
Annals of Pure and Applied Mathematics 
Vol. 10, No.2, 2015, 179-190 
ISSN: 2279-087X (P), 2279-0888(online) 
Published on 30 September 2015 
www.researchmathsci.org 
 

179 

 

Annals of 

Common Fixed Point Theorems for Weakly Compatible 
Mapping Satisfying Generalized Contraction Principle in 

Complete G-Metric Spaces 
N.Surender 1 and B.Krishna Reddy 2 

1,2Department of Mathematics, University College of Science  
Osmania University, Hyderabad 

        1Email: surender_sri2002@yahoo.co.in;   2Email: bkrbkr_07@yahoo.com 

Received 11 September 2015; accepted 28 September 2015 

Abstract. In this paper, we study some common fixed point results for weakly compatible 
mapping satisfying Generalized Contraction Principle in G-metric space by using a 
control function.   

Keywords: Common fixed point, weakly compatible, generalized weak contraction, 
Altering distance function, control function. 

AMS Mathematics Subject Classification (2010): 54H25 

1. Introduction 
Some generalizations of the notion of a metric space have been proposed by some 
authors. Gahler [1,2] coined the term of 2-metric spaces. This is extended to D-metric 
space by Dhage (1992) [3, 4]. Dhage proved many fixed point theorems in D-metric 
space. In 2006, Mustafa in collaboration with Sims introduced a new notion of 
generalized metric space called G-metric space [5]. In fact, Mustafa et al. studied many 
fixed point results for a self mapping in G-metric spaces under certain conditions; see [5, 
6, 7, 8, 9].  
 
2.Definitions and preliminaries  
Definition 2.1. (Altering Distance Function [see 10]) A mapping �: �0,∞� → �0,∞� is 
called an Altering Distance Function if the following properties are satisfied. 

(a) � is continuous and non-decreasing. 
(b) ��	� = 0 if and only if 	 = 0. 

 
Definition 2.2. (Control Function [see 10]) A Control Function ϕ is defined as �: 
� →
�	which is continuous at zero, monotonically increasing and ��	� = 0 if and only if 	 = 0. 
 
Definition 2.3. [5] Let � be a non empty set, and let �: � × � × � → �0,∞� be a function 
satisfying the following axioms ��1�	���, �, �� = 0 if  � = � = �, 
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��2�	���, �, �� > 0 for all  �, � ∈ �, with � ≠ �. ��3�	���, �, �� ≤ ���, �, �� for all �, �, � ∈ �, with � ≠ �. ��4����, �, �� = ���, �, �� = ���, �, �� =…., (symmetry in all three variables) ��5�	���, �, �� ≤ ���, �, �� + ���, �, ��, for all �, �, �, � ∈ � (rectangular inequality) 
Then the function � is called a generalized metric, or more specially a �-metric on �, 
and the pair ��, �� is called a �-metric space. 
 
Example 1.1. Let ��, !� be a usual metric space. Then ��, �"�	 and ��, �#�	are �-metric 
spaces, where 																									�"��, �, �� = !��, �� + !��, �� + !��, �� for all �, �, � ∈ � 
                                                                         and 																								�#��, �, �� =max {!��, ��, !��, ��, !��, ��} for all �, �, � ∈ �. 
 
Definition 2.4. [5] Let ��, �� and �� ′, � ′� be �-metric spaces and let �: ��, �� → ��′, � ′� 
be a function, then � is said to be �-continuous at a point � ∈ � if given & > 0 there exist ' > 0 such that �, � ∈ �, ���, �, �� < ' implies that � ′���, ��, ��� < &. A function � is �-continuous on � if and only if it is �-continuous at all � ∈ �. 
 
Definition 2.5. [5] Let ��, �� be a �-metric space, and let {�)} be a sequence of points of �, therefore; we say that {�)} is �-convergent to � if lim),#→∞ ���, �), �#� = 0; that is 
,for any & > 0,	there exist N∈ - such that ���, �), �#� < & for all ../ ≥N.We call �is 
the limit of the sequence {�)} and we write �) → � as . → ∞ or lim)→∞ �) = �. 
 
Proposition 2.6. [5]  Let ��, �� and ��′, � ′� be � metric spaces, then a function �: � → � 
is said to be �-continuous at a point � ∈ � if and only if it is �-sequentially continuous, 
that is, whenever {�)} is �-convergent to �, {��)} is �-convergent to ����. 
 
Proposition 2.7. [5]   Let ��, �� be a �-metric space. Then the following statements are 
equivalent 

(a) {�)} is �-convergent to �. 
(b) ���), �), �� → 0 as	. → ∞. 
(c) ���), �, �� → 0 as . → ∞. 
(d) ���), �#, �� → 0 as . → ∞. 

 
Proposition 2.8. [5] Let ��, �� be a �-metric space. A sequence {�)} is called �-cauchy 
sequence if given & > 0, there is N∈ - such that ���) , �# , �1� < & for all .,/, 2 ≥N; 
that is if ���), �#, �1� → 0	as .,/, 2 → ∞. 
 
Proposition 2.9. [5]  In a �-metric space	��, ��, the following two statements are 
equivalent. 

(1) The sequence {�)} is �-cauchy. 
(2) For every	& > 0, there exist - ∈ - such that ���), �#, �#� < & for 

all .,/ ≥ -. 
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Definition 2.10. [5] A �-metric space ��, �� is said to be �-complete (or a complete �-
metric pace) if every �-cauchy sequence in ��, �� is �-convergent in ��, ��. 
 
Proposition 2.11. [5] Let  ��, �� be a	�-metric space. Then the function ���, �, �� is 
jointly continuous in all three of its variables. 
 
Definition 2.12. [5] A �-metric space ��, ��is called a symmetric �-metric space if                                  ���, �, �� = ���, �, �� for all �, � ∈ �. 
 
Proposition 2.13. [5] Every �-metric space ��, �� defines a metric space ��, !3� by                                     
                              !3��, �� = ���, �, �� + ���, �, �� for all �, � ∈ �. 
Note that, if ��, �� is a symmetric space �-metric space, then                   																																										!3��, �� = 2	���, �, �� for all �, � ∈ �  
However, if ��, �� is not asymmetric space, then it holds by the �-metric properties that 

                                     
4
5���, �, �� ≤ !3��, �� ≤ 3���, �, �� for all �, � ∈ �. 

In general, these inequalities cannot be improved. 
 
Proposition 2.14. [5]  A �-metric space ��, �� is �-complete if and only if ��, !3� is a 
complete metric space. 
 
Proposition 2.15. [5]  Let ��, �� be a �-metric space. Then for any �, �, �, � ∈ �, it 
follows that  

(1) If ���, �, �� = 0 then � = � = �. 
(2) ���, �, �� ≤ ���, �, �� + ���, �, ��. 
(3) ���, �, �� ≤ 2	���, �, ��. 
(4) ���, �, �� ≤ ���, �, �� + ���, �, ��. 
(5) ���, �, �� ≤ 5

4 {���, �, �� + ���, �, �� + ���, �, ��. 
                                   
Definition 2.16. Two self maps 6 and	� of a G-Metric Space ��, �� are said to be 
weakly compatible if 	6�� = �6� whenever �� = 6� for all � ∈ �. 
 
Definition 2.17. Let 6 and � be two self maps of a non empty subset  7 of a metric space �. The mapping 6 is called 8-contraction mapping, if there exist a real number 0 ≤ 9 <1 such that		��6�, 6�, 6�� ≤ 9. ����, ��, ��� for all �, �, � ∈ 7.    
 
Definition 2.18. A mapping 6:� → �, where ��, �� is a �-metric space, is said to be a 
Weak Contraction if 
                            ��6�, 6�, 6�� ≤ ���, �, �� − ∅<���, �, ��=, 
where �, �, � ∈ � and ∅: �0,∞� → �0,∞� is continuous and non-decreasing function such 
that ∅�	� = 0 if and only if 	 = 0. 
 
Theorem 2.19. [11] Let ��, �� be a complete �- metric space and 6:� → � be a 
mapping satisfying        

 ��6�, 6�, 6�� ≤ ���, �, �� − ∅<���, �, ��=, 
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for all �, �, � ∈ �. If ∅: �0,∞� → �0,∞� is a continuous and non decreasing function with ∅�	� = 0 if and only if 	 = 0, then 6 has a unique fixed point in	�. 
 
Definition 2.20. A self mapping 6 of a metric space ��, �� is said to be Weakly 
Contractive with respect to a self mapping 8:> → > if for all  �, �, � ∈ � 																												��6�, 6�, 6�� ≤ ����, ��, ��� − ∅�����, ��, ����.      
where ∅: �0,∞� → �0,∞� is a continuous and non-decreasing function such that ∅ is 
positive on�0,∞�, ∅�0� = 0, lim?→∞ ∅�	� = ∞. 
 
Note 2.1. If = @, the identity mapping, then the above definition is as follows. 
A self mapping 6 of a metric space ��, �� is said to be Weakly Contractive with respect   
to a self mapping �: � → � if for all  �, �, � ∈ � 
                             ��6�, 6�, 6�� ≤ ���, �, �� − ∅<���, �, ��=.                  
This is a Weakly Contractive   Mapping. 
 
Note 2.2. Combining the generalization of Contraction Principle and Weakly Contractive 
Mapping with respect to a self map in G-Metric Space we can obtain the following result.     
 
Theorem 2.21. Let ��, �� be a complete �-Metric Space and a self map  6: � → � be 
weakly contractive mapping with respect to a self mapping �: � → � if for all  �, �, � ∈ � 
and  6:� → � is satisfying   																					�<��6�, 6�, 6��= ≤ ������, ��, ���� − ∅�����, ��, ����    
where ∅: �0,∞� → �0,∞�, �: �0,∞� → �0,∞� are continuous and monotone non-
decreasing functions with ��	� = 0 = ∅�	� if and only if		 = 0, then 6 has a unique 
fixed point. 
 
Theorem 2.22. [see 12] Let 6 and � be self maps of a	� -metric space ��, �� satisfying  																													�<!�6�, 6��= ≤ �<7��, ��= − ∅�7��, ��� for all �, �, ∈ � 

where 7��, �� = max	{!���, ���, !���, 6��, !���, 6��, C5 �!���, 6�� + !���, 6��]} (1) 

and ∅,�:�0,∞� → �0,∞� are both continuous monotone non-decreasing functions with 
                        	��	� = 0 = ∅�	� if and only if 	 = 0. If 6� is complete metric space and 6� ⊂ ��, then 6 and �	have coincidence point in �. Further, if  6 and � are weakly 
compatible, then they have a unique common fixed point in �. 
           Motivated by the above result, we address the same question on �-metric space  
for weakly compatible mappings satisfying a Generalized Contraction Principle condition 
given by (1), we establish a fixed point results in the third part of the paper.  Our results 
are the following. 

 
3. Main results 
Theorem 3.1: let 6 and � be self maps of a complete	�-metric space ��, �� satisfying 					 
           �<��6�, 6�, 6��= ≤ �<7��, �, ��= − ∅<7��, �, ��= for all �, �, � ∈ �               (2) 
where  																			7��, �, �� = max	{����, ��, ���, ����, 6�, 6��, ����, 6�, 6��, ����, 6�, 6��,		  																																											C4 <����, 6�, 6�� + ����, 6�, 6��=, C4 <����, 6�, 6�� + ����, 6�, 6��=,  
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 																																									<����, 6�, 6�� + ����, 6�, 6��=}                  (3) 
and ∅,�:�0,∞� → �0,∞� are both continuous monotone non-decreasing functions with ��	� = 0 = ∅�	� if and only if 	 = 0. If 6� is complete metric space and 6� ⊂ ��, then 6 and �	have coincidence point in �. Further, if  6 and � are weakly compatible, then 
they have a unique common fixed point in �. 
Proof:   let �F be an arbitrary point. Construct the sequence {�)} such that 

                                      ��) = 6�)GC for . = 1,2,3, ………… ..               (4) 
  this is possible since 6� ⊂ ��.  
Now �<��6�), 6�)�C, 6�)�C�= ≤ �<7��), �)�C, �)�C�= − ∅<7��), �)�C, �)�C�=.  
 (5)         
where 7��), �)�C, �)�C�= max	{����), ��)�C, ��)�C�, ����), 6�) , 6�)�, ����)�C, 6�)�C, 6�)�C�, 
                 	����)�C, 6�)�C, 6�)�C�, C4 <����)�C, 6�) , 6�)� + ����), 6�)�C, 6�)�C�=,                                                																												C4 �����)�C, 6�)�C, 6�)�C� + ����)�C, 6�)�C, 6�)�C��, 
                          

C
4 <����), 6�)�C, 6�)�C� + ����)�C, 6�), 6�)�=}.	 7��), �)�C, �)�C� =	max {��6�)GC, 6�), 6�)�, ��6�)GC, 6�), 6�)�, ��6�), 6�)�C, 6�)�C�, 

            ��6�) , 6�)�C, 6�)�C�, C4 <��6�), 6�), 6�)� + ��6�)GC, 6�)�C, 6�)�C�=, 
 

C
4 ���6�), 6�)�C, 6�)�C� + <��6�), 6�)�C, 6�)�C�=, 

                     
C
4 ���6�)GC, 6�)�C, 6�)�C� + ��6�), 6�), 6�)��}. 7��), �)�C, �)�C� =	max{��6�)GC, 6�), 6�)�, ��6�), 6�)�C, 6�)�C�, C4��6�)GC, 6�)�C, 6�)�C�,                                                            

															54 ���6�), 6�)�C, 6�)�C�, C4 ���6�)GC, 6�)�C, 6�)�C�}. 7��), �)�C, �)�C� =	max I��6�)GC, 6�), 6�)�, ��6�), 6�)�C, 6�)�C�, C4��6�)GC, 6�)�C, 6�)�C�J. 
 
Therefore						 7��), �)�C, �)�C� = max {��6�)GC, 6�) , 6�)�, ��6�), 6�)�C, 6�)�C�}. 
Since,		C4��6�)GC, 6�)�C, 6�)�C� ≤ C

4 {��6�)GC, 6�), 6�)� + ��6�), 6�)�C, 6�)�C�}.   
                                                  ≤	max {��6�)GC, 6�), 6�)�, ��6�), 6�)�C, 6�)�C�}. 
Therefore		7��), �)�C, �)�C� = max{��6�)GC, 6�), 6�)�, ��6�), 6�)�C, 6�)�C�}   (6) 
                                  From (5) and (6), we have �<��6�), 6�)�C, 6�)�C�= ≤ ��max	{��6�)GC, 6�), 6�)�, ��6�), 6�)�C, 6�)�C�})  
                  −∅�max{��6�)GC, 6�), 6�)�, ��6�), 6�)�C, 6�)�C�}�. 
This implies 
 �<��6�), 6�)�C, 6�)�C�= ≤ ����6�)GC, 6�), 6�)� − ∅���6�)GC, 6�), 6�)�)         (7) �<��6�), 6�)�C, 6�)�C�= ≤ ����6�)GC, 6�), 6�)� 
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By monotone property of the function �, we have  
                 ��6�), 6�)�C, 6�)�C� ≤ 	��6�)GC, 6�), 6�)� for . = 1,2,3………. 
Therefore the sequence {	��6�), 6�)�C, 6�)�C�} is monotonic decreasing and 
continuous. 
Therefore there exist a real number K ≥ 0 such that 	lim)→L ��6�), 6�)�C, 6�)�C� = K                                                                        (8) 

Taking . → ∞ in equation (7), we get 
         ��K� ≤ ��K� − ∅�K� 
This is possible only when K = 0. 
Therefore 	lim)→L ��6�), 6�)�C, 6�)�C� = 0                                 (9) 
Next, we claim that {6�)} is a Cauchy sequence. 
Assume that{6�)} is not a Cauchy sequence, then there exist	& > 0 and subsequences 
{.�N�}, {/�N�}	such that /�N� < .�N� < /�N + 1� along with  ��6�#�O�, 6�)�O�, 6�)�O�� ≥ & and ��6�#�O�, 6�)�O�GC, 6�)�O�GC� < &                          (10) 
Then it follows that & ≤ �<6�#�O�, 6�)�O�, 6�)�O�=≤ �<6�#�O�, 6�)�O�GC, 6�)�O�GC= + ��6�)�O�GC, 6�)�O�, 6�)�O�� 				& ≤ �<6�#�O�, 6�)�O�, 6�)�O�= ≤ & + �<6�)�O�GC, 6�)�O�, 6�)�O�=											                    (11) 
Let N → ∞ and using (9) in (11)  & ≤ limO→L�<6�#�O�, 6�)�O�, 6�)�O�= ≤ & + limO→L�<6�)�O�GC, 6�)�O�, 6�)�O�= & ≤ limO→L�<6�#�O�, 6�)�O�, 6�)�O�= ≤ & + 0 

& ≤ limO→L�<6�#�O�, 6�)�O�, 6�)�O�= ≤ & 
                                          Therefore   limO→L �<6�#�O�, 6�)�O�, 6�)�O�= = &                (12) 
Now 	�<6�#�O�, 6�)�O�, 6�)�O�=≤ �<6�#�O�, 6�#�O�GC, 6�#�O�GC= + �<6�#�O�GC, 6�)�O�GC, 6�)�O�GC= 
                                                                             +�<6�)�O�GC, 6�)�O�, 6�)�O�=. �<6�#�O�, 6�)�O�, 6�)�O�= ≤ 2 �<6�#�O�GC, 6�#�O�, 6�#�O�= + �<6�#�O�GC, 6�)�O�GC, 6�)�O�GC=  
                                                                         +�<6�)�O�GC, 6�)�O�, 6�)�O�=.     (13) 
      
                                                (Since ���, �, �� ≤ 2���, �, ���. 
Letting N → ∞ in (13) 

& ≤ 2�0� + limO→L�<6�#�O�GC, 6�)�O�GC, 6�)�O�GC= + 0 

																																													& ≤ limO→L �<6�#�O�GC, 6�)�O�GC, 6�)�O�GC=                         (14) 
Again �<6�#�O�GC, 6�)�O�GC, 6�)�O�GC= ≤ �<6�#�O�GC, 6�#�O�, 6�#�O�= +��6�#�O�, 6�)�O�, 6�)�O�� +��6�)�O�, 6�)�O�GC, 6�)�O�GC� �<6�#�O�GC, 6�)�O�GC, 6�)�O�GC= ≤ �<6�#�O�GC, 6�#�O�, 6�#�O�= +��6�#�O�, 6�)�O�, 6�)�O��  +	2	��6�)�O�GC, 6�)�O�, 6�)�O��                                        (15) 
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                                                               (Since ���, �, �� ≤ 2���, �, ��� 
Letting N → ∞ in (15) limO→L�<6�#�O�GC, 6�)�O�GC, 6�)�O�GC= ≤ 0 + & + 2�0� 																																										limO→L �<6�#�O�GC, 6�)�O�GC, 6�)�O�GC= ≤ &                           (16) 
From (14) & (16) & ≤ 	lim		O→L�<6�#�O�GC, 6�)�O�GC, 6�)�O�GC= ≤ & 																																																		limO→L �<6�#�O�GC, 6�)�O�GC, 6�)�O�GC= =		                      (17) 
Now using inequalities (2) and (10)  

��&� ≤ � P�<6�#�O�, 6�)�O�, 6�)�O�=Q ≤��7<�#�O�, �)�O�, �)�O��= − ∅�7<�#�O�, �)�O�, �)�O��=                                                    (18) 

where 
 7��#�O�, �)�O�, �)�O�� = max {�<��#�O�, ��)�O�, ��)�O�=, �<��#�O�, 6�#�O�, 6�#�O�=, 
        �<��)�O�, 6�)�O�, 6�)�O�=, ����)�O�, 6�)�O�, 6�)�O��, 
                                 

C
4 R�<��)�O�, 6�#�O�, 6�#�O�= + �<��#�O�, 6�)�O�, 6�)�O�=S, 

                                 
C
4 R�<��)�O�, 6�)�O�, 6�)�O�= + �<��)�O�, 6�)�O�, 6�)�O�=S, 

                             					C4 R�<��#�O�, 6�)�O�, 6�)�O�= + 	�<��)�O�, 6�#�O�, 6�#�O�=S}.                                                                 7��#�O�, �)�O�, �)�O�� = 
max{��6�#�O�GC, 6�)�O�GC, 6�)�O�GC�, ��6�#�O�GC, 6�#�O�, 6�#�O��, 

                          �<6�)�O�GC, 6�)�O�,6�)�O�=, ��6�)�O�GC, 6�)�O�,6�)�O��,                                                   C
4 {�<6�)�O�GC, 6�#�O�, 6�#�O�= + �<6�#�O�GC, 6�)�O�, 6�)�O�=}, 
  
C
4 {�<6�)�O�GC, 6�)�O�, 6�)�O�= + �<6�)�O�GC, 6�)�O�, 6�)�O�=},                                                                  

C
4 {�<6�#�O�GC, 6�)�O�, 6�)�O�= + �<6�)�O�GC, 6�#�O�, 6�#�O�=}}. 7��#�O�, �)�O�, �)�O�� = 

max{�<6�#�O�GC, 6�)�O�GC, 6�)�O�GC=, ��6�#�O�GC, 6�#�O�, 6�#�O��, 
  �<6�)�O�GC, 6�)�O�,6�)�O�=, 

                              	C4 {�<6�)�O�GC, 6�#�O�, 6�#�O�= + �<6�#�O�GC, 6�)�O�, 6�)�O�=}, 5
4 ��<6�)�O�GC, 6�)�O�, 6�)�O�=,                                                     

					C4 {�<6�)�O�GC, 6�#�O�, 6�#�O�= + �<6�#�O�GC, 6�)�O�, 6�)�O�=}}. 7��#�O�, �)�O�, �)�O�� =  
max{�<6�#�O�GC, 6�)�O�GC, 6�)�O�GC=, ��6�#�O�GC, 6�#�O�, 6�#�O��, �<6�)�O�GC, 6�)�O�,6�)�O�=,                                                       C

4 {�<6�)�O�GC, 6�#�O�, 6�#�O�= + �<6�#�O�GC, 6�)�O�, 6�)�O�=}. 
Taking N → ∞ on both sides in above equation, we obtain limO→L7��#�O�, �)�O�, �)�O�� = max	{&, 0, 0, ≤ &} 
Therefore                               limO→L7��#�O�, �)�O�, �)�O�� = &                                                

                                                                         (19)      
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Letting N → ∞ in (18) and using (19) in that, then we obtain 																																																			��&� ≤ ��&� − ∅�&� 
which is a contradiction, has & > 0. Thus {6�)} is a Cauchy Sequence in 6� which in 
turn implies that {��)} is also Cauchy Sequence in X. Since 6� is complete, {6�)} 
converges to some	T ∈ 6�. 
Since  6� ⊂ �� and T = �U for some U ∈ �. thus {��)} converges to	�U. 
Now lim)→L����6�), 6U, 6U�� ≤ 	 lim)→L���7��) , U, U� − ∅�7��), U , U��] 
where lim)→L�7��) , U, U� = 		lim)→Lmax{����), �U, �U�, ����), 6�), 6�)�, ���U, 6U, 6U� ���U, 6U, 6U�, C4 {���U, 6�) , 6�)� + ����), 6U, 6U�}, 
  
C
4 {���U, 6U, 6U� + ���U, 6U, 6U�},   C4 {����), 6U, 6U� + ���U, 6�), 6�)�}}. 

 7��), U, U� =max  {0,0, ��T, 6U, 6U�, ��T, 6U, 6U�, C4 {��T, T, T� + ��T, 6U, 6U�}, 
  
C
4 {��T, 6U, 6U� + ��T, 6U, 6U�}, C4 {��T, 6U, 6U� + ��T, T, T�}}. 7��), U, U� =max  {0,0, ��T, 6U, 6U�, ��T, 6U, 6U�, C4 {��T, 6U, 6U�}, 23 {��T, 6U, 6U�}, 13 {��T, 6U, 6U�}. 

Therefore 7��), U, U� = ��T, 6U, 6U�. 
By monotone increasing property of � & 	∅, we have  
                               �<��T, 6U, 6U�= ≤ �<��T, 6U, 6U�= − ∅���T, 6U, 6U�                                              
which is possible only when��T, 6U, 6U� = 0. 

Thus T = 6U = �U and U is the coincidence point of 6and�. 
Since 6and �are weekly compatible, they commute at their coincidence point. 
Hence 6�U = �6U which implies	6T = �T.                                                          
                               (20) 
Now ����6U, 6T, 6T� ≤ �<7�U, T, T�= − ∅�7�U, T, T��,          (21)                

       
where 7�U, T, T� = max {���U, �T, �T�, ���U, 6U, 6U�, ���T, 6T, 6T�, ���T, 6T, 6T�, 
                                                                  

C
4 {���T, 6U, 6U� + ���U, 6T, 6T�}, 

                                                                  
C
4 {���T, 6T, 6T� + ���T, 6T, 6T�}, 

                                                                  
C
4 {���U, 6T, 6T� + ���T, 6U, 6U�}}. 

 7�U, T, T�= max {��T, 6T, 6T�, ��T, T, T�, ��6T, 6T, 6T�, ��6T, 6T, 6T�, C
4 {��6T, T, T� + ��T, 6T, 6T�},   C4 {��6T, 6T, 6T� + ��6T, 6T, 6T�}, 
                                                     

C
4 {��T, 6T, 6T� + ��6T, T, T�}}. 7�U, T, T�=max {��T, 6T, 6T�, 0,0,0, C4 {��6T, T, T� + ��T, 6T, 6T�}, 0, 

  
C
4 {��T, 6T, 6T� + ��6T, T, T�}}. 
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                  7�U, T, T�= max	{��T, 6T, 6T�, C4 {��6T, T, T� + ��T, 6T, 6T�}} 																																								7�U, T, T� = ��T, 6T, 6T�.        (22) 

Since 
C
4 {��T, 6T, 6T� + ��6T, T, T�} ≤ C

4 {2��T, 6T, 6T� + ��T, 6T, 6T�} 
                     	C4 {��T, 6T, 6T� + ��6T, T, T�} ≤ ��T, 6T, 6T�}. 
Hence by using (22) in (21), we get 
              ����T, 6T, 6T� = ���6U, 6T, 6T� ≤ ����T, 6T, 6T�� − ∅���T, 6T, 6T�� 
                                 	����T, 6T, 6T� ≤ ����T, 6T, 6T�� − ∅���T, 6T, 6T�� 
This implies       ∅���T, 6T, 6T� ≤ 0 
which is possible only when	��T, 6T, 6T� = 0. 
Therefore   T = 6T. 
Thus T = 6T = �T.    (from (20)) 
Hence T is the common fixed point of 6 and �.                                    
Uniqueness: 
Let T and V be two fixed points of 6 and �. 
That is T = 6T = �T and V = 6V = �V. 
By using inequality (4), we have  																																����6T, 6V, 6V� ≤ �<7�T,V,V�= − ∅�7�T,V,V��        (23) 
where 7�T, V,V�= max {���T, �V, �V�, ���T, 6T, 6T�, ���V, 6V, 6V�, ���V, 6V, 6V�, C
4 {���V, 6T, 6T� + ���T, 6V, 6V�},  C4 {���V, 6V, 6V� + ���V, 6V, 6V�}, 
                                                             

C
4 {���T, 6V, 6V� + ���V, 6T, 6T�}}. 7�T, V,V�=max	{��T, V,V�, ��T, T, T�, ��V, V,V�, ��V,V,V�, C4 {��V, T, T� +��T,V,V�}, C4 {��V, V,V� + ��V, V,V�},  C4 {��T,V,V� + ��V, T, T�}}.                  7�T, V,V�=max	{��T, V,V�, 0,0,0, {C4 {��V, T, T� + ��T,V,V�}, 0}. 7�T, V,V�=max	{��T, V,V�, {C4 {��V, T, T� + ��T, V,V�}}. 

                                    7�T, V,V� = ��T,V,V�.                     (24) 

Since	{C4 {��V, T, T� + ��T,V,V�} ≤ C
4 {2��T,V,V� + ��T, V,V�} 

																												13 {��V, T, T� + ��T,V,V�} ≤ ��T,V,V�}. 
Hence by using (24) in (23), we get  ��T,V,V� = ����6T, 6V, 6V� ≤ �<��T,V,V�= − ∅���T,V,V�� 																														��T, V,V� ≤ �<��T,V,V�= − ∅���T,V,V�� 
                                          ∅���T, V,V� ≤ 0 
This is possible only when ��T,V, V� = 0. 
Therefore    T = V 
This proves the uniqueness of the common fixed point of 6 and �. 
 
Example 3.1. Let � = �0,1] and !��, �� = |� − �|. Define  
      ���, �, �� = |� − �| + |� − �| + |� − �|, then ��, �� is a complete �-metric space. 
Consider two self mappings 6 and � of � by 6� = X

5 and �� = � for all � ∈ �. 
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Let �: �0,∞� → �0,∞� be defined by  

                                        ��	� = Y	 + ?Z
5 																	N�		0 ≤ 	 ≤ 10																									N�		 > 1									 [             (25) 

and ∅: �0,∞� → �0,∞� defined by 

                                          ∅�	� = Y4?Z\ 																		N�		0 ≤ 	 ≤ 1	0																																	N�		 > 1[         (26) 

Now to verify inequality (2), LHS of (2) 
          �<��6�, 6�, 6��= = ��|6� − 6�| + |6� − 6�| + |6� − 6�|� 
                 �<��6�, 6�, 6��= = � P]X5 − ^

5] + ]^5 − _
5] + ]_5− X

5]Q, 
                 �<��6�, 6�, 6��= = � P|XG^|5 + |^G_|

5 + |_GX|
5 Q, 

                     �<��6�, 6�, 6��= = � P|XG^|�|^G_|�|_GX|5 Q, 
                              �<��6�, 6�, 6��= = � P3�X,^,_�5 Q, 
                    �<��6�, 6�, 6��= = 3�X,^,_�

5 + <3�X,^,_�=Z
\ 	.                         (27) 

Now to verify inequality (2), RHS of (2) is   �<7��, �, ��= − ∅<7��, �, ��=,      (28) 
where  

                     7��, �, �� = max	{����, ��, ���, ����, 6�, 6��, ����, 6�, 6��, ����, 6�, 6��,		  
                                               		C4 <����, 6�, 6�� + ����, 6�, 6��=, C4 <����, 6�, 6�� +����, 6�, 6��=,   C4 <����, 6�, 6�� + ����, 6�, 6��=}   

           7��, �, �� = max	{���, �, ��, � P�, X5 , X5Q , � P�, ^5 , ^5Q , � P�, _5 , _5Q , C4 `� P�, X5 , X5Q +
� P�, ^5 , ^5Qa	  

   	C4 `� P�, ^5 , ^5Q + � P�, _5 , _5Qa , C4 `� P�, _5 , _5Q + � P�, X5 , X5Qa}.	  
 7��, �, �� = max	{|� − �| + |� − �| + |� − �|, |�|, |�|, |�|, 54 P]� − X

5] + ]� −^
5bQ , 54 P]� − ^

5] + ]� − _
5]Q , 54 P]� − _

5] + ]� − X
5]Q}.	 

                   7��, �, �� = |� − �| + |� − �| + |� − �| for all �, �, � ∈ �, 
                                  7��, �, �� = ���, �, �� for all �, �, � ∈ �        (29) 

Substitute (29) in (28), we obtain RHS of (2) is  
                                       �����, �, ��� − ∅����, �, ���, 

From (24) and (25), we obtain RHS of (2) is 

                                         ���, �, �� + <3�X,^,_�=Z
5 − 4<3�X,^,_�=Z

\ , 
                                  RHS of (2) is =	���, �, �� + <3�X,^,_�=Z

\         (30) 

From (26) and (29), we obtain 

                                      
3�X,^,_�

5 + <3�X,^,_�=Z
\ ≤ ���, �, �� + <3�X,^,_�=Z

\ , 
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   This implies LHS ≤ RHS and inequality (2) is verified. Now, it is easy to see that 

      6� = c0, C5Q ⊂ �� = �0,1]. Moreover,	6 and � are weakly compatible in �. Hence all the  

conditions of theorem 3.1 are satisfied. It may be noted that d is unique common fixed 
point of 	6 and �. 

 
Theorem 3.2. let 6 and � be self maps of a 	�-metric space ��, �� satisfying 							 
                         �<��6�, 6�, 6��= ≤ 9	�<7��, �, ��= for all �, �, � ∈ �            (31)      
where  																										7��, �, �� = max	{����, ��, ���, ����, 6�, 6��, ����, 6�, 6��, ����, 6�, 6��,		  																																																		C4 <����, 6�, 6�� + ����, 6�, 6��=, C4 <����, 6�, 6�� +����, 6�, 6��=, C4 <����, 6�, 6�� + ����, 6�, 6��=}                         (32) 

      
  
  

and �:�0,∞� → �0,∞� is continuous monotone non-decreasing function with	��	� = 0 if 
and only if 	 = 0. If 6� is complete metric space and 6� ⊂ ��, then 6 and �	have 
coincidence point in �. Further, if  6 and � are weakly compatible, then they have a 
unique common fixed point in �. 
Proof: By taking ∅�	� = �1 − 9�	��	� in theorem 3.1 then condition (2) reduced to the 
condition (32), and the proof follows the theorem (3.1). 

 
Theorem 3.3. let 6 and � be self maps of a 	�-metric space ��, �� satisfying  

             ��6�, 6�, 6�� ≤ ����, ��, ��� − ∅<����, ��, ���= for all �, �, � ∈ �        (33)  
and ∅:�0,∞� → �0,∞� is continuous monotone non-decreasing function with	∅�	� = 0 if 
and only if 	 = 0. If 6� is complete metric space and 6� ⊂ ��, then 6 and �	have 
coincidence point in �. Further, if  6 and � are weakly compatible, then they have a 
unique common fixed point in �. 
Proof: By taking ��	� = 	 and 7��, �, �� = ����, ��, ��� in theorem 3.1, then condition 
(2) reduced to the condition (33), and the proof follows the theorem (3.1). 

 
Theorem 3.4. Let ��, �� be a complete �- metric space and 6: � → � be a mapping 
satisfying        
                            ��6�, 6�, 6�� ≤ ���, �, �� − ∅<���, �, ��=,         (34) 
for all�, �, � ∈ �. If ∅: �0,∞� → �0,∞� is a continuous and non decreasing function with ∅�	� = 0 if and only if 	 = 0, then 6 has a unique fixed point in	�. 
Proof: By taking ��	� = 	, 7��, �, �� = ����, ��, ��� and � = @,(the identity function) 
in theorem 3.1, then condition (2) reduced to the condition (34), and the proof follows the 
theorem (3.1). 
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