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Abstract. The fuzzy set theory has been applied in many fields such as management, 
engineering etc. In modern management applications ranking using fuzzy numbers is the 
most important aspect in decision making process. In this paper, we proposed the ranking 
of generalized dodecagonal fuzzy numbers (DoFN). The proposed approach is based on 
rank, mode, divergence and spread. 
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1. Introduction 
Ranking of fuzzy number play an important role in decision making. Zadeh [23] 
introduced the concept of fuzzy sets to deal with imprecision, vagueness in real life 
situations. The method for ranking was first proposed by Jain [9]. Yager [21] first used 
horizontal coordinate of the centroid point in ranking fuzzy numbers. Murakami et al. 
[14] have used both the horizontal and vertical coordinates of the centroid point as the 
ranking index. In Kaufmann and Gupta [12] proposed an approach for the ranking of 
fuzzy numbers.  

Campos and Gonzalez [1] proposed a subjective approach for ranking fuzzy 
numbers. Cheng [6] presented a method for ranking fuzzy numbers by using the distance 
method. Chu and Tsao [7] proposed a method for ranking fuzzy numbers with the area 
between the centroid point and original point. Deng and Liu [8] presented a centroid-
index method for ranking fuzzy numbers. Chen and Chen [3] presented a method for 
ranking generalized trapezoidal fuzzy numbers. Wang and Lee [20] used the centroid 
concept in developing their ranking index. 

Chen and Tang [5] proposed a method for ranking p-norm trapezoidal fuzzy 
numbers. Since then several methods have been proposed by various researchers which 
includes ranking fuzzy numbers using maximizing and minimizing set [2] decomposition 
principle and signed distance [22], different heights and spreads[4], rank, mode, 
divergence and spread [13], area compensation distance method [14], Ordering of 
trapezoidal fuzzy numbers[19]. Gani and Mohamed [10] used a new ranking method for 
ranking the fuzzy numbers. Rajarajeswari and Sudha [13] proposed a ranking method for 
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ordering fuzzy numbers based on Area, Mode, divergence, Spreads and Weights of 
generalized (non-normal) hexagonal fuzzy numbers. Rajarajeswari and Sudha [15] 
proposed a new method on the incentre of centroids and uses of Euclidean distance to 
ranking generalized hexagonal fuzzy numbers. 
 
2. Preliminaries 
2.1. Fuzzy set [9] 
A fuzzy set �� is defined by ��= {(x, µA(x)) : x ϵ A, µA(x) ϵ [0,1] }. In the pair (x, µA(x)), 
the first element x belong to the classical set A, the second element µA(x), belong to the 
interval [0, 1] called Membership function. 
 
2.2. Fuzzy number [9] 
A fuzzy set �� on R must possess at least the following three properties to qualify as a 
fuzzy number, 
(i) �� must be a normal fuzzy set; (ii) αÃ must be closed interval for every α ϵ [0,1] 
(iii) the support of ��, 0+Ã, must be bounded. 
 
2.3. Dodecagonal fuzzy numbers [18] 
A fuzzy number �� is a DoFN denoted by �� = (a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12) where 
a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12 are real numbers and its membership function is given 
below 
   0         x ≤ a1 

k1� ���������
	      a1 ≤ x ≤ a2  

k1        a2 ≤ x ≤ a3  

k1 + (k2 - k1) � ���������
	        a3 ≤ x ≤ a4 

k2        a4 ≤ x ≤ a5  

k2 + (1- k2) � ���
����

	        a5 ≤ x ≤ a6 

      ���(�) = 1        a6 ≤ x ≤ a7 

k2 + (1- k2) � ���������
	        a7 ≤ x ≤ a8  

k2        a8 ≤ x ≤ a9 

k1 + (k2 – k1) � �����������
	       a9 ≤ x ≤ a10 

k1        a10 ≤ x ≤ a11 

k1� ������������
	      a11 ≤ x ≤ a12 

0   a12 ≤ x   where 0 < k1 < k2 < 1 
 
2.4. Generalized dodecagonal fuzzy number 
A fuzzy number �� = (a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12;u,v,w) is said to be generalized 
dodecagonal fuzzy number if its membership function is given be 
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       0         x ≤ a1 

u� ���������
	      a1 ≤ x ≤ a2  

u        a2 ≤ x ≤ a3  

u + (v - u) � ���������
	        a3 ≤ x ≤ a4 

v        a4 ≤ x ≤ a5  

v + (w- v) � ���
����

	        a5 ≤ x ≤ a6 

      ���(�) = w        a6 ≤ x ≤ a7 

v + (w- v) � ���������
	        a7 ≤ x ≤ a8 

k2        a8 ≤ x ≤ a9 

u + (v – u) � �����������
	       a9 ≤ x ≤ a10 

u        a10 ≤ x ≤ a11 

u� ������������
	      a11 ≤ x ≤ a12 

0   a12 ≤ x   where 0 < u < v < w ≤ 1 
 
3. Proposed ranking method of dodecagonal fuzzy number 
The centroid of a DoFN is considered to be the balancing point of the dodecagon (Fig. 1). 
Divide the dodecagon into eight triangles and one hexagon ABM, BCN, CDO, DEP, HIS, 
IJT, JKU, KWV and EFGHRQ respectively. Let the centroids of nine trapezoids be G1, 
G2, G3, G4, G6, G7, G8, G9 and G5 respectively.  

 
 

Figure 1: Generalized dodecagonal fuzzy number 
The centroid of the nine plane figure is 

G1=�������� , ��	; G2=�������� , ��� 	; G3=�������� , ���� 	;  
G4=������
� , ��� 	; G5=��
��(�����)���� , �� � 	; G6=�������� , ��� 	; 
G7=��������� , ���� 	; G8=���������� , ��� 	; G9=���������� , ��	 
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(a) G1, G2 and G3 are non-collinear and they form triangle. We define the centroid !"∗ of 

the triangle with vertices G1, G2 and G3 as !"∗= �����(�����)����$ , %���$ 	. 
(b) G4, G5 and G6 are non-collinear and they form triangle. We define the centroid !�∗ of 

the triangle with vertices G4, G5 and G6 as !�∗= ��(�����������)�&(�
���)"' , &�� $ 	 
(c) G7, G8 and G9 are non-collinear and they form triangle. We define the centroid !�∗ of 

the triangle with vertices G7, G8 and G9 as !�∗= ������(�������)����$ , %���$ 	 
Also,!"∗, !�∗ and !�∗ are non-collinear and they form triangle. We define the centroid !��∗ 
of the triangle with vertices !"∗, !�∗ and !�∗ as  
 

!��∗= ��(������������)��(�������������������)�&(�
���)&% , '��(�� �( 	 
If we take u = 

 
�  and v = 

� 
�  then 

!��∗= ��(������������)��(�������������������)�&(�
���)&% , �& '" 	                                          (1) 

The ranking function of the generalized DoFN A* = (a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12;w), 
which maps the set of all fuzzy number to a set of real numbers is defined as 

R(A*) = ��(������������)��(�������������������)�&(�
���)&% 	 ��& '" 	                                   (2) 

This is the area between the centroid of the centroids !��∗ as defined in (1) and (2) the 
original point. 
The mode of the generalized DoFN A* = (a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12;w) is 
Mode = 

 
�(a� +  a()                                                                                                           (3) 

The divergence of the generalized DoFN A* = (a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12;w) is 
Divergence = w(a"� - a")                                                                                                  (4) 
The left spread of the generalized DoFN A* = (a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12;w) is 
Left spread = 

 
� (a� - a")                                                                                                    (5) 

The right spread of the generalized DoFN A* = (a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12;w) is 
Right spread = 

 
� (a"� - a()                                                                                                (6) 

 
4. Some important results   
In this section some important results, that are useful for the proposed approach, are 
proved. 
Proposition 4.1. Let A*=(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12;w1) and  
B*= (b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12;w2) be two generalized dodecagonal fuzzy 
numbers such that 
(i) R(A*) = R(B*), (ii) mode (A*) = mode (B*) and (iii) divergence (A*) = divergence (B*) 
then 
(a) Left spread (A*) ˃ Left spread (B*) iff a6w1 ˃  b6w2 
(b) Left spread (A*) < Left spread (B*) iff a6w1 < b6w2 
(c) Left spread (A*) = Left spread (B*) iff a6w1= b6w2 
Proof: We have 
(i) R(A*) = R(B*)  
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i.e.,��(������������)��(�������������������)�&(�
���)&% 	 ��&-�'" 	 =
						��(0��0��0��0��)��(0��0��0��0��0���0��)�&(0
�0�)"�� 	 ��&-�'" 	                               (7) 

(ii)  mode (A*) = mode (B*) 
      i.e.,

-�
� (a6+a7) = 

-�
� (b6+b7)                                                                                            (8) 

(iii) divergence (A*) = divergence (B*) 
i.e.,(a12-a1)w1=(b12-b1)w2                                                                                     (9) 

    Solving(7), (8) and (9) we get 
 a1w1= b1w2 

    (a2+a3+ a4+a9+a10+a11)w1=( b2+b3+b4+b9+b10+b11)w2 
    (a5+a8)w1=(b5+b8)w2 

(a) Left spread (A*) ˃ Left spread (B*) 
     iff (a6-a1)

-�
�  ˃ (b6-b1)

-�
�  

     iff (a6-a1)w1˃ (b6-b1)w2 

     iff a6w1 ˃ b6w2       (∵ a1w1= b1w2) 
     Hence, Left spread (A*) ˃ Left spread (B*) iff a6w1 ˃  b6w2 

(b) Left spread (A*) < Left spread (B*) 
     iff (a6-a1)

-�
�  < (b6-b1)

-�
�  

     iff (a6-a1)w1< (b6-b1)w2 

     iff a6w1 < b6w2       (∵ a1w1= b1w2) 
     Hence, Left spread (A*) < Left spread (B*) iff a6w1 < b6w2 

(b) Left spread (A*) = Left spread (B*) 
     iff (a6-a1)

-�
�  = (b6-b1)

-�
�  

     iff (a6-a1)w1= (b6-b1)w2 

     iff a6w1 = b6w2       (∵ a1w1= b1w2) 
     Hence, Left spread (A*) = Left spread (B*) iff a6w1 = b6w2 

 
Corollary 4.1. All the results of proposition 4.1 also hold for right spread. 
 
Proposition  4.2. Let A*=(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12;w1) and  
B*=(b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12;w2) be two generalized dodecagonal fuzzy numbers 
such that 
(i) R(A*) = R(B*), (ii) mode (A*) = mode (B*) and (iii) divergence (A*) = divergence (B*) 
then 
(a) Left spread (A*) ˃ Left spread (B*) iff Right spread (A*) ˃ Right spread (B*) 
(b) Left spread (A*) < Left spread (B*) iff Right spread (A*) < Right spread (B*) 
(c) Left spread (A*) = Left spread (B*) iff Right spread (A*) = Right spread (B*) 
Proof: From proposition 4.1, we have 
     a1w1= b1w2  

    (a2+a11)w1=(b2+b11)w2 
    (a3+a10)w1=(b3+b10)w2 
    (a4+a9)w1=(b4+b9)w2 

    (a5+a8)w1=(b5+b8)w2 

(a) Left spread (A*) ˃ Left spread (B*) 
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     iff a6w1 ˃  b6w2   (from proposition 4.1) 
     iff a7w1 < b7w2         (∵ 

-�
� (a6+a7) = 

-�
� (b6+b7) or w1(a6+a7) = w2(b6+b7))  

     iff -a7w1 ˃  -b7w2 

     iff (a12-a7)w1 ˃  (b12w2-b7)w2      (∵ a12w1 = b12w2) 
     iff Right spread (A*) ˃ Right spread (B*) 
     Similarly (b) and (c) can be proved. 
 
5. Proposed approach for ranking of generalized dodecagonal fuzzy numbers 
Let A*=(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12;w1) & B*=(b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12;w2) 
be two generalized dodecagonal fuzzy numbers then use the following steps to compare 
A* and  B* 
Step 1: Find R (A*) and R (B*) 
     Case (i) If R (A*) ˃ R (B*) then A* ≻  B* 
     Case (ii) If R (A*) < R (B*) then A* ≺  B* 
     Case (ii) If R (A*) = R (B*) then go to step 2. 
Step 2: Find mode (A*) and mode (B*) 
     Case (i) If mode (A*) ˃ mode (B*) then A* ≻  B* 
     Case (ii) If mode (A*) < mode (B*) then A* ≺  B* 
     Case (ii) If mode (A*) = mode (B*) then go to step 3. 
Step 3: Find divergence (A*) and divergence (B*) 
     Case (i) If divergence (A*) ˃ divergence (B*) then A* ≻  B* 
     Case (ii) If divergence (A*) < divergence (B*) then A* ≺  B* 
     Case (ii) If divergence (A*) = divergence (B*) then go to step 4. 
Step 4: Find Left Spread (A*) and Left Spread (B*) 
     Case (i) If Left Spread (A*) ˃ Left Spread (B*) 
     i.e. a6w1 ˃ b6w2 then A* ≻ B*    (from proposition 4.1) 
     Case (ii) If Left Spread (A*) < Left Spread (B*) 
     i.e. a6w1 < b6w2 then A* ≺ B*    (from proposition 4.1) 
     Case (ii) If Left Spread (A*) = Left Spread (B*) 
     i.e. a6w1 < b6w2 then go to step 5.     (from proposition 4.1)  
Step 5: Find w1 and w2 

     Case (i) If w1 ˃  w2 then A* ≻ B* 
     Case (ii) If w1 < w2 then A* ≺ B* 
     Case (ii) If w1 = w2 then A* ~ B*.  
 
6. Numerical problems 
Example 6.1. Let A* = (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2;0.7) and  
B* = (0.2,0.4,0.6,0.8,1,1.2,1.4,1.6,1.8,2,2.2,2.4;0.35) 
Step 1: R (A*) = 0.14 and R (B*) =0.14. Since R (A*) = R (B*) go to step 2 
Step 2: Mode (A*) = 0.455 and Mode (B*) =0.455. Since Mode (A*) = Mode (B*) go to step 3 
Step 3: Divergence (A*) = 0.77 and Divergence (B*) = 0.77. 

Since Divergence (A*) = Divergence (B*) go to step 4 
Step 4: Left Spread (A*) = 0.117 and Left Spread (B*) = 0.117. 

Since Left Spread (A*) = Left Spread (B*) go to step 5 
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Step 5: w1 = 0.7 and w2 = 0.35. Since w1 ˃  w2 then A* ≻ B* 
 
Example 6.2.  Let A* = (0.15,0.2,0.21,0.26,0.29,0.31,0.33,0.37,0.39,0.45,0.48,0.49;0.4) 
and  B* = (0.45,0.49,0.51,0.55,0.57,0.6,0.62,0.67,0.69,0.72,0.73,0.79;0.8) 
Step 1: R (A*) = 0.041 and R (B*) = 0.152. Since R (A*) < R (B*), A* ≺ B* 
 
Example 6.3. Let A* = (0.43,0.45,0.5,0.6,0.7,0.8,1,1.1,1.2,1.35,1.4,1.5;1)  and  B* = (0.28, 
0.45,0.5,0.6,0.75,0.8,0.9,1.15,1.2,1.3,1.45,1.5;1) 
Step 1: R (A*) = 0.283 and R (B*) = 0.283. Since R (A*) = R (B*), go to step 2 
Step 2: Mode (A*) = 0.9 and Mode (B*) = 0.85. Since Mode (A*) ˃ Mode (B*), A* ≻ B* 
 
Example 6.4. Let A* = (0.2,0.4,0.6,0.8,1.15,1.2,1.4,1.65,1.8,2,2.2,2.4;1) and  B* = (0.1,0.4, 
0.7,0.8,1,1.2,1.4,1.6,1.8,2.1,2.2,2.4;1) 
Step 1: R (A*) = 0.407 and R (B*) = 0. 407. Since R (A*) = R (B*) go to step 2 
Step 2: Mode (A*) = 1.3 and Mode (B*) = 1.3. Since Mode (A*) = Mode (B*) go to step 3 
Step 3: Divergence (A*) = 2.2 and Divergence (B*) =2.3. 
            Since Divergence (A*) < Divergence (B*), A* ≺ B* 
 
Example 6.5. Let A* = (0.2,0.3,0.6,0.8,1,1.3,1.4,1.6,1.8,2,2.2,2.3;1) and  B* = 
(0.2,0.4,0.6,0.8,1,1.2,1.5,1.6,1.8,2,2.1,2.3;1) 
Step 1: R (A*) = 0.403 and R (B*) = 0.403. Since R (A*) = R (B*) go to step 2 
Step 2: Mode (A*) = 1.35 and Mode (B*) = 1.35. Since Mode (A*) = Mode (B*) go to step 3 
Step 3: Divergence (A*) = 2.1 and Divergence (B*) = 2.1. 

Since Divergence (A*) = Divergence (B*) go to step 4 
Step 4: Left spread (A*) = 0.36 and Left Spread (B*) = 0.33. 
            Since Left Spread (A*) ˃ Left Spread (B*), A* ≻ B* 
 
7. Conclusion 
In this paper, we proposed a simpler and easier approach for ranking of generalized 
dodecagonal fuzzy number by using centroid of centroids. Also, proposed method is 
illustrated with the help of numerical example.  
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