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Abstract. Standard and neutral elements (ideals) of a lattice were studied by many 
authors. In this paper, the author has given some characterizations of n -ideals and 
extended some of the results. He also includes a characterization of neutral n -ideals of a 
lattice when n is a neutral element and including some results on distributive n-ideals of a 
lattices.  
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1. Introduction 

Standard and neutral elements (ideals) in a lattice L  were studied by G. Grätzer and 
Schmidt in [2] also see [1]. These concepts allow us to study a larger class of non-
distributive lattices.  Again in [4] and [5], Noor and Latif extended those concepts to 
study standard n -ideals in a lattice. In this paper I  will examine some of the properties 
of standard and neutral n -ideals. I also discussed distributive  n -ideals of lattices. 
An element s  of a lattice L  is called neutral if  

       (i) ( ) ( ) ( )yxsxysx ∧∨∧=∨∧  for all Lyx ∈,   and  

       (ii) for all Lyx ∈, ,  ( ) ( ) ( )ysxsyxs ∧∨∧=∨∧ . 

For a fixed element n  of a lattice L , a convex sublattice containing n  is called an n -
ideal. The idea of n -ideals is a kind of generalization of both ideals and filters of lattices. 
The set of all n -ideals of a lattice L  is denoted by )(LI n , which is an algebraic lattice 

under set-inclusion. Moreover, { }n  and L  are respectively the smallest and the largest 

elements of )(LI n . For any two n-ideals I  and J  of L  it is easy to check that 

( )jnimxLxJIJI ,,:{ =∈=∩=∧ for some },, JjIi ∈∈  where 

( )=zyxm ,, ( ) ( ) )( xzzyyx ∧∨∧∨∧ and ,:{ 2211 jixjiLxJI ∨≤≤∧∈=∨ for 

some Iii ∈21, and }., 21 Jjj ∈  The n -ideal generated by a finite number of elements 

maaa ,...,, 21  is called a finitely generated n -ideal denoted by nmaaa >< ,...,, 21 , which 
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is the interval ]...,...[ 2121 nmm naaanaaa >∨∨∨∨∧∧∧∧ . The n -ideal generated 

by a single element a is called a principal n -ideal, denoted by <a >n = ].,[ nana ∨∧  
For detailed literature on n -ideals we refer the reader to consult [3]. 

An n -ideal of a lattice L  is called neutral n -ideal of L  if it is a neutral element 
of )(LI n . The following characterization of neutral n -ideals is due to [4]. 

 For any two n -ideals I  and J of L , it is easy to check that JIJI ∩=∧  
= ( )jnimxLx ,,:{ =∈ for some },, JjIi ∈∈  where ( ) ( ) ( ) ( )xzzyyxzyxm ∧∨∧∨∧=,,  and 

=∨JI , ≤∧∈ 11:{ jiLx  22 jix ∨≤  for Iii ∈21,  and }, 21 Jjj ∈ .  

The n -ideal generated by a finite numbers of elements maaa ...,,, 21  is called a 

finitely generated n -ideal, denoted by nmaaa >< ...,,, 21 . Moreover, nmaaa >< ,...,, 21  

is the  interval  ]....,....[ 2121 naaanaaa mm ∨∨∨∨∧∧∧∧ . The n -ideal generated 

by single elementa  is called a principal n -ideal, denoted by na ><  and 

],[ nanaa n ∨∧=>< . For detailed literature on n -ideals we refer the reader to consult 

[3,5]. 
 
 Theorem 1.1. Let n  be a neutral element of a lattice L . An n -ideal S  is a standard 
n -ideal if and only if for any n -ideal K , 
               { })()()(: 11 nxkxsxxLxKS ∧∨∧∨∧=∈=∨    

   ={ })()()(: 22 nxkxsxxLx ∨∧∨∧∨=∈  for some Sss ∈21, and Kkk ∈21, . 
  We start this paper with the following characterization of standard n -ideals.  
 

Theorem 1.2. Let n  be a neutral element of a lattice L , An n -ideal S of a lattice L  is 

standard if  and only if ( ) ( ) ( )nnnnn baSabSa ><∩><∨∩><=><∨∩><  

for all ., Lba ∈  

Proof: Suppose S  is standard. Then obviously the above relation holds. 
Conversely, suppose above relation holds for all a, b∈ L . Let K  be an n -ideal of L  
and  KSx ∨∈ . Then 2211 ksxks ∨≤≤∧  for some Sss ∈21, and Kkk ∈21, . Now 

nksnxn ∨∨≤∨≤ 22  implies that )( 2 nn nkSxnx >∨<∨∩>∈<∨  

)()( 2 nnn nkxSx >∨<∩><∨∩><= . Thus rtnx ∨≤∨  for some Sxt n ∩>∈<  

and nn nkxr >∨<∩>∈< 2 . Then )()()( nsnxsxt ∧∨∧∨∧=  for some Ss ∈ and 

nkxnknxr ∨∧=∨∧∨≤ )()()( 22 , as n  is neutral. Hence nkxsxnx ∨∧∨∧≤∨ )()( 2 , 

and so ))()(()( 2 nkxsxxnxxx ∨∧∨∧∧≤∨∧= = xnxkxsx ≤∧∨∧∨∧ )()()( 2 . 

Thus )()()( 2 nxkxsxx ∧∨∧∨∧= . By a dual proof of above we can prove that 

)()()( 1 nxkxsxx ∨∧∨∧′∨= for some Ss ∈′ . Therefore by Theorem 1.1, S is 
standard.   ����  
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  An element Ld ∈  is called a dual distributive element if 

)()()( ydxdyxd ∧∨∧=∨∧    for all Lyx ∈, . Hence an element which is both 
standard and dual distributive is a neutral element. 

 An n -ideal D is called a dual distributive n -ideal if it is a dual distributive 
element of ).(LI n Now we give the following characterization of  a dual distributive n -

ideal. 
 

Theorem 1.3. For Ln ∈ , an  n -ideal D  is dual distributive if and only if 
)()()( nnnn bDaDbaD ><∩∨><∩=><∨><∩ for all Lba ∈, .   

 Proof.  If D  is dual distributive, then clearly the relation holds. 
 Conversely, suppose the given relation holds for all Lba ∈, . Suppose )(, LIJI n∈ . 

Let )( JIDx ∨∩∈ . Then Dx ∈  and 2211 jixji ∨≤≤∧  for some  

JjjIii ∈∈ 2121 ,,, . Then )( 22 nn njniDnx >∨<∨>∨<∩∈∨  

)()()()( 22 JDIDnjDniD nn ∩∨∩⊆>∨<∩∨>∨<∩= . 

A dual proof also shows that  )()( JDIDnx ∩∨∩∈∧ . Then by convexity of 

n -ideal )()( JDIDx ∩∨∩∈ . Therefore, )()()( JDIDJID ∩∨∩⊆∨∩ . Since 

the reverse inclusion is trivial, so D  is  dual distributive.    ����  
 
2.  Distributive n-ideal  
An n -ideal I of a lattice L  is called a distributive n -ideal if it is a distributive element 
of the lattice )(LIn . That is, I is called distributive if for all ( ),, LIKJ n∈  

( ) ( ) ( ).KIJIKJI ∨∩∨=∩∨  
We start this section with the following characterization of distributive n -ideals.  

 
Theorem 2.1. An n -ideal I  of a lattice L  is distributive if and only if 
 ( ) ( ) ( )nnnn bIaIbaI ><∨∩><∨=><∩><∨  for all ., Lba ∈  

 
Proof: If I  is distributive, then the condition clearly holds form the definition. To prove 
the converse, suppose given equation holds for all Lba ∈, . Let J  and K  be any two 

n -ideals of L . Obviously ( ) ( ) ( ).KIJIKJI ∨∩∨⊆∩∨  To prove the reverse 

inclusion, let ( ) ( ).KIJIx ∨∩∨∈  Then JIx ∨∈  and KIx ∨∈ .Then 

2211 jixji ∨≤≤∧  and 4433 kixki ∨≤≤∧  for some Iiiii ∈4321 ,,, , Jjj ∈21,  and 

Kkk ∈43, . Now njinxn ∨∨≤∨≤ 22  implies that nnjInx >∨<∨∈∨ 2 . 

Similarly nkinxn ∨∨≤∨≤ 44  implies that nnkInx >∨<∨∈∨ 4 . Thus, 

( ) ( )nn nkInjInx >∨<∨∩>∨<∨∈∨ 42  ( )KJInknjI nn ∩∨⊆>∨<∩>∨<∨= )( 42 . By a 

dual proof of above, we can show that ( )KJInx ∩∨∈∧ . Thus by convexity, 

( )KJIx ∩∨∈ . Therefore, ( ) ( ) ( )KIJIKJI ∨∩∨=∩∨ , and so I  is distributive.   ���� 
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 Now we give another characterization of distributive n -ideal. To prove this we 
need the following lemma which is well known and is due to [1, Theorem-2, Page-139]. 

 
Lemma 2.2. An element a of a lattice L  is distributive if and only if the relation aθ  

defined by ayx θ≡ if and only if ayax ∨=∨  is a congruence.     ���� 

 
Theorem 2.3. An n -ideal I  of a lattice L  is distributive if and only if the relation 

( )IΘ defined by ( ) ( )LyxIyx ∈Θ≡ ,  if and only if 11 iyix ∨=∨  and 22 iyix ∧=∧  

for some Iii ∈21,  is the congruence generated by I .  

Proof: At first we shall show that ( )Iyx Θ≡ if and only if Inn yx Θ>≡<><  in 

)(LIn . Let ( )Iyx Θ≡ . Then 11 iyix ∨=∨  and 22 iyix ∧=∧  for some Iii ∈21, . 

Now 1122 ixiyyiyix ∨=∨≤≤∧=∧  implies that .Ixy n ∨>∈<  Similarly 

.Iyx n ∨>∈<  Therefore, IyIx nn ∨>=<∨>< , which implies that, in )(LIn . 

Conversely, if Inn yx Θ>≡<><  in )(LI n , then  

Inn yx Θ>≡<>< IyIx nn ∨>=<∨>< . Then Iyx n ∨>∈<  and so 

21 inyxiny ∨∨≤≤∧∧ . Similarly, 43 inxyinx ∨∨≤≤∧∧ . Thus  

422 iinxinyx ∨∨∨≤∨∨≤  which implies 4242 iinyiinx ∨∨∨=∨∨∨ .  

Similarly, 3131 iinyiinx ∧∧∧=∧∧∧ . That is, iyix ∨=∨  and '' iyix ∧=∧  

where 42 iini ∨∨=  and 31' iini ∧∧= . Therefore, ( )Iyx Θ≡ .  

Above proof shows that ( )IΘ  is a congruence in L  if and only if IΘ  is a 

congruence in )(LIn . But by Lemma 2.2, IΘ  is a congruence if and only if I is 

distributive in )(LIn  and this  completes the proof.  ���� 

By [1] we know that an element Ln ∈  is neutral if and only if for all 

,, Lba ∈ ( ) ( )naba ∧∨∧ ( ) ( ) ( ) ( )nbnabanb ∨∧∨∧∨=∧∨ . Since this 
relation is self dual, so the dual condition of neutrality also implies the neutrality. So we 
have following extension of above theorem. 
 
Theorem 2.4.  For Lnaaa m ∈,,...,, 21 , nmaaa >< ,...,, 21  is neutral if  ,1 na ∧  

nana m ∧∧ ,...,2  and nanana m ∨∨∨ ,...,, 21  are all neutral elements in L .  

Proof. Suppose nanana m ∧∧∧ ,...,, 21  and nanana m ∨∨∨ ,...,, 21  are neutral. 

Then naaa m ∧∧∧∧ ...21  and naaa m ∨∨∨∨ ...21   are also neutral. By Theorem 

1.4, nmaaa >< ,...,, 2,1  is standard. So we need to show only the dual distributive 

property. Let )(, LIJI n∈ and )(,...,, 21 JIaaax nm ∨∩>∈< . Then   

nmaaax >∈< ,...,, 21  and 2211 jixji ∨≤≤∧  for some  JjjIii ∈∈ 2121 ,,, . So 
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)]()[()...( 2221 njninaaanx m ∨∨∨∧∨∨∨∨≤∨ = )]()...[( 221 ninaaa m ∨∧∨∨∨∨  

)]()...[( 221 njnaaa m ∨∧∨∨∨∨∨ ),...,,(),...,,( 2121 JaaaIaaa nmnm ∩><∨∩><∈     

  A dual proof shows that nx ∧ ),...,,(),...,,( 2121 JaaaIaaa nmnm ∩><∨∩><∈  

Hence by convexity x ),...,,(),...,,( 2121 JaaaIaaa nmnm ∩><∨∩><∈  

Thus 
⊆∨∩>< )(,...,, 21 JIaaa mm ),...,,(),...,,( 2121 JaaaIaaa nmnm ∩><∨∩><  

Since the reverse inclusion is trivial, so 
=∨∩>< )(,...,, 21 JIaaa nm ),...,,(),...,,( 2121 JaaaIaaa nmnm ∩><∨∩><  

 Therefore, nmaaa >< ,...,, 21  is dual standard and so it is neutral.     ���� 
Following figure shows that the converse of above theorems are not true. 

Therefore Lfa n =>< ,  isneutral in ( )LIn  but neither naa ∨=  nor nff ∨=  is 

even standard in .L   
 

 

 

 

 

 

 

 

 

Figure 1: 

       Now we include a characterization of neutral n -ideals of a lattice with the help of 
principal n -ideals. 
 
Theorem 2.5. An n -ideal S of a lattice L  is neutral if and only if 

)()()( nnnn babSaS ><∩><∨><∩∨><∩  )()()( nnnn babSaS ><∨><∩><∨∩><∨=  

for all  a, b∈L.   
Proof. Let S  be neutral. Then above relation holds as S  is a neutral element of )(LI n . 

 Now suppose the above relation holds for all Lba ∈, . For any )(, LIJI n∈ , clearly 

)()()()()()( JIJSISJIJSIS ∨∩∨∩∨⊆∩∨∩∨∩ . To show the reverse 

inclusion, let )()()( JIJSISx ∨∩∨∩∨∈ . Then  332211 ,, jixjsxisx ∨≤∨≤∨≤   

for some JjjIiiSss ∈∈∈ 323121 ,;,;, . This implies )( 31 nniiSnx >∨∨<∨∈∨  

)()( 323132 nnn njjniinjjS >∨∨<∨>∨∨<∩>∨∨<∨∩ =

)()()( 32313231 nnnn njjniinjjSniiS >∨∨<∩>∨∨<∨>∨∨<∩∨>∨∨<∩ ⊆  
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)()()( JIJSIS ∩∨∩∨∩  by using the given relation. A dual proof of above shows 

that )()()( JIJSISnx ∩∨∩∨∩∈∧ . Thus by convexity,  

)()()( JIJSISx ∩∨∩∨∩∈ .Therefore )()()( JIJSIS ∩∨∩∨∩  
)()()( JIJSIS ∨∩∨∩∨= . Hence by [1] S  is a neutral n -ideal.    ���� 
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