $x \equiv y \Theta(I)$.

Above proof shows that $\Theta(I)$ is a congruence in L if and only if Θ_I is a congruence in $I_n(L)$. But by Lemma 2.2, Θ_I is a congruence if and only if I is distributive in $I_n(L)$ and this completes the proof. \Box

By [1] we know that an element $n \in L$ is neutral if and only if for all $a, b \in L$, $(a \land b) \lor (a \land n) \lor (b \land n) = (a \lor b) \land (a \lor n) \land (b \lor n)$. Since this relation is self dual, so the dual condition of neutrality also implies the neutrality. So we have following extension of above theorem.

Theorem 2.4. For $a_1, a_2, ..., a_m, n \in L$, $\langle a_1, a_2, ..., a_m \rangle_n$ is neutral if $a_1 \wedge n$, $a_2 \wedge n, ..., a_m \wedge n$ and $a_1 \vee n, a_2 \vee n, ..., a_m \vee n$ are all neutral elements in L.

Proof. Suppose $a_1 \wedge n, a_2 \wedge n, ..., a_m \wedge n$ and $a_1 \vee n, a_2 \vee n, ..., a_m \vee n$ are neutral. Then $a_1 \wedge a_2 \wedge ... \wedge a_m \wedge n$ and $a_1 \vee a_2 \vee ... \vee a_m \vee n$ are also neutral. By Theorem 1.4, $\langle a_1, a_2, ..., a_m \rangle_n$ is standard. So we need to show only the dual distributive property. Let $I, J \in I_n(L)$ and $x \in \langle a_1, a_2, ..., a_m \rangle_n \cap (I \vee J)$. Then

 $x \in \langle a_1, a_2, ..., a_m \rangle_n$ and $i_1 \wedge j_1 \leq x \leq i_2 \vee j_2$ for some $i_1, i_2 \in I, j_1, j_2 \in J$. So

Some Characterization of Neutral *n*-ideals and Distributive *n*-ideals of a Lattices

 $\begin{aligned} x \lor n &\leq (a_1 \lor a_2 \lor \ldots \lor a_m \lor n) \land [(i_2 \lor n) \lor (j_2 \lor n)] = [(a_1 \lor a_2 \lor \ldots \lor a_m \lor n) \land (i_2 \lor n)] \\ &\lor [(a_1 \lor a_2 \lor \ldots \lor a_m \lor n) \land (j_2 \lor n)] \in (<a_1, a_2, \ldots, a_m >_n \cap I) \lor (<a_1, a_2, \ldots, a_m >_n \cap J) \\ & \text{A dual proof shows that } x \land n \in (<a_1, a_2, \ldots, a_m >_n \cap I) \lor (<a_1, a_2, \ldots, a_m >_n \cap J) \\ & \text{Hence by convexity } x \in (<a_1, a_2, \ldots, a_m >_n \cap I) \lor (<a_1, a_2, \ldots, a_m >_n \cap J) \\ & \text{Hence by convexity } x \in (<a_1, a_2, \ldots, a_m >_n \cap I) \lor (<a_1, a_2, \ldots, a_m >_n \cap J) \\ & \text{Thus} \\ & <a_1, a_2, \ldots, a_m >_m \cap (I \lor J) \subseteq (<a_1, a_2, \ldots, a_m >_n \cap I) \lor (<a_1, a_2, \ldots, a_m >_n \cap J) \\ & \text{Since the reverse inclusion is trivial, so} \\ & <a_1, a_2, \ldots, a_m >_n \cap (I \lor J) = (<a_1, a_2, \ldots, a_m >_n \cap I) \lor (<a_1, a_2, \ldots, a_m >_n \cap J) \\ & \text{Therefore, } <a_1, a_2, \ldots, a_m >_n \text{ is dual standard and so it is neutral.} \quad \Box \end{aligned}$

Following figure shows that the converse of above theorems are not true. Therefore $\langle a, f \rangle_n = L$ is neutral in $I_n(L)$ but neither $a = a \lor n$ nor $f = f \lor n$ is even standard in L.

Now we include a characterization of neutral n-ideals of a lattice with the help of principal n-ideals.

Theorem 2.5. An *n*-ideal *S* of a lattice *L* is neutral if and only if $(S \cap \langle a \rangle_n) \lor (S \cap \langle b \rangle_n) \lor (\langle a \rangle_n \cap \langle b \rangle_n) = (S \lor \langle a \rangle_n) \cap (S \lor \langle b \rangle_n) \cap (\langle a \rangle_n \lor \langle b \rangle_n)$ for all $a, b \in L$.

Proof. Let *S* be neutral. Then above relation holds as *S* is a neutral element of $I_n(L)$. Now suppose the above relation holds for all $a, b \in L$. For any $I, J \in I_n(L)$, clearly $(S \cap I) \lor (S \cap J) \lor (I \cap J) \subseteq (S \lor I) \cap (S \lor J) \cap (I \lor J)$. To show the reverse inclusion, let $x \in (S \lor I) \cap (S \lor J) \cap (I \lor J)$. Then $x \le s_1 \lor i_1, x \le s_2 \lor j_2, x \le i_3 \lor j_3$ for some $s_1, s_2 \in S; i_1, i_3 \in I; j_2, j_3 \in J$. This implies $x \lor n \in (S \lor < i_1 \lor i_3 \lor n \gt_n) \cap (S \lor (i_1 \lor i_3 \lor n \succ_n) \lor (S \cap (i_1 \lor i_3 \lor n \succ_n) \lor ((i_1 \lor i_3 \lor n \succ_n) \lor ((i_1 \lor i_3 \lor n \succ_n)) \lor ((i_1 \lor i_3 \lor n \lor_n)) \lor ((i_1 \lor i_3 \lor n \lor_n) \lor ((i_1 \lor i_3 \lor n \lor_n)) \lor ((i_1 \lor i_3 \lor n \lor_n)) \lor ((i_1 \lor i_3 \lor n \lor_n) \lor ((i_1 \lor i_3 \lor n \lor_n)) \lor ((i_1 \lor i_3 \lor n \lor_n) \lor ((i_1 \lor i_3 \lor n \lor_n)) \lor ((i_1 \lor i_3 \lor n \lor_n))$

Md. Rakibul Hasan

 $(S \cap I) \lor (S \cap J) \lor (I \cap J)$ by using the given relation. A dual proof of above shows that $x \land n \in (S \cap I) \lor (S \cap J) \lor (I \cap J)$. Thus by convexity, $x \in (S \cap I) \lor (S \cap J) \lor (I \cap J)$. Therefore $(S \cap I) \lor (S \cap J) \lor (I \cap J)$ $= (S \lor I) \cap (S \lor J) \cap (I \lor J)$. Hence by [1] *S* is a neutral *n*-ideal. \Box

Acknowledgement. The author is greatful to the reviewers for their comments to prepare the paper in the current form.

REFERENCES

- 1. G.Grätzer, General Lattice Theory, Birkhäuser verlag, Basel (1978).
- 2. G.Grätzer and E.T.Schmidt, Standard ideals in lattices, *Acta Math Acad. Sci., Hung.* 12 (1961) 17-86.
- 3. M.A.Latif and A.S.A.Noor, n-ideals of a lattice, *The Rajshahi University Studies* (Part B), 22 (1994) 173-180.
- 4. A.S.A.Noor and M.A.Latif, Standard n-ideals of a lattice, *SEA Bull. Math.*, 4 (1997) 185-192.
- 5. A.S.A.Noor and M.A.Latif, Properties of standard n-ideals of a lattice, SEA Bull. Math., 24 (2000) 1-7.
- 6. A.S.A.Noor and M.A.Latif, Finitely generated n-ideals of a lattice, *SEA Bull. Math.*, 22 (1998) 73-79.
- 7. M.Ayub Ali, A.S.A.Noor and S.R.Poddar, Some characterization of semiprime nideals in lattices, *Annals of Pure and Applied Mathematics*, 2(1) (2012) 1-9.
- 8. M.Ayub Ali, R.M.Hafizur Rahman and A.S.A.Noor, Some properties of semi-prime ideals in lattices, *Annals of Pure and Applied Mathematics*, 1(2) (2012) 176-185.
- 9. R.Sultana, Md.Ayub Ali and A.S.A.Noor, Some properties of 0-distributive and 1distributive lattices, *Annals of Pure and Applied Mathematics*, 1(2) (2012) 168-175.